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Abstract

We present a technique that transforms any binary programming problem with integral

coe�cients to a satis�ability problem of propositional logic in linear time� Preliminary com�

putational experience using this transformation� shows that a pure logical solver can be a

valuable tool for solving binary programming problems� In a number of cases it competes

favourably with well known techniques from operations research� especially for hard unsat�

is�able problems�

CR Subject Classi�cation ������� F��� Mathematical Logic and Formal Languages� G��� Dis�

crete Mathematics�

AMS Subject Classi�cation ������� �	B�
� Classical Propositional Logic� ��C��� Integer Pro�

gramming�

Keywords � Phrases� Linear inequalities Conjunctive Normal Form Horn cardinality clauses�

� Introduction

The satis�ability problem of propositional logic �SAT� is considered important in many dis�

ciplines� such as mathematical logic� electrical engineering� computer science and operations

research� It is the original NP�complete problem �Cook� 	
��� It is well known that any problem

of propositional logic can be formulated as a binary programming problem 	��� In the past years�

mathematical programming techniques such as branch and bound and branch and cut have been

applied to solve the satis�ability problem� with some success 	� ���� On the other hand� it is also

possible to apply techniques from mathematical logic and computer science� such as resolution

	��� to solve speci�c binary programming problems� However� e�ciently transforming a binary

programming problem to a satis�ability problem is generally not a trivial task� To our knowl�

edge� until now� no transformations are known that transform an arbitrary binary programming

�This research was supported by the Dutch Organization for Scienti�c Research �SION�NWO� under grant

���	

	����

�



problem to a satis�ability problem in linear time�

A transform that may yield exponentially many clauses was introduced by Granot and Ham�

mer 	��� Barth 	�� studied the transformation to so called extended or Horn cardinality clauses

	��� which in the worst case also may yield an exponential number of extended clauses� These

transformations do not require the introduction of new variables� Hooker 	�� shows that to re�

place Horn cardinality clauses� when no new variables are introduced� an exponential number

of classical clauses is required�

In this paper we present a technique that transforms any binary integer programming problem

with integral coe�cients to a satis�ability problem in linear time� This entails the introduction

of a substantial� but linear in the length of the input� number of additional variables and clauses�

This paper is organized as follows� In the next section we introduce some notation� The third

section deals with a transformation that may result in an exponential number of clauses� In the

fourth section we describe the new transformation� For comparison� in the subsequent section

we consider a special case for which a polynomial time transformation is already known� Finally�

in Section � we report on some computational results�

� Notation

We use propositional formulae in conjunctive normal form �CNF�� or clausal form� A formula

is a conjunction of clauses� Each clause is a disjunction of literals� each of which is an atomic

proposition or its negation� We denote the atoms by letters� and the negation operator by

�� Literals are connected by the binary disjunction operator � to form a clause� Clauses are

connected by the binary conjunction operator � to form a formula� So� each clause Ci is of the

form

Ci �
�
j�Pi

pj �
�
j�Ni

�pj

where Pi � f�� � � � � mg and Ni � f�� � � � � mg� Pi �Ni � �� are sets of indices� The conjunction

of clauses� which we denote as �� is given by

� �
n�
i��

Ci �
n�
i��

�
�
j�Pi

pj �
�
j�Ni

�pj�

We will also use the binary operators � �implication� and � �equivalence�� that can be elimi�

nated to obtain a CNF using the following rules �see e�g� Van Dalen 	����

�p� q� 	 ��p � q�� �p� �q�

�p� q� 	 ��p � q�

By a truth value assignment we mean a mapping from the m�dimensional unit cube� where m is

the number of di�erent atoms� to f�� �g� We associate the value ��� with false and the value ���





with true� The SAT problem is to determine whether some assignment of truth values to atoms

makes a given formula true� An example of a �satis�able� formula is

� � �p� � �p�� � ��p� � p� � p�� � ��p� � p���

We can formulate any clause Ci as a linear inequality� A linear inequality consists of a sum of

terms� where each term is a product of a variable and a �positive or negative� coe�cient� one

of the relations � �greater than�� 
 �greater than or equal to�� � �less than� or � �less than or

equal to�� and a right hand side value� It is satis�ed when the variables are given values such

