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A note on quantum black-box complexity of

almost all Boolean functions

Andris Ambainis∗

UC Berkeley

Abstract

We show that, for almost all N -variable Boolean functions f , N/4 −O(
√
N logN)

queries are required to compute f in quantum black-box model with bounded error.

1 Introduction

In the black-box computation model, we assume that the input are given by a black box
that, given an index i, returns the ith bit of the input. Several efficient quantum algorithms
can be considered in this framework, including Grover’s algorithm[4] and many its variants.

Beals, Buhrman et.al. [1] proved that almost all N -variable Boolean functions require
Ω(N) queries in this model if the computation has to be exact (i.e., no error is allowed). We
extend their result to computation with bounded error.

In this case, a non-trivial speedup is possible. Namely, van Dam[2] showed that all N
input bits can be recovered with just N/2 + o(N) queries and arbitrarily small probability
of error. This allows to compute any function with just N/2 + o(N) queries. This bound is
known to be tight (up to o(N) term) for the parity function[1, 3] but not for other functions.

In this paper, we show that almost all Boolean functions require N/4 − O(
√
N logN)

queries in the quantum black-box model. This matches van Dam’s result up to a constant
factor (N/4 compared to N/2).

2 Quantum black-box model

We consider computing a Boolean function f(x1, . . . , xN) : {0, 1}N → {0, 1} in the quantum
black-box model[1]. In this model, input bits can be accessed by queries to an oracle X and
the complexity of f is the number of queries needed to compute f .
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A computation with T queries is just a sequence of unitary transformations

U0 → O1 → U1 → O1 → . . . → UT−1 → OT → UT

on a state space with finitely many basis states. We shall assume that the set of basis states
is {0, 1, . . . , 2m − 1} for some m. (Then, U0, O1, . . . , UT are transformations on m qubits.)

Uj ’s are arbitrary unitary transformations that do not depend on x1, . . . , xN and Oj are
queries to the oracle. To define Oj, we represent basis states as |i, b, z〉 where i consists
of ⌈logN⌉ bits, b is one bit and z consists of all other qubits. Then, Oj maps |i, b, z〉 to
|i, b ⊕ xi, z〉. (I.e., the first ⌈logN⌉ qubits are interpreted as an index i for an input bit xi

and this input bit is XORed on the next qubit.)
We start with a state |0〉, apply U0, O1, . . ., OT , UT and measure the rightmost bit of

the final state. The network computes f exactly if, for every x1, . . . , xN , the result of the
measurement always equals f(x1, . . . , xN ). The network computes f with bounded error if,
for every x1, . . . , xN , the probability that the result equals f(x1, . . . , xN) is at least 2/3.

For more information about this model, see [1].

3 Result

We are going to prove that almost all N -variable functions f(x1, . . . , xN) require at least
T (N) = N

4
− 2

√
N logN queries in the quantum black box model. First, we state a useful

lemma from [1].

Lemma 1 [1] Assume we have a computation in the black-box model with T queries. Then,
the probability that the measurement at the end of computation gives 0 (or 1) is a polynomial
p(x1, . . . , xN) of degree at most 2T .

If a black-box computation computes f(x1, . . . , xN) with a bounded error, p(x1, . . . , xN)
must be in the interval [2/3, 1] if f(x1, . . . , xN) = 1 and in [0, 1/3] if f(x1, . . . , xN) = 1. In
this case, we say that p approximates f . We show that, for almost Boolean functions, there
is no polynomial p of degree 2T that approximates f . We start by bounding the coefficients
of p.

Lemma 2 If a polynomial p(x1, . . . , xN ) approximates a Boolean function f(x1, . . . , xN),
then coefficients of all its dth degree terms are between −2Nd+1 and 2Nd+1.

Proof: By induction.
Base case: k = 0. The coefficient is equal to the value of the polynomial on the all-0

vector, p(0, . . . , 0). Hence, it must be between -4/3 and 4/3.
Inductive case: Let c be the coefficient of xi1xi2 . . . xid. The value of the polynomial on

the assignment with xi1 = . . . = xid = 1 and all other variables equal to 0 is the sum of c and
coefficients of all terms that use part of variables xi1 , . . . , xid. These are terms of degree at
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most d− 1. Hence, inductive assumption applies to them, each of them is at most 2N(d−1)+1

and their sum is at most (2d − 1)2N(d−1)+1. The sum of this and c should be at most 4/3 by
absolute value. Hence, |c| is at most (2d − 1)2N(d−1)+1 + 4/3 < 2Nd+1. ✷

This implies a bound on the number of polynomials than can be approximated. Let
D(N, d) =

∑d
i=0

(

n

i

)

.

Lemma 3 At most 2O(D(N,d)dN2) functions can be approximated by polynomials of degree d.

Proof: Let p1, p2 be two polynomials. If all coefficients of p1 and p2 differ by at most 2−N−2,
the values on any (0,1)-assignment differ by at most 2N2−N−2 = 1/4 (since there are at most
2N terms) and these two polynomials cannot approximate two different Boolean functions.

By Lemma 2, all coefficients of such polynomials are in [−2Nd+1, 2Nd+1]. We split this
interval into subintervals of size 2−N−2. This gives 2O(N2d) subintervals. If we choose a
subinterval for each coefficient, there is at most one Boolean function approximated by
a polynomial with coefficients in these intervals (because any two such polynomials differ
by at most 1/4 and, hence, cannot approximate different functions). There are D(N, d)
possible terms of degree at most d. Hence, there are at most (2O(N2d))D(N,d) = 2O(D(N,d)N2d)

combinations of intervals. ✷

Theorem 1 The fraction of Boolean functions that can be computed with a bounded error
in the quantum black-box model with at most T (N) queries, for T (N) = N/4− 2

√
N logN ,

goes to 0, as N → ∞.

Proof: Let d = 2T = N/2 − 4
√
N logN . Then, D(N, d) ≤ 2N

N4 . and D(N, d)N2d ≤
D(N, d)N3 ≤ 2N

N
. Hence, black-box computations with at most T (N) = N/4 − 2

√
N logN

queries can compute only 2
2
N

N = o(22
N

) functions, but there are 22
N

different Boolean func-
tions of N variables. ✷
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