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Abstract

Identification or prediction of coding sequences from within genomic DNA has been
a major rate-limiting step in the pursuit of genes. Programs currently available are far
from being powerful enough to elucidate the gene structure completely. In this paper, we
develop effective hidden Markov models (HMMs) to represent the consensus and de-
generacy features of splicing junction sites in eukaryotic genes. Our HMM system based
on the developed HMMs is fully trained using an expectation maximization (EM) al-
gorithm and the system performance is evaluated using a 10-way cross-validation
method. Experimental results show that the proposed HMM system can correctly detect
92% of the true donor sites and 91.5% of the true acceptor sites in the test data set
containing real vertebrate gene sequences. These results suggest that our approach
provide a useful tool in discovering the splicing junction sites in eukaryotic
genes. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction
1.1. Background

A deoxyribonucleic acid (DNA) chain is a long, unbranched polymer
composed of four types of nucleotides or bases: adenine (A), cytosine (C),
guanine (G) and thymine (T). Genes, made of DNA, are the invisible infor-
mation-containing elements that are distributed to each daughter cell when a
cell divides. In general, genes are divided into two categories: eukaryotic and
prokaryotic. Eukaryotic genes are from eukaryotic cells and prokaryotic genes
are from prokaryotic cells. “Eu” means “good, well or true”. “Karyote” (or
“caryote”) means “nucleus” (“caryon’ in Greek). A eukaryotic cell, by defi-
nition, has a nucleus that contains the cell’s DNA for all of its genes, enclosed
by a double layer of membrane [1]. So, the eukaryotic gene category includes
all kinds of genes from cells with a nucleus, such as those from any kind of
animals, even yeast.

In the bioinformatics field, eukaryotic DNA (or gene) means the kind of
genomic DNA with introns, such as the DNA from high level animals and
human. Prokaryotic cells, in contrast to the eukaryotic cells, have relatively
simple internal structures, specifically, without membrane enclosed nuclei [1].
Prokaryotic cells include those from the various types of bacteria such as E.
coli. E. coli has simple genomic DNA and its cells are very easy to culture. So,
E. coli is often used for research on prokaryotic DNA.

The basic gene structure for higher eukaryotes includes promoter, start
codon, introns, exons, and stop codon, etc. (see Fig. 1). The exon sequences of
a gene are also called the coding sequences of this gene, and the whole exon
sequences of a gene are called the coding region of the gene (which is the region
for making protein). In contrast, prokaryotic genes have no introns, and the
gene structure includes only promoter, start codon, coding region and stop
codon. Normally, if one can detect the promoter in a prokaryotic DNA se-
quence, one is able to find its gene coding region. Intron sequences range in size
from about 80 nucleotides to 10000 nucleotides or more. Introns in genes are
of no function at all and are actually the genetic “junk” [1]. They differ dra-
matically from exons in that their exact nucleotide sequences seem to be un-
important. The only highly conserved sequences in introns are those required
for intron removal.

The genetic information present in genes is expressed in organisms (gene
expression) through the processes of transcription and translation (see Fig. 1).
Transcription is the process for the production of a specific molecule, namely
messenger RNA (mRNA), from a given sequence of DNA in a gene [3,4]. In
this process, the genetic information (message) carried in the DNA is tran-
scribed to (or written into) the mRNA. As its name implies, messenger RNA
carries a message. The process by which mRNA directs the synthesis of a
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Fig. 1. Gene structure and gene expression processes. The basic gene structure for higher euka-
ryotes includes promoter, start codon, exons, introns and stop codon, etc. The boundaries between
the exons and the introns are called 5’ donor sites, and the boundaries between the introns and the
exons are called 3’ acceptor sites. During the DNA transcription process, the gene sequences
(excluding the promoter region) are first transcribed into pre-mRNA.Then, the intron sequences in
the pre-mRNA are removed and the RNA fragments are rejoined together by the RNA splicing
process to get mRNA. The mRAN directs protein synthesis through the gene translation process.

specific protein is called translation. In this process, the information (message)
carried in the mRNA sequence is translated into the amino acid sequence of the
protein.

In the eukaryotic gene transcription process, the intermediate product is
called pre-mRNA. Pre-mRNA is a direct copy of the DNA sequence in the
eukaryotic gene and it contains the exon and intron sequences from the gene.
The intron sequences will be removed from pre-mRNA, so a mature mRNA
only consists of exon sequences, which will be translated into protein. The
process for intron removal is called RNA splicing, and the positions for intron
removal and RNA rejoining are called splicing junction sites (see Fig. 1). The
consensus sequences at each end of an intron are nearly the same in all known
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intron sequences. The conserved boundary sequence at the 5’ splice site is called
a donor site, and the one at the 3’ splice site is called an acceptor site. The donor
site and acceptor site are collectively referred to as splicing junction sites. The
RNA breaking and rejoining (splicing) must be carried out precisely because an
error of even one nucleotide would shift the reading frame in the resulting
mRNA molecule and make nonsense of its message [1].

