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Placing Two Disks in a Convex Polygon

Sung Kwon Kim� Chan�Su Shiny Tae�Cheon Yangz
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� Introduction

Let P be a convex polygon of n vertices� We consider a problem �and some of its

variants� of �nding a pair of largest equiradial non�overlapping disks in P � Regarding

P as a sheet of paper� one can fold P along the bisector of the line segment connecting

the centers of the disks� Then those two disks coincide each other in the folded

polygon� This means the problem is identical to that of �nding a largest disk which

can be hidden with P by one straight fold� Both sides of the hidden disk should

be covered by P � For an illustration� refer to Figure � �a�� This problem is well

motivated from the gift wrapping problem that determine whether a gift is wrapped

up �or hidden� using a given paper through one�straight fold�

Consider a line l passing through two points on two di�erent edges of P � The line

l divides P into two convex subpolygons P��l� and P��l�� We want to �nd a folding

line l which gives two largest equiradial non�overlapping disks� one in P��l� and the

other in P��l�� If we fold P along l� then the disks coincide in the folded polygon� A

disk of the same radius can be hidden in P � We then de�ne two problems according

to the type of the folding line as follows�

P�� Find an optimal folding line for a convex polygon P � Note that a folding line

in this problem does not necessarily pass through vertices of P �

P�� Find an optimal folding line for a convex polygon P so that it passes through

two vertices of P �

Problem P� was investigated in 	
� ��� Biedl et al� 	
� considered the problem for

a simple polygon� and presented a polynomial�time algorithm
 for a convex polygon�

their algorithm runs in O�n�� time� Recently� Bespamyatnikh 	�� reduced the time

bound to O�n log� n� by using parametric search technique 	��� In this paper� we

present an algorithm for a convex polygon whose running time is O�n log n�� Our

algorithm does not employ parametric search technique which is known to be hard to

implement 	���

For problem P�� to our knowledge� no algorithm has been known so far� We solve

P� in O�n� log� n� time by adapting parametric search technique�
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Let us now modify these problems in a slightly di�erent way� As above� de�ne two

subpolygons P��l� and P��l� of P by a line l intersecting P � Let ri�l� be the radius

of the largest disk inscribed in Pi�l� for i � �� �� Our new problems are to �nd a

separating line l that gives

maxl�min�r��l�� r��l����

Two di�erent problems are possible according to the type of a separating line�

Q�� Find an optimal separating line when the maximum in the above equation is

taken over all lines intersecting P �

Q�� Find an optimal separating line when the maximum in the above equation is

taken over all lines passing through two vertices of P �

As will be seen later� problem Q� is identical to problem P�� so we can solve Q�

in O�n log n� time� Hence� the problem of �nding two largest non�overlapping disks in

a convex polygon is equivalent to problems P� and Q�� But problem Q� is entirely

di�erent from problem P�� We will prove that Q� can be solved in O�n log� n� time

by a divide�and�conquer approach�

Besides� there is a related problem of �nding two largest disks whose union covers

�the boundary of� a convex polygon� instead of inscribing two disks in a convex

polygon� The problem was investigated� together with some variants� in 	���

Throughout this paper� we denote by P a convex polygon of n vertices� As the

general�position assumption in other geometric algorithms� we assume here that no

four or more edges of P touch a common disk� Here� �touch� means just �contact�

�not pierce�� In addition� we assume that there are no parallel edges in P � These

assumptions about input polygons can be easily removed by several techniques 	���

� Algorithm for problem P�

In this section� we will consider the problem P�� which is to �nd a largest disk hidden

in P by one straight fold� As stated in the previous section� this is equivalent to

�nding two largest equiradial non�overlapping disks in P � so in what follows� we will

explain how to �nd those disks in P �

Let D� and D� be two optimal equiradial disks in P and let r� be their radius� We

shall denote the boundary of some closed region R by �R� Let us begin with stating

two simple� but crucial� lemmas�

Lemma � D� and D� touch each other� and each of D� and D� touches �at least�

two edges of P �

Proof� If D� and D� do not touch each other� we can immediately enlarge both disks

to obtain a pair of larger disks� So� D� and D� must touch each other� If D�� touching

D�� touches none of the edges of P � then D� can be moved away from D� so that

they no longer touch� If D�� touching D�� touches only one edge of P � then D� can