that the sum on the left hand side has the proper relation to the right hand side� For example�

the linear inequality �x� � 
x� � �x� � �� is satis�ed when we take x� � x� � x� � �� We can

write a general linear inequality in the form

mX
i��

aixi � aTx � b�

where the second expression denotes the inner product of the vectors a and x� both of which

consist of m elements�

In the following� a proposition letter pi corresponds to a binary variable xi� The clause Ci can

now be formulated as a linear inequality in the following way 	���

X
j�Pi

xj �
X
j�Ni

��� xj� 
 �� ���

or equivalently X
j�Pi

xj �
X
j�Ni

xj 
 �� jNij�

By the notation jNij we denote the cardinality of the set Ni� that is the number of elements that

Ni contains� Obviously� ��� is satis�ed if and only if at least one of the terms in its left hand

side contributes a ���� i�e� at least one of the literals is true�

Finally� given a natural number a we de�ne the set Ba to be the set containing all powers of two

that contribute to the binary representation of a� For example� if a � �� then Ba � f�� �� �g

since �� � � � � � ��

� An exponential transformation

We �rst review a transformation that may yield an exponential number of clauses �see Granot

and Hammer 	���� We consider an inequality of the form

aTx �
mX
i��

aixi � b� ��

where we assume that the ai�s are positive integers� We can do this without loss of generality�

since if for some i we have that ai is negative� we can replace aixi by the positive term �ai���xi�






while adding �ai to the right hand side b� If we let yi � ��xi� then yi is again a binary variable�

One way of transforming an inequality into a set of clauses is the following� We �rst give a

de�nition �see e�g� Nemhauser and Wolsey 	�����

De�nition � A minimal cover of an inequality of the form ��� is a set MC � f�� � � � � mg for

which for all j MC X
i�MCnfjg

ai � b �
X

i�MC

ai�

For a minimal cover MC of an inequality aTx � b� it will be clear that if we set xi � � for all

i MC� the inequality will be violated� In other words� not every xi� i MC� should be equal

to one� If we associate a proposition letter pi with each variable xi� then we can express this

with the following logical expression�

�
�

i�MC

pi�

which is equivalent with the clause �
i�MC

�pi�

Now we can state the following theorem�

Theorem � Given an inequality of the form ���� Let C be the set containing all its distinct

minimal covers� Let CNF�C� denote the conjunction of clauses that can be constructed from the

minimal covers in C� Then a binary solution x satis�es the inequality if and only if its associated

truth value assignment to the proposition letters p�� � � � � pm satis�es CNF�C��

Proof�

� Given x such that aTx � b� Suppose that x does not satisfy the clause C  CNF�C�� This

implies that �
i�C

pi

is true� which implies that xi � �� for all i  C� This implies that aTx � b� so we arrive

at a contradiction�

� Now we are given an x that satis�es CNF�C�� Let � � fi  f�� � � � � j�jg � xi � �g� Suppose

that

aTx �
X
i��

aixi �
X
i��

ai � b�

Sort the i  � such that ai� 
 ai� 
 � � �
 aij�j
� Now for some t it holds that

tX
k��

aik � b�

while
t��X
k��

aik � b�

�



We conclude that fi�� i�� � � � � it��g is a minimal cover of aTx � b� so by construction there

must be a clause
t���
k��

�pk �

Again� we have arrived at a contradiction� �

Example� Consider the inequality

�x� � �x� � 
x� � �x� � ��x	 � ��

We rewrite this as

�x� � �x� � 
��� x�� � ���� x�� � ��x	 � ���

This is equivalent with the following set of clauses�

�p� � �p	

�p� � p� � �p	

�p� � p� � �p	

p� � p� � �p	

�p� � �p� � p� � p�

Observe that if a variable xi has a positive coe�cient ai� its corresponding proposition letter pi
occurs only negated� If the coe�cient ai is negative� then the proposition letter corresponding

to xi occurs unnegated�

To conclude this section� consider the case in which all ai are equal to one� i�e�

mX
i��

xi � b�

The number of distinct minimal covers for such an inequality is equal to

�
� m

b� �

�
A �

If b� � � m
� this number is O�m�� This demonstrates that for certain inequalities� the number

of clauses that is required to replace them is exponential in the length of the inequality�

� A linear transformation

Suppose we are given an inequality of the form ��� i�e�

mX
i��

aixi � b

�



Again� we assume that all the ai�s are positive and integral numbers� Furthermore� we assume

that the inequality is nontrivial� i�e�
mX
i��

ai � b�

We consider the binary representation of each ai� Now let amax be the maximal entry of the

vector a� and let M be such that M�� � amax � M � In other words M is the maximum

natural number such that

M � � �� log�amax��

Each of the ai�s can be written in its binary representation� i�e�

ai �
M��X
k��

a

i�
k � k�

where the a

i�
k �s are either zero or one� We associate a proposition letter p


i�
k with each coe�cient

a

i�
k � and transform ai as follows�

trans�ai� �
�

k�Bai

p

i�
k �

�
k��Bai

�p

i�
k � �
�

Furthermore� we associate a proposition letter pxi with the �binary� variable xi� Recall that Bai

is the set of indices j for which a

i�
k � ��

We now give a formal description of the transformation� Subsequently� we will explain it in

more detail� In the following I is a set of indices� We introduce the sets bIc � I and dIe � I

for which the following holds�

bIc � dIe � I � bIc � dIe � �� jbIcj 
 jdIej� jbIcj � jdIej � ��

Or in words� the sets bIc and dIe are a partition of I � We shall denote the proposition letters

that represent the sum X
i�I

aixi�

by

fp

I�
k gk���������MI

�

where MI � M � log�jI j�� In the following we shall omit the subscript k � �� �� � � � �MI and

assume that k runs between zero and an appropriate upper bound� The transformation of the

sum of products aixi over the �nonempty� index set I is recursively given by

trans�
X
i�I

aixi� �

������
����	

trans�
X
i�bIc

aixi�� trans�
X
i�dIe

aixi� � T
��fp


I�
k g� fp


bIc�
k g� fp


dIe�
k g�� if jI j 
 

trans�ai� � T
��fp


i�
k g� fp


i�
k g� pxi�� if I � fig�

�



The transformation operator T ��fp

U�
k g� fp


V �
k g� fp


W �
k g� with U � V �W � V and W nonempty�

is given by 

p

U�
� � �p


V �
� � �p


W �
� �

�
� ���



c

U�
�� � �p


V �
� � p


W �
� �

�
� ���

�
k�������MU



p

U�
k � �p


V �
k � p


W �
k � c


U�
k���k�

�
� ���

�
k�������MU��



c

U�
k�k�� � �p


V �
k � p


W �
k �� �p


V �
k � c


U�
k���k� � �p


V �
k � c


U�
k���k�

�
� ���



c

U�
MU���MU

� p

U�
MU

�
� ���

Furthermore� the transformation operator T ���� is given by

T ��fp

i�
k g� fp


i�
k g� pxi� �

Mi�
k��



p

i�
k � �p


i�
k � pxi�

�
� ���

Now let M � f�� � � � � mg� To express that the right hand side value b may not be exceeded� we

transform it in the following way�

T �b� �
�
k��Bb

�
�p
M�

k � �
�

j�Bb�j�k

p

M�
j

�
A �

In the following we shall try to clarify the procedure and give the CNF form of the logical

expressions introduced above�

First we consider the operator T ��fp

U�
k g� fp


V �
k g� fp


W �
k g� that performs the addition of two

numbers in binary notation� The following �gure will help in understanding the procedure� Let