1.2. A bioinformatics approach

Identification or prediction of coding sequences from within a genomic
DNA sequence has been a major rate-limiting step in the pursuit of genes. For
eukaryotic gene detection, we have to detect the start codon, exons, introns and
stop codon. How to find out exons/introns? The most important step is to
detect splicing junction sites including donor and acceptor sites, because once
the splicing junction sites are detected, the exon/intron boundaries are found.
Then we can remove the introns from the DNA sequence to get coding regions.
Biologists study gene structures based on lab experiments such as PCR on
cDNA libraries, Northern blot, sequencing, etc. However, characterizing the
60 000-100 000 genes thought to be hidden in the human genome by means of
merely lab experiments is not feasible. A current trend is to complement the lab
study with a bioinformatics approach.

The bioinformatics approach for gene detection means using computer
programs to elucidate a gene structure from DNA sequence signals, including
start codon, splicing junction donor sites and acceptor sites, stop codon, etc.
Since 1990s, a number of programs have been developed for locating gene
coding regions (exons). However, the vertebrate DNA sequence signals in-
volved in gene determination are usually ill defined, degenerate and highly
unspecific. Given the current detection methods it is usually impossible to
distinguish the signals truly processed by the cellular machinery from those
that are apparently nonfunctional [8]. Furthermore, the inherent conservatism
of the currently popular methods such as similarity search, GRAIL, etc.,
greatly limits our ability for making unexpected biological discoveries from
increasingly abundant genomic data. Except for a very limited subset of trivial
cases, the automated interpretation without experimental validation of ge-
nomic data is still a myth [7]. Unlike the situation in bacteria and yeast or-
ganisms, in which computer systems have substantially contributed to the
automatic analysis of genomes, automatic sequence analysis and structure
elucidation for the genomes of high eukaryotic organisms are far from being a
reality [8].

Our research is targeted toward developing effective and accurate methods
for identifying gene structures in the genomes of high eukaryotic organisms.
The first phase of our research, introduced in this paper, is for gene structure
signal detection. Then, during the second phase, we will combine the gene
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structure signal information with global gene structure information to develop
a full gene structure detection system. Splicing junction donor and acceptor
sites are the most important functional gene structure signals. Earlier we de-
veloped a Motif model and used pattern matching techniques for donor pre-
diction [12,13]. We also reported our case studies and preliminary results for
predicting splicing junction acceptors [14-16]. In this paper, we systematically
introduce our approach that uses hidden Markov models (HMMs) to represent
the degeneracy features of the splicing junction sites. We developed TEM, an
EM-like algorithm, to train our HMM system. Then we use the 10-way cross-
validation method to evaluate our system for detecting splicing junction sites in
unlabeled DNA sequences.

HMDMs have been used extensively to describe sequential data or processes
such as speech recognition. Researchers in computational biology have recently
started to use HMMs for biological sequence analysis. Lukashin, Borodovsky
[10] and their colleagues [5] successfully applied HMMs to the detection of
protein coding regions in prokaryote. Audic and Claverie [2] reported their use
of Markov transition matrices to detect eukaryotic promoters. Salzberg [11]
used HMMs to identify splice junction sites and translational start sites in
eukaryotic genes; his group also developed an HMM system, called Viterbi
exon—intron locator (VEIL), for finding eukaryotic genes [9]. Our approach
differs from Salzberg’s by using a different topology of HMMs and by em-
ploying two modules for implementing the HMMs: one for true sites, and the
other for false sites. Even though the current systems are far from being
powerful enough for gene structure elucidation, the information these re-
searchers provide is valuable, and the research on automated gene detection
using HMM s is of great potentiality.

2. Using HMMs to model splicing junction sites
2.1. The Donor Model

Splicing junction sites in vertebrate DNA include donor and acceptor sites.
Donor sites are conserved boundary sequences at the 5 splicing sites in DNA.
The conserved sequences include 9 nucleotide bases with GT (GU in mRNA)
almost invariable to all donor sites [1]. An example of a donor site is shown
below:

exon intron
- CAGGTGAGA - --

The nucleotide G occurs at position 4 and the nucleotide T occurs at position 5
in a donor site. We refer to a 9-base sequence that exists as a donor in a real
gene sequence as a true donor site. Note that in all true donor sites, G and T
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occur at position 4 and position 5, respectively. We refer to a 9-base nondonor
sequence in which G and T also occur at position 4 and position 5, respectively,
as a false donor site. Notice that we do not consider those sequences without G,
T being at position 4 and position 5, respectively, because they are deemed to
be nondonor sequences. Given an unlabeled 9-base sequence with G, T being at
position 4 and position 5, respectively, referred to as a candidate donor site, our
algorithm tries to determine whether the candidate sequence is a true donor site
or a false donor site. We design a Donor Model, defined below, based on
HMMs to describe the consensus and degenerate properties occurring in true
donor sites.