�



P �r�

D� D�

�a�

r

e�

e�

e�

e�

P

�b�

Figure �� �a� A con�guration of two optimal disks D� and D�� �b� A shrunken
polygon P �r� of P � The thin lines represent the medial axis of P � Note that some
edges of P such as e�� e�� e�� e� disappear in P �r��

still be moved so that it no longer touches D�� �

From the above lemma� Di has �at least� three touching points� �at least� two

edge�touching points and one disk�touching point� Note that Di may have �at most�

three edge�touching points by the general�position assumption� However� assume� for

a simplicity� that Di touches exactly two edges and the other disk �refer to Figure �

�a��� Since such three touching points �x each disk immovable in P � they must form

an acute�triangle of all inner angles � ����

Lemma � Two edge�touching points and one disk�touching point of Di form an

acute�triangle containing the center of Di for i � �� ��

Let us now describe an O�n logn��time algorithm for problem P�� The locations

at which the centers of Di�s may lie are closely related to the medial axis 	�� of P �

The medial axis of P is de�ned as the locus of all centers of disks contained in P

that touch �P � at two or three points �see Figure � �b��� In other words� the medial

axis of P is a skeleton of the Voronoi diagram for the edges of P � excluding their end

vertices� Thus� the medial axis consists of Voronoi vertices and Voronoi edges �which

are straight line segments�� It can be computed in linear time 	���

From Lemma �� we know that the centers of Di�s lie on some edges of the medial

axis of P � A straightforward way to solve P� is to compute two largest equiradial

disks decided by each pair of edges of the medial axis of P � The maximum among the

computed radii is what we want� It takes ��n�� time in total� As will be seen later�

we do not need to consider all such O�n�� pairs
 only O�n� pairs are enough�

Before explaining it� we will �rst consider the decision version of problem P� as

follows� Given a �xed radius r � �� decide whether two non�overlapping disks of

radius r can be placed in P � Let P �r� be a shrunken polygon of P that is a locus

of points in P at distance r from �P �see Figure � �b��� If a disk of radius r has

its center on any location of �P �r�� then the disk is entirely contained in P � The

shrunken polygon P �r� can be easily constructed in linear time by walking around

�P 	�� ���� Note that some edges of P may disappear in �P �r�� Next� compute a

farthest vertex pair �i�e�� diameter pair� of P �r� in linear time 	��� If the diameter is

greater than or equal to �r� then we can place two non�overlapping disks of radius r
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with their centers at the farthest vertex pair of P �r�� Otherwise� we have no feasible

placements�

Lemma � Given a �xed radius r � �� one can decide in linear time whether two

non�overlapping disks of radius r can be placed in P � i�e�� whether r � r�� where r�

is the radius of two largest equiradial non�overlapping disks in P �

Let M be the medial axis of P � Consider a vertex � of M � Then we can draw

a disk of some radius r� centered at � and touching three edges of P that de�ne �

in M � Collect all such radii associated with the vertices of M � and sort them in

non�decreasing order� r�� r�� � � � � rm� Note that m � O�n�� and the disk of radius rm

is the largest disk inscribed in P � Clearly� there is an index j �� � j � m� such that

rj � r� � rj��� We can �nd j in O�n logn� time by performing a binary search on

the sorted list of ri�s with the help of our decision algorithm �see Lemma ���

Shrink P by rj to get P �rj�� Some edges of P may disappear in �P �rj�� Expand

P �rj� by rj outwardly and denote by P � the expanded polygon� Refer to Figure �

�b�� Since P � is obtained by simply scaling P �rj� by rj � every edge of P �rj� appears

in �P �� However� some edges of P may not appear in �P �� and thus P � P ��

Lemma � Let r� be the radius of two largest non�overlapping disks in P �� Then�

r� � r��

Proof� It clearly holds that r� � r� because P � P �� We assume that r� � r�� and

will show that this leads to a contradiction�

Let P �r�� and P ��r�� be the shrunken polygons of P and P � by r�� respectively�

We show that P �r�� is actually identical to P ��r��� i�e�� P �r�� � P ��r��� If they are

identical� then we can place two disks of radius r� in P � which contradicts to the

optimality of r� for P � Thus� we can conclude that r� � r��

Since P �r�� � P ��r�� clearly� we assume that P �r�� � P ��r��� This implies there

must be an edge e� of P �r
�� such that no edges of P ��r�� contain e� entirely� Let e be

the original edge of e� in P � that is� e is shrunken to e� in P �r
��� Let e� be the shrunken

edge of e in P �rj�� In fact� e� does not exist� If e� exists in P �rj�� then e� would be

expanded to some edge e� of P
�� Remind that P � is an expanded polygon of P �rj� by

rj � and thus e � e�� The edge e� is again shrunken to an edge e� in P ��r��� Finally�

e� � e�� which contradicts to the fact that no edges in P
��r�� contain entirely e�� Thus

e� does not exist in P �rj�� Note that e is shrunken to an empty edge in P �rj�� while�

to �a non�empty edge� e� in P �r
�� for r� � rj � This is impossible� so P �r�� � P ��r��� �

Lemma 
 means that it is enough to compute two largest disks in P �� instead in

P � In what follows� we will show P � has a nice property to compute the disks and

present in detail how to compute them� Consider two shrunken polygons P �rj� and

P �rj���� Let M
� be the part of M belonging to P �rj�nP �rj���� that is� the clipped

part of M by P �rj�nP �rj��� �see Figure � �a��� Note that the region P �rj�nP �rj���

includes �P �rj�� but does not include �P �rj���� Since rj is the maximum among all
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Figure �� �a� A shaded region represents P �rj�nP �rj���� �b� A convex polygon P � a
shrunken polygon P �rj�� and an expanded polygon P ��

ri�s � r�� there are no vertices of M inside P �rj�nP �rj��� �possibly� some vertices of

M may be on �P �rj��� In other words� M � consists of only pieces of some edges of

M clipped by P �rj�nP �rj���� We want to notice here that M � is actually a subset of

a medial axis for P �rj�� Since rj � r� � rj��� the optimal disks� D� and D�� for P
�

have their centers on some edges of M �� Suppose that one of the disks� say D�� has

its center on an edge z of M �� As shown in Figure � �b�� since z is a medial axis edge

for P �rj�� it is de�ned by two edges e� f of �P �rj�� The edges e and f have to be

adjacent on �P �rj�� Remind that P � is an expanded polygon of P �rj� by rj � So� the

expanded edges of e and f are also adjacent on �P �� From this observation� we have

the following lemma�

Lemma � For each optimal disk for P �� two edges of �P � at which the disk touches

are adjacent on �P ��

The remaining is to compute� for each pair of vertices of P �� two largest disks

determined by its incident four edges� For one vertex pair� we can easily compute

the optimal disks in O��� time 	
�� so we can consider all possible O�n�� pairs in

O�n�� time� But� the following lemma states it is su�cient to consider only O�n�

antipodal pairs of vertices of P �� A pair of vertices is said to be antipodal if it admits

parallel supporting lines 	��� All antipodal pairs of a convex polygon are found in

linear time 	���

Lemma � To compute two largest disks for P �� we need consider only O�n� antipodal

pairs of vertices of P ��

Proof� Consider a line l that connects two centers of the optimal disks D� and D�

for P �� The line l passes through the point at which D� and D� touch each other� By

Lemma �� two edge�touching points of each Di must be located in the opposite sides

with respect to l� This means one can draw two parallel lines supporting a pair of

vertices that are incident to touching�edges
 such parallel lines will be perpendicular

to l� �

The above lemma allows us to �nally compute two largest disks for P by checking

only O�n� antipodal pairs of vertices of P � in O�n� time� Since we need O�n logn�

time to sort radii ri�s and �nd rj � our algorithm runs in O�n logn� time in total�
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Theorem � Given a convex polygon P of n vertices� we can �nd a largest disk in

O�n log n� time that can be hidden in P when P is folded along a line intersecting P �

� Algorithm for problem P�

Let us now consider problem P� of �nding a largest disk that can be hidden in

a convex polygon P when we fold P along a line passing through two vertices of

P � This problem is solved in O�n� log� n� by simply adapting a parametric search

technique 	���

Parametric search is an optimization technique which can be applied in situations

where we seek a maximum parameter r� satisfying the monotone condition that is

met by all r � r� but not by any r � r�� The strategy of the parametric search is

to design e�cient sequential and parallel algorithms for the corresponding decision

problem� decide whether a given parameter r is smaller than or larger than or equal

to the maximum parameter r��

Problem P� clearly satis�es the monotone condition that one can hide a disk of

all radius r � r� in P � but not for any radius r � r�� The decision problem for P� is

as follows� Given a radius r � �� decide whether a disk of radius r can be hidden in