U � V �W�

p

V �
MU��

p

V �
MU��

� � � p

V �
� p


V �
� p


V �
�

p

W �
MU��

p

W �
MU��

� � � p

W �
� p


W �
� p


W �
� �

p

U�
MU

p

U�
MU��

p

U�
MU��

� � � p

U�
� p


U�
� p


U�
�

����

For example� we have that p

U�
� is true if and only if exactly one of the propositions p


V �
� and

p

W �
� is true� This is expressed by ���� which expands to the following CNF�

p

U�
� � p


V �
� � �p


W �
�

p

U�
� � �p


V �
� � p


W �
�

�p

U�
� � �p


V �
� � �p


W �
�

�p

U�
� � p


V �
� � p


W �
�

����

To obtain an expression for p

U�
� we �rst introduce a �carry��proposition c


U�
�� � This is true� only

if both p

V �
� and p


W �
� are true� see ��� which in turn we can write as three clauses�

c

U�
�� � �p


V �
� � �p


W �
�

�c

U�
�� � p


V �
�

�c

U�
�� � p


W �
�

���

�



Now we have that p

U�
k evaluates to true if either one or three of the propositions p


V �
k � p


W �
k and

c

U�
k���k are true� This is expressed by ���� that has the following CNF�

p

U�
k � �p


V �
k � p


W �
k � c


U�
k���k

p

U�
k � �p
V �k � �p
W �

k � �c
U�k���k

p

U�
k � p


V �
k � �p


W �
k � c


U�
k���k

p

U�
k � p


V �
k � p


W �
k � �c


U�
k���k

�p

U�
k � p


V �
k � p


W �
k � c


U�
k���k

�p

U�
k � p


V �
k � �p


W �
k � �c


U�
k���k

�p

U�
k � �p


V �
k � �p


W �
k � c


U�
k���k

�p

U�
k � �p


V �
k � p


W �
k � �c


U�
k���k

��
�

Subformulae ��� and ��� give the logical expressions for c

U�
k�k��� k � �� � � � �MU � � and p


U�
MU

re�

spectively� The CNF of the �rst is given below� Note that we may substitute p

U�
MU

for c

U�
MU���MU

�

thus eliminating ����

c

U�
k�k�� � �p


V �
k � �p


W �
k

c

U�
k�k�� � �p


V �
k � �c


U�
k���k

c

U�
k�k�� � �p


W �
k � �c


U�
k���k

�c

U�
k�k�� � p


V �
k � p


W �
k

�c

U�
k�k�� � p


V �
k � c


U�
k���k

�c

U�
k�k�� � p


W �
k � c


U�
k���k

����

In the above we have been very accurate� and we may relax this accuracy in the following way�

Consider again Figure ����� For example� we need for p

U�
� to be true� that either p


V �
� or p


W �
�

is true� which is expressed by ���� i�e� we require equivalence� However� we can relax this to

�p

V �
� � �p


W �
� �� p


U�
� � ����

as implication su�ces� Observe that p

U�
� might be true when both p


V �
� and p


W �
� are false� This

transformation is slightly less restrictive� We can also replace the equivalence by implication in

expressions ��� to ���� This results in less clauses when transforming to conjunctive normal form

�the number of additional clauses is� roughly speaking� halved�� Consider the clauses in ���� to

����� all clauses beginning with a negated proposition letter are left out� In the following we will

consider the transformation with equivalence� In the �nal section of this paper� we report on

computational experience with both choices� Observe that the idea that is used here is similar

to Wilson�s extension 	��� of the transformation by Blair et al� 	� to transform logical formulas

to CNF�

Now we consider the operator T ��fp
i�k g� fp

i�
k g� pxi� that is in fact the multiplication of a number

�



in binary notation with a binary number� i�e�

p

i�
Mi��

p

i�
Mi��

� � � p

i�
� p


i�
� p


i�
�

pxi �

p

i�
Mi

p

i�
Mi��

p

i�
Mi��

� � � p

i�
� p


i�
� p


i�
�

����

So we have that the proposition p

i�
k is true if and only if both p


i�
k and pxi are true� which is

expressed by ���� Note that� using unit resolution� expression ��� in conjunction with �
� reduces

to �
k�Bai



p

i�
k � pxi

�
�
�

k��Bai

�p

i�
k �

which has the CNF

��p

i�
k � pxi� � �p


i�
k � �pxi�� for all k  B
i�

a

�p

i�
k � for all k � B
i�

a �

Finally� the CNF of T �b� is given by

�
k��Bb

�
��p
M�

k �
�

j�Bb�j�k

�p

M�
j

�
A �

Complexity To get an indication of the complexity of the procedure� we shall make use of

the following equality�
rX
i��

i�i � r�r � ��r � � r � �� � � � � ����

For completeness� we prove this equality�

Proof� For r � � we have that � � �� � � � �� � � � � Suppose the equality holds for r� Using

induction� we have to prove that it also holds for r � ��

r��X
i��

i�i � �r � ���r�� � �r �
rX
i��

i�i � �r� ���r�� � �r

�
rX
i��

i�i � r�r �  � �r

� 

�

The number of operations that is required to perform the transformation is of the order of