An HMM with 9 states and a set of transitions is used for modeling a true
donor site, which is represented as a digraph where states correspond to ver-
tices and transitions to edges. At each state, the HMM generates a base b in
{A, G, C, T} according to the state and transition probabilities, with the ex-
ception of state 4 and state 5. At state 4, the HMM constantly generates base
b = G, and at state 5, the HMM constantly generates base » = T. Each state s
is associated with a discrete probability distribution, P(s). For state 4 and state
5, P(s) = 1. Except at state 3 and state 4, each base b at a state has four possible
transitions to the next state. Each transition has a probability, P(¢), which
represents the probability that the HMM makes that transition. Each base at
state 3 has a fixed transition, namely P(¢) = 1, to the base G at state 4. Simi-
larly, at state 4, the base G has a fixed transition, namely P(¢) = 1, to the base
T at state 5. Fig. 2 illustrates the Donor Model.

2.2. The Acceptor Model

Acceptor sites are conserved boundary sequences at the 3’ splicing sites in
DNA. The conserved sequences include 16 nucleotide bases with AG almost
invariable to all acceptor sites [1]. An example of an acceptor site is shown
below:

intron exon

—~ =
-+ CTATCCTICTCACAG G - - -

The nucleotide A occurs at position 14 and the nucleotide G occurs at position
15 in an acceptor site. We refer to a 16-base sequence that exists as an acceptor
in a real gene sequence as a true acceptor site. Note that in all true acceptor
sites, A and G occur at position 14 and position 15, respectively. We refer to a
16-base nonacceptor sequence in which A and G also occur at position 14 and
position 15, respectively, as a false acceptor site. Given an unlabeled 16-base
sequence with A, G being at position 14 and position 15, respectively, referred
to as a candidate acceptor site, our algorithm tries to determine whether the
candidate sequence is a true acceptor site or a false acceptor site. We use an



M.M. Yin, J.T.L. Wang | Information Sciences 139 (2001) 139163 145

4 5 6

@) 2@ 42) HR) e i)

© @\ /@@@@
@@@ R‘@@@@

@@= D)) )

Fig. 2. The Donor Model. There are 9 states in this model. Except for state 4 and state 5, there are
four possible bases at each state, and a base at one state may have four possible ways to transit to
the next state. States 4 and 5 are a constant, and the transition from state 4 to state 5 is also a
constant with the probability of 1. In a gene sequence, states 1-3 belong to an exon and states 4-9
are part of an intron.

Acceptor Model, defined below, to describe the consensus and degenerate
properties occurring in true acceptor sites.

An HMM with 16 states and a set of transitions is developed for modeling a
true acceptor site, which is represented as a digraph where states correspond to
vertices and transitions to edges. At each state, the HMM generates a base b in
{A, G, C, T} according to the state and transition probabilities, with the ex-
ception of state 14 and state 15. At state 14, the HMM constantly generates
base b = A, and at state 15, the HMM constantly generates base b = G. Each
state s is associated with a discrete probability distribution, P(s). For state 14
and state 15, P(s) = 1. Except at state 13 and state 14, each base b at a state has
four possible transitions to the next state. Each transition has a probability,
P(t), which represents the probability that the HMM makes that transition.
Each base at state 13 has a fixed transition, namely P(¢) = 1, to the base A at
state 14. Similarly, at state 14, the base A has a fixed transition, namely
P(t) = 1, to the base G at state 15. Fig. 3 illustrates the Acceptor Model. There
are 16 states in this model. Except state 14 and state 15, there are four possible
bases at each state, and a base at one state may have four possible ways to
transit to the next state. States 14 and 15 are a constant, and the transition
from state 14 to state 15 is also a constant with a probability of 1. In a gene
sequence, states 1-15 belong to an intron and state 16 is the first base of an
exon.
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Fig. 3. The Acceptor Model. There are 16 states in this model. Except for state 14 and state 15,
there are four possible bases at each state. Except for state 13 and state 14, a base at one state may
have four possible ways to transit to the next state. States 14 and 15 are a constant, and the
transition from state 14 to state 15 is also a constant with the probability of 1. In a gene sequence,
states 1-15 belong to an intron and state 16 is part of an exon.