P when one folds P along a line passing through two vertices of P � Refer to Figure �

�a��

Assume that we have a sequential algorithm As which runs in O�Ts� time� and

a parallel algorithm Ap which runs in O�Tp� time using Wp processors� Then the

optimization problem is solved in O�WpTp � TsTp logWp� time
 see 	�� for details� In

this section� we will present a sequential algorithm with Ts � O�n�� and a parallel

algorithm with Tp � O�log n� and Wp � O�n��� so P� is solved in O�n� log� n� time�

l��l�

l

r

r

l��

l�

�b��a� �c�

s��

P �r�

r

s�

H�

H��

Figure �� �a� Two disks of radius r are contained in P � i�e�� the answer of the decision
problem is �yes�� �b� Shaded regions are A� and A��� �c� Folding P �r� along l�

Let l be a line through two vertices of P � For simplicity� regard l as the x�axis�

Given a value of r � �� we will check whether a disk of radius r can be hidden when

P is folded along l� Let l� and l�� be the lines apart from l by distance r in �y and

�y directions� respectively� Let H � �resp�� H ��� be the halfplane bounded below by

l� �resp�� above by l���� See Figure � �b�� Consider a shrunken polygon P �r� of P �
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De�ne A� � P �r� �H � and A�� � P �r� �H ��� A� �resp�� A��� is the region of points at

which a disk of radius r can center so that the disk is contained in the upper �resp��

lower� subpolygon of P divided by l� We fold P �r� along l as shown in Figure � �c��

In the folded polygon� if A� � A�� �� �� then we can hide a disk of radius r in P by

putting its center at a point in A� �A��� Otherwise� no disk of radius r can be hidden

in P �

Hence� we need to check whether A� �A�� in the folded polygon of P �r� is empty�

One simple way is to compute their actual intersection� However this needs time

at least in linear to the number of vertices involved� possibly ��n�� De�ne two line

segments� s� � P �r� � l� and s�� � P �r� � l��� Then the following simple lemma allows

us to reduce the checking time down to O����

Lemma � In the folded polygon of P �r�� A� � A�� �� � if and only if s� � s�� �� ��

Proof� If s� � s�� �� �� then clearly A� � A�� �� �� For a contradiction� assume that

s��s�� � �� but A��A�� �� �� Let q be a point in A��A��� In P �r�� q de�nes two �twin�

points� one in A� and the other inA��� Let � be the vertical line segment connecting

these twin points� Since P �r� is convex� � � P �r�� So� in P �r�� � intersects s� and s��

at t� and t��� respectively� Points t� and t�� are twin points as they coincide at a point�

t� in the folded polygon of P �r�� This implies t � s� � s��� which is a contradiction� �

Let us summarize our decision algorithm� First� compute the shrunken polygon

P �r�� For each vertex v of P � do the following steps� �i� For each line l passing

through v and v�s non�adjacent vertices of P � compute s� and s�� and check if they

intersect when folding P �r� along l� �ii� If there is a pair of vertices such that s� and

s�� intersect� then the answer is �yes�� If there is no such pair� the answer is �no��

Let us analyze the time complexity of a sequential implementation of the algo�

rithm� Clearly� the total running time depends on the step �i�� For a �xed vertex v�

we can compute all s� and s�� in linear time by traversing edges of P �r� one by one

like the method 	�� of �nding antipodal pairs of vertices in a convex polygon� This is

possible because both P and P �r� are convex� Since we have to perform step �i� for

all n vertices of P � the total time becomes O�n��� i�e�� Ts � O�n���

A parallel implementation is more straightforward� Computing P �r� is done in

O�log n� time with O�n� processors as follows� Assign a processor to each medial�axis

edge and compute a point on it in constant time whose distance to �P is exactly r�

Next� angular�sort the points with respect to the center of the largest inscribing circle

of P in O�log n� time with O�n� processors� To obtain P �r�� just connect the points

in the sorted order� For the remaining step� assign a processor to each pair of vertices

of P and compute their corresponding s� and s�� in O�logn� time through a binary

search on �P �r�� As a result� Tp � O�logn� and Wp � O�n��� Plugging these bounds

into the parametric search engine� we have the following result�

Theorem � Given a convex polygon P of n vertices� we can �nd a largest disk in

O�n� log� n� time that can be hidden in P when P is folded along a line passing through

two vertices of P �
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� Algorithms for problems Q� and Q�

In this section� we will consider problems Q� and Q�� Let ri�l� be the radius of the

largest disk inscribed in Pi�l�� where Pi�l� for i � �� � is a subpolygon of P divided

by a separating line l intersecting P �

Problem Q� is to �nd a separating line that maximizes the value min�r��l�� r��l��

for all lines l intersecting P � We �rst show that problem Q� is actually identical to

problem P�� An obvious fact is that the optimal two disks of problem Q� must be

equiradial
 otherwise� one can shrink the larger one and enlarge the smaller one to

increase the value of min�r��l�� r��l��� Another fact is that the two optimal disks touch

each other on the separating line� Its proof is quite similar to that of Lemma �� These

facts directly lead that an optimal separating line in Q� is just the perpendicular

bisector of the line segment connecting the centers of optimal two disks in P�� As a

result� problem Q� can be solved in O�n logn� time by Theorem �� In what follows�

we will consider only problem Q��

Problem Q� is to �nd a separating line that maximizes the value min�r��l�� r��l��

for all lines l passing through two vertices of P � To solve it� we shall apply a divide�

and�conquer technique� Fix a vertex v of P and number the vertices of P counter�

clockwise v��� v�� v�� � � � � vn��� Denote by lj a line connecting v and �its non�adjacent

vertex� vj for � � j � n � �� Then lj partitions P into two subpolygons P��lj� and

P��lj�
 P��lj� consists of vertices v�� v�� � � � � vj and P��lj� does of vj � vj��� � � � vn��� v��

As the index j increases� r��lj� monotonically increases and r��lj� monotonically de�

creases� From this monotonicity� we can easily prove that there are at most two local

maxima among the values of min�r��lj�� r��lj���s� and moreover� they must be con�

secutive� For simplicity of the algorithm description� assume that we have only one

maxima at the line lk for some � � k � n� �� �For the case that two local maxima

exist� a similar argument is used��

Lemma � Let l be a line passing through any pair of vertices u and w� where u�w �

fv�� v�� � � � � vk��g or u�w � fvk��� vk��� � � � � vn��g� Then

min�r��l�� r��l�� � min�r��lk�� r��lk���

Proof� Assume that u � vi and w � vj � where � � i � j � k � �� Then the coun�

terclockwise ordering on �P is v� � v� vi� vj � and vk� For a contradiction� suppose

that the inequality does not hold for the pair �vi� vj�� Consider a line lj through

v and vj � Then� from the monotonicity� min�r��lj�� r��lj�� is strictly larger than

min�r��lk�� r��lk��� This means the line lj is a new maximum for v� which contradicts

to the optimality of lk� �

From this lemma� we need to consider only pairs �u�w� of vertices with u �

fv�� v�� � � � � vkg and w � fvk� vk��� � � � � vn��� v�g� Consequently� the number of pairs

to be considered is reduced by almost half� We now apply a divide�and�conquer

technique with two vertex chains� S� � fv�� v�� � � � � vkg and S� � fvk� � � � � vn��� v�g�

�



The recursive part is summarized as follows� �i� Pick the middle vertex� k���th

one� from S� and denote it by v� �ii� Find a vertex v� in S� that gives the local

maximum for v� Note that lk is a line passing through v and v�� Then v divides S�

into two chains of equal size� S�� and S��� in the counterclockwise order� Also� v�

divides S� into two chains� S�� and S��� in the counterclockwise order� By Lemma ��

we need to consider only vertex�pairs between S�� and S��� and between S�� and S���

As a result� we further eliminate a half of vertex�pairs� �iii� Perform steps �i���ii�

recursively with S� � S�� and S� � S��� and with S� � S�� and S� � S��� Recursion

stops when S� consists of only one vertex
 at that time� the local maximum for the

vertex is found in S� as in �ii��

Let us analyze time complexity� Since a largest inscribed disk of a convex polygon

can be found in linear time� the value of min�r��l�� r��l�� can be computed in linear

time by �nding largest disks in P��l� and P��l�� The values of min�r��lj�� r��lj�� have

at most two �consecutive� local maxima� so we can perform a binary search to locate

lk� Step �ii� thus takes O�n log n� time� The recursion will stop after O�log n� times

of recursive calls� Hence� the total running time is O�n log� n��

Theorem � Given a convex polygon P of n vertices� we can �nd the maximum value

of the minimum radius of two disks of P in O�n log� n� time if the separating lines

are restricted to ones through two vertices of P �
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