A note on quantum black-box complexity of almost all Boolean functions

Andris Ambainis^{*} UC Berkeley

Abstract

We show that, for almost all N-variable Boolean functions f, $N/4 - O(\sqrt{N} \log N)$ queries are required to compute f in quantum black-box model with bounded error.

1 Introduction

In the black-box computation model, we assume that the input are given by a black box that, given an index i, returns the i^{th} bit of the input. Several efficient quantum algorithms can be considered in this framework, including Grover's algorithm[4] and many its variants.

Beals, Buhrman et.al. [1] proved that almost all N-variable Boolean functions require $\Omega(N)$ queries in this model if the computation has to be exact (i.e., no error is allowed). We extend their result to computation with bounded error.

In this case, a non-trivial speedup is possible. Namely, van Dam[2] showed that all N input bits can be recovered with just N/2 + o(N) queries and arbitrarily small probability of error. This allows to compute any function with just N/2 + o(N) queries. This bound is known to be tight (up to o(N) term) for the parity function[1, 3] but not for other functions.

In this paper, we show that almost all Boolean functions require $N/4 - O(\sqrt{N} \log N)$ queries in the quantum black-box model. This matches van Dam's result up to a constant factor (N/4 compared to N/2).

2 Quantum black-box model

We consider computing a Boolean function $f(x_1, \ldots, x_N) : \{0, 1\}^N \to \{0, 1\}$ in the quantum black-box model[1]. In this model, input bits can be accessed by queries to an oracle X and the complexity of f is the number of queries needed to compute f.

^{*}Address: Computer Science Division, University of California, Berkeley, CA 94720-1776, e-mail: ambainis@cs.berkeley.edu. Supported by Berkeley Fellowship for Graduate Studies.

A computation with T queries is just a sequence of unitary transformations

$$U_0 \to O_1 \to U_1 \to O_1 \to \ldots \to U_{T-1} \to O_T \to U_T$$

on a state space with finitely many basis states. We shall assume that the set of basis states is $\{0, 1, \ldots, 2^m - 1\}$ for some m. (Then, U_0, O_1, \ldots, U_T are transformations on m qubits.)

 U_j 's are arbitrary unitary transformations that do not depend on x_1, \ldots, x_N and O_j are queries to the oracle. To define O_j , we represent basis states as $|i, b, z\rangle$ where *i* consists of $\lceil \log N \rceil$ bits, *b* is one bit and *z* consists of all other qubits. Then, O_j maps $|i, b, z\rangle$ to $|i, b \oplus x_i, z\rangle$. (I.e., the first $\lceil \log N \rceil$ qubits are interpreted as an index *i* for an input bit x_i and this input bit is XORed on the next qubit.)

We start with a state $|0\rangle$, apply $U_0, O_1, \ldots, O_T, U_T$ and measure the rightmost bit of the final state. The network computes f exactly if, for every x_1, \ldots, x_N , the result of the measurement always equals $f(x_1, \ldots, x_N)$. The network computes f with bounded error if, for every x_1, \ldots, x_N , the probability that the result equals $f(x_1, \ldots, x_N)$ is at least 2/3.

For more information about this model, see [1].

3 Result

We are going to prove that almost all N-variable functions $f(x_1, \ldots, x_N)$ require at least $T(N) = \frac{N}{4} - 2\sqrt{N} \log N$ queries in the quantum black box model. First, we state a useful lemma from [1].

Lemma 1 [1] Assume we have a computation in the black-box model with T queries. Then, the probability that the measurement at the end of computation gives 0 (or 1) is a polynomial $p(x_1, \ldots, x_N)$ of degree at most 2T.

If a black-box computation computes $f(x_1, \ldots, x_N)$ with a bounded error, $p(x_1, \ldots, x_N)$ must be in the interval [2/3, 1] if $f(x_1, \ldots, x_N) = 1$ and in [0, 1/3] if $f(x_1, \ldots, x_N) = 1$. In this case, we say that *p* approximates *f*. We show that, for almost Boolean functions, there is no polynomial *p* of degree 2*T* that approximates *f*. We start by bounding the coefficients of *p*.