2.3. Two modules for each model

In vertebrate DNA sequences, there are much more false splicing junction
sites than true sites. The ratio between the number of false sites and the number
of true sites is about 100-1. In order to mine out the differences between the
true sites and false sites, we implement two programs, True Donor Module and
False Donor Module, based on the Donor Model and another two programs,
True Acceptor Module and False Acceptor Module, based on the Acceptor
Model. The True Donor Module and True Acceptor Module are collectively
referred to as true site modules. The False Donor Module and False Acceptor
Module are collectively referred to as false site modules. We train the true site
modules using the true sites in the training data set, and train the false site
modules using the false sites in the training data set. A given candidate site is
tested by these modules. Let Se.,q be a candidate site. Let P(Y = 1|Seuna, M)
be the probability of S.,.q being a donor (acceptor) sequence given that it is
processed by a true site module. Let P(Y = 0| Seuna, M) be the probability of
Scana being a nondonor (nonacceptor) sequence given that it is processed by a
false site module. In the above specification, MV is for the true site modules
and M is for the false site modules. In the splicing junction detection phase,
these true site modules and false site modules are used to classify candidate
sequences into right categories. For example, for a candidate donor site, we
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first pass it through True Donor Module to get P(Y = 1|Seuna, M), the prob-
ability of this candidate site being a donor sequence. Then we pass it through
False Donor Module to get P(Y = 0| Seung, MD), the probability of this candi-
date site being a nondonor sequence. Comparing these two values, we assign a
score to the candidate sequence. This candidate sequence is assigned to the true
donor category or false donor category depending on its score obtained.

3. Algorithms

The algorithms described in this section can be used for both the Donor
Model and the Acceptor Model. For illustration purposes, we focus on the
Donor Model and its corresponding modules, True Donor Module and False
Donor Module. The algorithms for the Acceptor Model are essentially the same.

3.1. Training algorithm

We develop a modified expectation maximization (EM) algorithm, called
TEM, for training the modules. The original EM method takes, as the input, a
set of unaligned sequences and a motif length, and returns a probabilistic
model for the motif [3]. Because our data set contains splicing junction sites
with the same length, and all these sites can be aligned to each other, we design
TEM specifically for training a HMM with fixed topology.

Let M represent the set of sequences that are randomly picked from our
positive training data set and negative training data set. (In the study presented
here, M contains about 200 true donor sites and 14 000 false donor sites.) Each
sequence in M is labeled as positive or negative depending on whether it is from
the positive training data set or the negative training data set. Let E' be the set
containing the remaining sequences in the positive training data set, and let E'
represent the set containing the remaining sequences in the negative training
data set. There are much more true (false, respectively) donor sites in E* (ET,
respectively) than those in M. (In our study presented here, the total number of
the sequences in E' and E' is about nine times of the number of sequences in
M.) Let P be a subset of M.

In the training phase, the TEM algorithm proceeds iteratively to converge.
At each iteration, the algorithm removes some sequences from E' and E' and
inputs those sequences into True Donor Module and False Donor Module. The
algorithm then uses these modules to determine which sequences are placed in
P as we will explain later. We use S;™ to represent the sensitivity and use S;™ to
represent the specificity during the TEM training. Si™ is the ratio between the
number of true donor sites in P and the total number of true donor sites in M;
note that P C M. S is the ratio between the number of true donor sites in P
and the total number of sequences in P. The goal of our TEM training is, given
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a fixed value of S, we train the modules iteratively to get a maximal value of
S, or until £' and E" become empty. In this research, we use S™ = 0.90 for
training the modules.

Specifically, let Ty, represent the total number of states in the Donor
Model. Let b; (b; € {A,G,C,T}) be the base at state i, 1 <i< Tyues. Let
tri(biybiv1), 1 <i< Tyaes — 1, be the transition from state i to state i + 1. The
topology for the Donor Model is fixed, and all of the transition probabilities
and state probabilities are initialized to random values. Then we pick one-tenth
of the sequences from E' and input them into True Donor Module. At the same
time, we pick one tenth of the sequences from E' and input them into False
Donor Module. We record the number of the individual bases, b;, at each state
and the number of individual transitions, #;(b;, b;11), from one state to the next
state. We then compute the post probabilities for all the states and transitions
in True Donor Module and False Donor Module. Let TW¢r,(b;, b;,1) be the total
number of transitions from a base b; at state i to a base b, at state i + 1 in
True Donor Module. Let Tif:) be the total number of true donor sites that have
been input into True Donor Module. The state transition probabilities,
ftr(b;,b;1), in True Donor Module can be calculated as follows:

T(l)ﬂ”z(bi; bit1)
T(t)

in

f”fo(biabm) = . (1)

Similarly, let 7" (b;, b;,1) be the total number of transitions from a base b; at
state i to a base b, at state i + 1 in False Donor Module. Let Tig) be the total
number of false donor sites that have been input into False Donor Module. The
state transition probabilities, ftr,-(f) (bi,biy1), in False Donor Module can be
calculated as follows:

TOtri(bi, bii1)

(b, biy) = . (2)

Next, we treat all the sequences in M as unlabeled sequences and input them
into True Donor Module and False Donor Module. Let P(True|S, MY) denote
the probability of a sequence S in set M being a donor sequence, and let
P(False|S, M) denote the probability of S being a nondonor sequence. In
order to calculate P(True|S, M), we must calculate the probability of the
sequence S given the sequence is a true donor site using True Donor Module.
This can be written as

P(S|True, MY) = [[ serl(bibit), b€ {A,G,C, T} (3)

Our TEM algorithm uses Bayes’ rule to estimate P(True|S, MY) from
P(S| True, M). Bayes’ rule states that
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_ P(Bl4)P(4)
Plalp) = “E S @
S0,
P(True| s, mty = D1 True, MU)P(True) .

P(S)

P(True) is the prior probability that is assumed to be a constant, and P(S) is the
product of the individual base probabilities in the sequences. P(S) can be
written as
T‘blalCS
P(S) = H P(b;| True, M), (6)
i1
In the same way, we can write equations for calculating P(False|S, MD) as
follows:
Tsmles_l
P(S|False, M(f)) = H ftr§f>(blvbi+l)7 bi € {A5G7C7T}5 (7)

i=l
P(S|False, M")P(False)

P(F M0y =
(False|S, ) P(S) ) (8)
Tstates
P(S) = [ P(b:| False, M) (9)
i=1
Let pratio be the probability ratio of sequence S in set M, and
P(True|S, MV
pratio = (TruelS, ) (10)

P(False|S, M®1)"

The pratio is calculated for each sequence in set M. We then sort the sequences
in set M, in the descending order, according to their pratio values. Suppose the
total number of positive sequences in set M is N. Then we select the pratio
value for the N x Sth positive sequence and use that pratio value as the
positive lower bound, denoted L,. (In the study presented here, there are 200
positive sequences in set M and the sensitivity S is 0.9. Therefore, L, is the
pratio value of the 180th positive sequence in set M.) The TEM algorithm
assigns a sequence S € M into set P if the pratio value for S is greater than or
equal to L,. Let T(zpy be the number of positive sequences in set M that are
assigned into set P. Let Tp,y) be the total number of positive sequences in M.
Then, by definition,

P (11)

Tipin)
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Let T(ppy be the total number of sequences in M that are assigned into P. Then,
by definition,

sem =1 (12)

The re-estimation procedure then adjusts all of the probabilities hidden in
the Donor Model in order to increase S,™. New sequences in E' and E' are
picked and removed from E' and E'. These sequences are then run through
True Donor Module and False Donor Module again and the probabilities are
further refined. This process is iterated until the S;™ is maximized or until £*
and E' become empty. This algorithm is guaranteed to converge to a locally
optimal estimate of all the probabilities in the Donor Model. The positive
lower bound L, that maximizes S,™ will be an output and used in the splicing
junction sites detection phase. Fig. 4 summarizes the TEM algorithm used in
the training phase.

3.2. Algorithm for detecting splicing junction sites

As described in Section 2, a candidate donor site refers to a 9-base sequence
fragment with bases G, T being at position 4 and position 5, respectively. The
input of the site detection algorithm is a fragment, denoted Sc.,q, of 9 bases
extracted from a genomic DNA sequence S with a minimum length of 9 bases.
In this research, the longest DNA sequence used is about 50 000 bases long.
The S...q has G, T at position 4 and 5, respectively, and is considered as a
candidate donor site. We refer to the 9 bases in Seng as by, b, .. ., by, respec-
tively. The output of the site detection algorithm is a flag, KIND;, indicating
whether the S..,q starting at positing i of the genomic DNA sequence S'is a true
donor site or not.