magnitude of
m


�M � �� �

m

�
�M � � � � � �� �M � log�m���

If we take r such that r�� � m � r� the above is bounded by �using ������

r
rX
i��

�i�M � i� � �r � ��M � r�� � r � 

�



which is of the order O�mM� � O�m log�amax��� We conclude that the transformation requires

linear time� assuming that amax is a priori bounded�

Let us look somewhat more closely at how many variables and clauses we need to introduce to

perform the transformation� To compute this� note that adding two terms of which the largest is

represented by N proposition letters� we introduce N new variables and at most ��N � � new

clauses� Furthermore� if m � r for some natural number r we can easily compute the required

number of variables and clauses� using ����� Let us denote the number of additional variables

by var and the number of additional clauses by cl

var�r �
rX
i��

r���i�M � i� �� � �r�M � ��� �M � r � ��� ����

cl�r �
rX
i��

r�i����M � i�� �� � ��r�M � ��� �M � r�� ��� ����

To compute the number of variables required to transform an inequality of length m� let Bm be

the set of powers of  that are in the binary representation of m� We make use of the following

recursive formula�

varm � var�k � varm��k � l�var�k�� ���

where k � max �Bm� and l�var�k� denotes the length of the binary representation of var�k � It is

easily understood that l�var�k� � l�varm��k�� By construction� we have that l�var�k� � M � k�

Substituting this and ���� in ��� we obtain

varm � k�� � k���M � ���  � varm��k �

We have that Bm��k � Bmnfkg� Using this we can derive the following upper bound for varm�

varm � 	m�M � ��� �M � jBmj�min�Bm�� � m� � log�amax���

In the same manner we can derive an upper bound on the number of clauses�

clm � �	m�M � ��� �M � jBmj�min�Bm�� � �� �MM � jBbj � �m�
 �  log�amax���

where the term MM � jBbj is the number of clauses required to process the right hand side�

Note that we have introduced a number of redundant variables� as we can straightforwardly

substitute pxi for any p

i�
k � k  Bai � These variables are not included in the last computations�

Remarks

� The general transformation described above entails� in most practical situations� the intro�

duction of a number of equivalent variables and clauses� There are a number of re�nements

that make it possible to reduce the number of additional variables and clauses� which we

brie�y mention� In many cases these redundant variables and clauses will be recognized

immediately by the logical solver used� but there may be situations in which it is bene�cial

to remove them beforehand�

��



� As mentioned in the previous section� we do not need to introduce any new variables

and clauses to replace single terms�

� Consider the sum ����� If the p

i�
k � k  Bai � and p


j�
k � k  Baj � all refer to a single

variable xi resp� xj we do not need to introduce any �carry��variables and also some

of the �sum��variables will be equivalent� Note that in the general case we can also

leave out the carry�variables� but this will lead to introducing more and longer clauses�

� By keeping track of the maximal value the sum of two terms can take� we can in some

cases see beforehand that certain proposition letters must get the value false� so we

need not introduce them�

� We can divide all coe�cients and the hand side by their greatest common divider� so

as to reduce the number of new variables required�

� System of linear inequalities can be transformed to CNF by applying the procedure de�

scribed above to each of the inequalities separately� First� each equality must be brought

to the form ��� Note that it is important to keep track of negative coe�cients� if a vari�

able xi had a negative coe�cient� its associated proposition letter pxi must be negated in

��� c�q� �����

� An inequality that has rational coe�cients can also be transformed by our procedure�

First� its coe�cients must be multiplied by an appropriate number to obtain an inequality

with integral coe�cients� For example� one could take the product of the denominators of

the coe�cients�

Example� Consider the inequality

x� � �x� � �x� � �� ���

We transform ��� by �rst taking the sum of the �rst two terms� this requires no additional

variables and clauses� Subsequently we add the third term� The CNF we obtain is given below�

where U � f�� � 
g� Note that modelling the right hand side results in �among others� a single

literal clause� by applying unit resolution we can directly reduce the size of the CNF from � to