Lemma 2 If a polynomial $p(x_1, \ldots, x_N)$ approximates a Boolean function $f(x_1, \ldots, x_N)$, then coefficients of all its dth degree terms are between -2^{Nd+1} and 2^{Nd+1} .

Proof: By induction.

Base case: k = 0. The coefficient is equal to the value of the polynomial on the all-0 vector, $p(0, \ldots, 0)$. Hence, it must be between -4/3 and 4/3.

Inductive case: Let c be the coefficient of $x_{i_1}x_{i_2}\ldots x_{i_d}$. The value of the polynomial on the assignment with $x_{i_1} = \ldots = x_{i_d} = 1$ and all other variables equal to 0 is the sum of c and coefficients of all terms that use part of variables x_{i_1}, \ldots, x_{i_d} . These are terms of degree at

most d-1. Hence, inductive assumption applies to them, each of them is at most $2^{N(d-1)+1}$ and their sum is at most $(2^d - 1)2^{N(d-1)+1}$. The sum of this and c should be at most 4/3 by absolute value. Hence, |c| is at most $(2^d - 1)2^{N(d-1)+1} + 4/3 < 2^{Nd+1}$. \Box

This implies a bound on the number of polynomials than can be approximated. Let $D(N,d) = \sum_{i=0}^{d} {n \choose i}$.

Lemma 3 At most $2^{O(D(N,d)dN^2)}$ functions can be approximated by polynomials of degree d.

Proof: Let p_1 , p_2 be two polynomials. If all coefficients of p_1 and p_2 differ by at most 2^{-N-2} , the values on any (0,1)-assignment differ by at most $2^N 2^{-N-2} = 1/4$ (since there are at most 2^N terms) and these two polynomials cannot approximate two different Boolean functions.

By Lemma 2, all coefficients of such polynomials are in $[-2^{Nd+1}, 2^{Nd+1}]$. We split this interval into subintervals of size 2^{-N-2} . This gives $2^{O(N^2d)}$ subintervals. If we choose a subinterval for each coefficient, there is at most one Boolean function approximated by a polynomial with coefficients in these intervals (because any two such polynomials differ by at most 1/4 and, hence, cannot approximate different functions). There are D(N,d) possible terms of degree at most d. Hence, there are at most $(2^{O(N^2d)})^{D(N,d)} = 2^{O(D(N,d)N^2d)}$ combinations of intervals. \Box

Theorem 1 The fraction of Boolean functions that can be computed with a bounded error in the quantum black-box model with at most T(N) queries, for $T(N) = N/4 - 2\sqrt{N} \log N$, goes to 0, as $N \to \infty$.

Proof: Let $d = 2T = N/2 - 4\sqrt{N} \log N$. Then, $D(N,d) \leq \frac{2^N}{N^4}$. and $D(N,d)N^2d \leq D(N,d)N^3 \leq \frac{2^N}{N}$. Hence, black-box computations with at most $T(N) = N/4 - 2\sqrt{N} \log N$ queries can compute only $2^{\frac{2^N}{N}} = o(2^{2^N})$ functions, but there are 2^{2^N} different Boolean functions of N variables. \Box

References

- R. Beals, H. Buhrman, R. Cleve, M. Mosca and R. de Wolf. Quantum lower bounds by polynomials. *Proceedings of the 39th IEEE Conference on Foundations of Computer Science*, pp.352-361, 1998. Also quant-ph/9802049.
- [2] W. van Dam. Quantum oracle interrogation: getting all information for almost half the price. Proceedings of the 39th IEEE Conference on Foundations of Computer Science, pp.362-367, 1998. Also quant-ph/9805006.
- [3] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser. A limit on the speed of quantum computation in determining parity, quant-ph/9802045.

[4] L. Grover. A fast quantum mechanical algorithm for database search. Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212-219, 1996. Also quantph/9605043.