Let f trjm (bj,bj+1) be the probability of a transition from base b; to base b;.1,
1 <j<8, of Seang using True Donor Module. We define a flag variable Y to be 1
if Scang belongs to a true site category, and 0 otherwise. Let n be the length of
the candidate site S.,,q (7 is 9 for donor sites and 16 for acceptor sites). Let
P(Seana|Y = 1,MW) be the probability of the candidate site S..,q given that it is
a donor site processed by True Donor Module. Then

n—1
P(Sena| ¥ = 1,MY) =[] £l (b, b;11), b, € {A,G,C, T} (13)
j=1

As defined before, P(Y = 1|Scuna, M) is the probability of S.,,q being a donor
site given that it is processed by True Donor Module. According to Bayes’ rule
[cf. Eq. 4)]:



M.M. Yin, J.T.L. Wang | Information Sciences 139 (2001) 139163 151

INPUT:
Untrained HMM site modules (including a true site module and a false site module);
Positive training data set, E*;
Negative training data set, Ef;
TEM testing data set, M;
OUTPUT:
Fully trained HMM site modules and Ly;
ALGORITHM:
unmaximized := true;
while unmaximized do begin
unmaximized := false;
if E! is not empty then begin
remove one tenth of the sequences from E* and input them into the true site module;
for i = 1 to Tystates — 1
calculate ftri.t)(bi, biy1) as in Equation (1);
end;
if E is not empty then begin
remove one tenth of the sequences from Ff and input them into the false site module;
for i = 1 to Tyiares — 1
calculate ftrgf)(bhbiﬁ) as in Equation (2);
end;
for each sequence S € M do begin
calculate P(True | S, M) as in Equation (5);
calculate P(False | S, M) as in Equation (8);
calculate pratio as in Equation (10);
end;
select Ly;
calculate Sp™ according to Ly;
if (S¢™ is not maximized) and (either E* or Ef is non-empty) then
unmaximized := true;
end;

Fig. 4. The TEM algorithm ued in the training phase.
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P(Scana|Y = 1, MOP(Y =1
P(Y = 1|Seana, M) = (Sena PGS d))( ). (14)

When examining a set of sequences to detect true donor sites, we can treat
the underlying prior P(Y = 1) as a constant [11]. P(Senq) 18 the product of the
individual base probabilities for by, by, ..., b, In Sgng:

P(Seund) = Hp(b, Y =1,MY), b, €{A,G,C,T}. (15)

J=1

Similarly, we use False Donor Module to compute P(Y = 0|Seung, M), the
probability of S..,q being a false donor site given that it is processed by False
Donor Module. So, we can write the false donor site counterparts of the above
equations:

n—1
P(Seana| Y = 0,MD) =T f1r{ (b;,b;11), b; € {A,G,C, T}, (16)
j=1
P(Seana | Y = 0, MD)P(Y = 0)
P(Y = 0|Seana, M) = : 1
( 0 ‘ Scand; ) P(Scand) ) ( 7)
P(Seana) = [ [ P(b;|Y =0,M"), b, € {A,G,C,T}. (18)

=1

Given the candidate donor site S,,q starting at position 7 in the genomic
DNA sequence S, our algorithm will find the two most likely sets of states
through the two HMM modules for S..,q. Then the algorithm calculates
P(Y = 1|Seana, MY) and P(Y = 0| Seana, M"). A score, sratio, is assigned to the
candidate site based on the scoring function below:

P(Y = 1|Seana, M)
P(Y - Olscand;M(f)) '

sratio =

(19)

Comparing sratio with the L, obtained from the training phase, we assign a
flag, KIND;, to the candidate site S.,,q based on the following formula:

1 if sratio > L,

0 otherwise. (20)

KIND, = {

The candidate site S..nq is classified as a true donor site if KIND; has a value of
1. Seang 1s classified as a false donor site if KIND; has a value of 0. Fig. 5 il-
lustrates the site detection algorithm.
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INPUT:
A candidate donor site S.,nq starting at position 4 of an unlabeled genomic DNA sequence;
OUTPUT:
/¥ KIND; is a flag indicating whether S;qnq is a true donor site or not. */
KIND;;
ALGORITHM:
present Scapng to True Donor Module and calculate
P(Y =1 S.ana, M®) as in Equation (14);
present Seqng to False Donor Module and calculate
P(Y =0 | Seang, M) as in Equation (17);
calculate sratio as in Equation (19);
calculate KIND; as in Formula (20);

Fig. 5. Algorithm for classifying splicing junction donor sequences.

4. Experiments and results
4.1. Sequence data and evaluation method

In order to evaluate the accuracy of our HMM system for splicing junction
site detection, we used the database of DNA sequences originally collected by
Burset and Guigo [6], who used this database to compare a number of major
gene-finding programs. The sequences in this database were obtained from the
vertebrate divisions of GenBank release 85.0 (October, 1994). There are 570
vertebrate sequences in the database and they all have simple and standard gene
structures. Each entry contains a complete protein coding sequence with no in-
frame stop codons. There are at least one exon and one intron in all entries in the
database. There are 2079 true donor sites and 2079 true acceptor sites, all of
which are standard splicing junction sites. This means that all the donor sites
have ‘GT’ and all the acceptor sites have ‘AG’ at the right positions. This dat-
abase now becomes the standard data set for evaluating gene-finding programs.