� clauses�

�p

U�
� � �px� � �px�

�p

U�
� � px� � px�

p

U�
� � px� � �px�

p

U�
� � �px� � px�

�p

U�
� � px�

�p

U�
� � px�

p

U�
� � �px� � �px�

�p

U�
�

�p

U�
� � �px� � �px�

This example is of course very nice in the sense that we need to introduce only a small number

of new variables� Note that� using minimal covers� ��� is equivalent to the following CNF�

��px� � �px�� � ��px� � �px��

��



Example� 	��� �� Consider the inequality


��x� � 
��x� � ��x	 � ��x � ��x� � ��x� � 
�x��� 
�x��� ���x��� ��x���

���x�� � ��x�� � ���x�	 � ��x� � ���x�� � ��x�� � ���x��� ��x��� ���x�� � ���

The CNF that is equivalent to this inequality consists of ����� clauses� when introducing no

additional variables� When using extended clauses� �� of those are required 	��� The linear

time transformation requires ��� variables and ��� clauses� and if the inequality is �rst divided

by the greatest common divisor ���� this number reduces to � and ��� respectively�

� Horn cardinality clauses

In this section we will consider a special class of linear inequalities� the Horn cardinality clauses�

which have the form
mX
i��

xi 
 b� ��

This is the only form of inequalities that we are aware of� for which there exists a polynomial

CNF expansion �Hooker 	���� The CNF equivalent of �� is

�zik � pxi � i � �� � � � � m� k � �� � � � � b� �
�
m�
i��

zik � k � �� � � � � b� ���

�zik � �zjk � i� j � �� � � � � n� i �� j� k � �� � � � � b� ���

Here �
� says that xi is true if some zik is true� and ��� combined with ��� say that for each

k exactly one zik must be true�

The number of additional variables required to perform this transformation is bm and the number

of clauses required is �
�b�m

� �m� ��

If we use the transform of the previous section� we have M � � and with the additional insight

that

varm � var�k � varm��k � k � ��

where again k � max �Bm� and we use that l�varm� � l�var�k�� we �nd an expression for the

number of additional variables�

varm � �m� 
jBmj � min �Bm�� ��

Similarly� we obtain an expression for the number of clauses�

clm � �m� ��jBmj � ��max �Bm� � min �Bm��� 
�

Here we do not take into account the number of clauses that is required to represent the right

hand side m � b �note that we �rst have transformed �� to a ��� inequality�� This requires

�



another � � max �Bm�� jBbj clauses�

Comparing the two polynomial transforms� we observe that the number of additional variables

and clauses in Hooker�s transform is very much dependent on the right hand side b� whereas in

our transform the right hand side only �slightly� in�uences the number of additional clauses� The

application of the next section shows that� in speci�c cases� this can be considered as bene�cial�

� Computational experience

In this section we report on some computational experience with the linear transformation�

Many combinatorial problems are almost satis�ability problems� in the sense that most of the

constraints can be regarded as clauses� only a small number of constraints is di�erent� Our

transformation makes it possible to solve these problems with a logical solver� The aim of this

section is to show that� given a particular combinatorial problem� a logical solver can be as

e�cient or more e�cient than a mathematical programming package�

We consider the Frequency Assignment Problem �FAP �� Given a set of radio links L� a set of

frequencies F and a set if interference constraints D� assign to each radio link a frequency� such

that the interference constraints are not violated� and the number of di�erent frequencies used

is below a certain maximum number �provided by the user�� Interference is a phenomenon that

occurs when two radio links that are situated near each other� get the same or close frequencies�

An interference constraint is a triple �l� k� dlk�� where dlk 
 � is the minimum distance required

�in mHz� between the frequencies assigned to radio links l and k�

In Warners et al� 	��� various mathematical models for this problem are developed� Here we

use the model that has a structure similar to that of the pigeon hole principle� a notorious

problem form mathematical logic which was used to prove the exponentiality of resolution 	���

We introduce the proposition letters plf and qf �

plf �

��
	

true if frequency f is assigned to radio link l�

false otherwise�
for all l  L� f  F

qf �

��
	

true if frequency f is not assigned to any radio link�

false otherwise�
for all f  F

We associate a binary variable xlf with each letter plf and a binary variable zf with each letter

qf �i�e� given some f  F � we have that zf � � if and only if qf is true�� Let Fmin be the

minimal number of frequencies not to be used� then we can express the �FAP � as follows�
�
f�F

plf � for all l  L ���

�plf � �pkg� for all �f� g� such that jf � gj � dlk ���

�plf � �qf � for all l  L� f  F� ���

with the additional constraint that

at least Fmin propositions qf must be true� ���

�




Here� ��� expresses that to each radio link a frequency must be assigned and ��� model the

interference constraints� The clauses ��� keep track of which frequencies are assigned to at least

one link� while ��� makes sure that not too many di�erent frequencies are assigned� Only the

last constraint is not in CNF� Since it can be written as

X
f�F

zf 
 Fmin� �
��

we can straightforwardly transform it to CNF by our procedure �note that �
�� is in fact a Horn

cardinality clause��

We have selected a number of FAP s that are structured as described in Warners 	���� For these

FAP s� the cardinality of F is typically equal to �� so the number of additional variables and

clauses to transform it are equal to �
 and ��� �when using the transformation with equivalence�

when restricting to implication the number of additional clauses reduces to ���� Observe that

for Hooker�s transform� the number of additional clauses and variables are 
��Fmin resp� �Fmin�

which for Fmin � �� is substantially larger�

The selected problems were solved with the logical solver HeerHugo� developed by Jan Friso

Groote at the CWI in Amsterdam� The Netherlands� and with the well known optimization

package CPLEX� The tests were run on a HP���� ��� ��� MHz� Obviously� when using

CPLEX we do not need to transform �
��� while all clauses ����� can readily be written

as linear inequalities �see the introduction�� In the Tables ��� the results are summarized�

The problems are solved for di�erent values of Fmin� the values of Fmin are chosen around its

optimal value �i�e� the maximal number of di�erent frequencies not used�� As CPLEX allows

for an objective function� the problems are also solved with the objective to maximize Fmin

�under the constraints ������� see column �� Furthermore� results are reported of both using

the transformation to CNF with implication ����� and equivalence ������ Times are given

in seconds� Numbers of variables and constraints c�q� clauses do not include the additional

variables and clauses due to the transformation�

Based on these experiments� we observe the following�

� For some of the larger problems� HeerHugo outperforms CPLEX� especially in the cases

where the problem under consideration is just unsatis�able due to the value of Fmin� In a

number of cases HeerHugo also performs better on satis�able problems�

� The transformation to CNF with implication instead of equivalence� generally gives better

results when the problem is satis�able� This is most probably due to the fact that the

transformation with implication allows more satis�able assignments �if any��

We conclude from our experiments that a logical solver can be an e�cient tool to solve di�cult

binary programming problems� We observe� however� that the results obtained by CPLEX can

be improved by using a tighter linear model� and adding strong valid inequalities� See for an

overview of e�cient algorithms for the FAP � Tiourine et al� 	�
��

��



G��� solvers

HeerHugo HeerHugo CPLEX CPLEX

Fmin SAT � � � feas� � obj�

�� SAT � �� ��

�� SAT �� �� ��

�� SAT � �� � ��

�� UNSAT �� �	 ��

�� UNSAT � � �

Table �� G����� ��� variables� ���� constraints

G�� solvers

HeerHugo HeerHugo CPLEX CPLEX

Fmin SAT � � � feas� � obj�

�� SAT �� �� �

�� SAT �	 � ��

�� SAT �	 �� �	 ��

�� UNSAT �	� ��� ���

�� UNSAT � � �

Table � G����� 
 variables� 
� constraints

G����� solvers

HeerHugo HeerHugo CPLEX CPLEX

Fmin SAT � � � feas� � obj�

�� SAT 	 �� ���

�� SAT ��	 ��� ���

�� SAT �� ��� �	��� �����	

�� UNSAT ���	 �	�� � ������

�� UNSAT 		� 		� �����

Table 
� G����� �� variables� ���� constraints

G��� solvers

HeerHugo HeerHugo CPLEX CPLEX

Fmin SAT � � � feas� � obj�

�� SAT ��� ��� �

�� SAT ��� ��� ��

�� SAT ��� �� �� ���	

�� UNSAT ���� ���	 �����

�� UNSAT �� �� ��

Table �� G���� ��� variables� ���� constraints

��
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