We applied the 10-way cross-validation method [14] to evaluate how well
our HMM system performs when tested on data that are not in the training
dataset. Cross-validation is a standard experimental technique for determining
how well a classifier performs on unseen data [9]. Specifically, we randomly
partition the 570 sequences at hand into 10 sets. These sets have roughly the
same number of true donor sites; the sets also have roughly the same number of
true acceptor sites. For each iteration in the 10-way cross-validation experi-
ment, we use nine out of the ten sets as the training data set, and use the
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remaining one set as the test data set. The HMM system is trained using the
training data set (i.e., all sequences excluding those in the test data set are used
as the training data). The system is then tested on the sequences in the test data
set. Thus, the training data set consists of 90% and the test data set consists of
10% of the sequences. Each time in the 10-way cross-validation experiment, the
HMM system is trained with sequences containing about 1871 true sites and
135000 false sites. The HMM system is tested on the sequences containing
about 208 true sites and 14 000 false sites.

4.2. Experimental results

The state transition probabilities for the Donor Model and the Acceptor
Model are shown in Tables 1-4. Comparing the state transition probabilities of
the true site modules with those of the false site modules, we see that the
proposed HMM system maximizes the differences between the true sites and
false sites. The results for detecting splicing junction sites are summarized in
Tables 5 and 6. The results for each of the 10 test sets of the cross-validation

Table 1
State transition probabilities for True Donor Module
St (b, biyy)

i 1 2 3 4 5 6 7 8

A—A 021 0.04 Null Null Null 0.32 0.04 0.01
A—G 0.05 0.51 0.08 Null Null 0.06 0.63 0.03
A—C 0.02 0.01 Null Null Null 0.06 0.02 0.01
A—T 0.04 0.04 Null Null Null 0.06 0.02 0.02
G—A 0.3 0.02 Null Null Null 0.37 0.01 0.12
G—-G 0.02 0.11 0.81 Null Null 0.04 0.10 0.13
G—-C 0.03 0.00 Null Null Null 0.02 0.01 0.12
G—T 0.02 0.01 Null 1.00 Null 0.01 0.00 0.46
C—-A 023 0.02 Null Null Null 0.02 0.02 0.01
C—->G 002 0.07 0.02 Null Null 0.00 0.03 0.00
C—-C 0.04 0.01 Null Null Null 0.00 0.02 0.02
C—T 0.05 0.02 Null Null Null 0.01 0.02 0.02
T—A 0.02 0.00 Null Null 0.50 0.01 0.00 0.00
T—-G 0.04 0.12 0.08 Null 0.44 0.02 0.07 0.02
T—C 0.03 0.01 Null Null 0.03 0.00 0.01 0.01
T—T 0.03 0.01 Null Null 0.03 0.00 0.00 0.01

The state transition probability values are of ‘double’ type in our computer programs. In order to
save space, the values are rounded to the second position following the decimal point to fit into this
table. For example, a probability value of 0.13293 is shown in this table as 0.13, but 0.13593 is
shown here as 0.14. Theoretically, the sum of the transition probabilities from one state to the next
state should equal to 1.00. Because of the rounding, the sum of the values in each column in this
table may be slightly smaller or greater than 1.00. This holds in Tables 2-4 as well.
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Table 2
State transition probabilities for False Donor Module
S (bi,biy)

i 1 2 3 4 5 6 7 8

A—A 0.08 0.08 Null Null Null 0.05 0.06 0.06
A—-G 0.07 0.08 0.28 Null Null 0.05 0.07 0.07
A—C 0.05 0.02 Null Null Null 0.04 0.05 0.04
A—T 0.05 0.08 Null Null Null 0.05 0.05 0.06
G—A 0.07 0.07 Null Null Null 0.09 0.05 0.06
G—G 007 0.08 0.27 Null Null 0.10 0.07 0.07
G—C 0.06 0.02 Null Null Null 0.07 0.05 0.05
G—-T 0.05 0.09 Null 1.00 Null 0.09 0.05 0.07
C—A 0.08 0.08 Null Null Null 0.06 0.07 0.07
C—-G 0.02 0.02 0.08 Null Null 0.01 0.02 0.02
C—C 0.07 0.02 Null Null Null 0.07 0.07 0.07
C—T 0.06 0.12 Null Null Null 0.08 0.08 0.09
T—A 0.05 0.04 Null Null 0.18 0.04 0.05 0.05
T—G 0.09 0.09 0.37 Null 0.35 0.06 0.09 0.08
T—C 0.07 0.02 Null Null 0.22 0.06 0.07 0.06
T—-T 0.07 0.09 Null Null 0.25 0.09 0.08 0.08

are shown, so are the average results for all the 10 test sets. In Tables 5 and 6,
TP is the number of true positives. FP is the number of false positives. TN is
the number of true negatives. FN is the number of false negatives. A true
positive is a true donor (true acceptor, respectively) site that is also classified as
a true donor (true acceptor, respectively) site. A false positive is a false donor
(false acceptor, respectively) site that is mis-classified as a true donor (true
acceptor, respectively) site. A true negative is a false donor (false acceptor,
respectively) site that is also classified as a false donor (false acceptor, re-
spectively) site. A false negative is a true donor (true acceptor, respectively) site
that is mis-classified as a false donor (false acceptor, respectively) site. Si™ is
the ratio between the number of correctly classified true donor (true acceptor,
respectively) sites and the total number of true donor (true acceptor, respec-
tively) sites in the test data set, i.e.,

true __ TP

TP EN @)

We also did similar calculations to evaluate the performance of the proposed
HMM system in predicting the false splicing junction sites. S™ is the ratio
between the number of correctly classified false donor (false acceptor, respec-
tively) sites and the total number of false donor (false acceptor, respectively)
sites in the test data set, i.e.,
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Sfalse — TN
" TN + FP’
where S, is the proportion of the candidate sites in the test data set that are
classified correctly. S, tells how well the proposed HMM system can assign true
sites and false sites into the right categories; it is calculated by the following
formula:

(22)

where N, is the number of the candidate sites in the test data set that are
classified correctly and N, is the total number of the candidate sites in the test
data set.

The results in Table 5 show that, on average, our system can correctly detect
92% of the true donor sites in the test data set, and 95% of the false donor sites
in the test data set are predicted as false sites. Overall, 95% of the candidate
donor sites are classified into the right categories. The results for acceptor
classification are shown in Table 6. The proposed HMM system can correctly
predict 91.5% of the true acceptor sites in the test data set and 93% of the false
acceptor sites in the test data set. In general, the system can assign 93% of the
candidate acceptor sites into the right categories.

To investigate how well the proposed HMM system can discriminate true
splicing junction sites from false splicing junction sites when a group of
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Fig. 6. Score distributions for true donor sites and false donor sites.
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Fig. 7. Score distributions for true acceptor sites and false acceptor sites.

candidate sequences are presented to the system, we performed some statistic
analysis on the scores the HMM system assigned to each candidate site in the
10-way cross-validation experiment. Fig. 6 shows the score distribution of true
donor sites and false donor sites in one test data set. Fig. 7 shows the score
distribution of true acceptor sites and false acceptor sites in the same test data
set. Striking differences can be observed by comparing the curves in these
figures. The scores for the true donor sites can be higher than 10000, with
about 85% of the true donor sites scoring more than 10. For the false donor
sites, only about 5% of the sequences score more than 1, with the majority of
the false donor sites scoring between 0.1 and 0.00001. More than 10% of the
false donor sites score less than 0.00001. The score distribution for the true
acceptor scores in Fig. 7 shares a similar pattern as the one for the true donor
sites shown in Fig. 6. The scores for the false acceptor sites are more scattered,
but again, there are only 5-6% of the sequences scoring more than 1. The
results suggest that the proposed HMM system can be used to discover the
degenerate features of the splicing junction sites to a great degree.

5. Conclusions
In this paper we have developed HMMs to represent the consensus and

degenerate features of splicing junction sites in eukaryotic genes. The proposed
Donor Model and Acceptor Model have a different topology from those
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previously reported for splicing junction site detection. To capture the con-
sensus and degenerate features of the splicing junction sites, we introduced
constant states and constant state transitions into the HMMs. This innovative
approach conceptually simplifies the splicing junction site models and the
computation process of using the models. The results from the 10-way cross-
validation experiment show that the proposed HMM system can correctly
detect 92% of the true donor sites and 91.5% of the true acceptor sites in the
standard sequence data set composed by Burset and Guigo.

It is worth to point out that we only use the local information in the pro-
posed Donor Model and Acceptor Model. When combining our HMM system
with the global gene structure information, it is likely that one can achieve even
better results for site recognition. This is the research underway in our group.
Currently, we are trying to integrate our HMM system with other gene
structure information to develop an effective and accurate system for full gene
structure detection.
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