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Abstract

The classical McCulloch and Pitts neural unit is widely used today in artificial neural

networks (NNs) and essentially acts as a non-linear filter. Classical NN are only capable

of approximating a mapping between inputs and outputs in the form of a lookup table

or ‘‘black box’’ and the underlying abstract relationships between inputs and outputs

remain hidden. Motivated by the need in the study on neural and neurofuzzy archi-

tectures, for a more general concept than that of the neural unit, or node, originally

introduced by McCulloch and Pitts, we developed in our previous work the concept of

the morphogenetic neural (MN) network. In this paper we show that in contrast to the

classical NN, the MN network can encode abstract, symbolic expressions that char-

acterize the mapping between inputs and outputs, and thus show the internal structure

hidden in the data. Because of the more general nature of the MN, the MN networks are

capable of abstraction, data reduction and discovering, often implicit, relationships.

Uncertainty can be expressed by a combination of evidence theory, concepts of quan-

tum mechanics and a morphogenetic neural network. With the proposed morphogenetic

neural network it is possible to perform both rigorous and approximate computations

(i.e. including semantic uncertainty). The internal structure in data can be discovered by

identifying ‘‘invariants’’, i.e. by finding (generally implicit) dependencies between vari-

ables and parameters in the model. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Recent research indicates the need for the introduction of a more general
concept than that of the neural unit, or node, dating back to the pioneering
work by McCulloch and Pitts [1]. In this paper we use neural units that act as
input–output filters of a much more general form, more suitable for modelling
active dendrites (cf. e.g. [2–4]). In Section 2 we will first shortly recapitulate the
concept of the morphogenetic neuron (MN) introduced in our earlier work.
Next, in Section 3 an overview is given of quantum computing to illustrate the
parallels between neural computation and quantum computation, as illustrated
by the concept of linear superposition. The connection between neural net-
works (NNs) and quantum computing is made in Section 4. In Section 5. the
morphogenetic filter is introduced in orthogonal and non-orthogonal basis
functions; and the role of the scalar product in both the MN and in biological
neural systems is discussed. Finally the existence of invariants within the
context is defined by the fundamental tensor. In Section 6 the algorithm to
generate abstract rules is formulated. In Section 7, we discuss tensor invariants
and in Sections 8 and 9 we give examples of the use of morphogenetic networks
as filters to extract symbolic expressions from numerical data in robotics which
are given. It is shown that the morphogenetic neural network is capable of
discovering internal structure in measured numerical data. Finally, in Section
10 we conclude by discussing how semantic uncertainty (evidence theory and
quantum indeterminism) can be included in the theory of the morphogenetic
neuron. In Section 11 we extend the scalar product to include the cognitive
aspects in evidence theory.

2. The morphogenetic neuron

In [5–8] we introduced a generalization of the concept of neural unit, which
has been named morphogenetic neuron. From an abstract point of view, the
latter is a generic analog input–output device through which two elementary
operations are possible: the ‘‘Write’’ and ‘‘Read’’ operation, i.e.

(1) the operation (‘‘Write’’), starting from a suitable reference space and
from the constraints to be satisfied generates the weights at the synapse,

(2) the operation computation (‘‘Read’’), starting from the weights to con-
struct a suitable reply that satisfies the imposed constraints.

The attribute ‘‘morphogenetic’’ was chosen because, according to our view,
the existence of a set of constraints on a reference space, spanned, e.g. by all
possible values of a number of input or state variables, induces the ‘‘shape’’ of
the morphogenetic neuron within this space.

The name ‘‘neuron’’ was adopted because the activation function of such a
device is characterized, in the same way as usual neural units, by a bias
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potential and by a weighted sum of suitable (in general non-linear) functions of
morphogenetic fields. The read function is a linear superposition, with the
weights obtained in the write operation, of elementary functions or states. We
show that simple algorithms exist to compute the weights to implement three
fundamental operations. The implementation of a given input–output transfer
function, the operation of filter decomposition of data in given prototype data
with different weights, and the generation of instructions that transform data
(transformation of the space context). With these three types of operations we
can construct any possible computation.

The operation of the morphogenetic neuron can generally be described as a
two-step process. First the neuron learns its structural context, i.e. the n-di-
mensional vector space of functions. Next it learns how to encode abstract
rules as scalar invariant expressions within this context.

In the following we establish an interesting parallelism between the quantum
computation and the neuron computation, based on the observation that also
the quantum computer is based on the weighted superposition.

3. Quantum computing

Quantum computation is the extension of classical computation to the
processing of quantum information, using quantum systems such as individual
molecules, atoms, or elementary particles such as photons. For an introduc-
tion, see e.g. [9,10]. It has the potential to bring about a spectacular revolution
in computer science. Current-day electronic computers are not fundamentally
different from purely mechanical computers: the operation of such a Turing
machine can be described completely in terms of classical physics. By contrast,
computers could in principle be built to benefit from genuine quantum phe-
nomena that have no classical analogon such as entanglement and interference,
sometimes providing exponential speed-up compared with classical computers
[11].

All computers manipulate information, and the unit of quantum informa-
tion is the quantum bit, or qubit.

Classical bits can take either the values 0 or 1, but qubits can form a linear
superposition of the two classical states. If we denote the classical bits by
j0i ¼ w0 and j1i ¼ w1 where P0ðx; yÞ ¼ jw0ðx; yÞj

2
, like in quantum mechanics,

is the probability that the qubit in the state zero should be in the position
x; y.

When the state changes from zero to one, the probability that the qubit
should be in the state one and in the position x; y is P1ðx; yÞ ¼ jw1ðx; yÞj

2
. A

quantum bit can be in any state

aj0i þ bj1i;
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where a and b are complex numbers called amplitudes subject to the normal-
ization condition

jaj2 þ jbj2 ¼ 1:

Any attempt to measure qubits induces an irreversible disturbance. For ex-
ample, the most direct measurement on aj0i þ bj1i results in the qubit making
a probabilistic decision: with probability jaj2 the result of the measurement
becomes j0i and with complementary probability jbj2 the outcome becomes j1i;
in either case the measurement apparatus tells us which choice has been taken,
but all previous information of the original amplitudes a and b is lost and the
outcome of the computation is probabilistic, in contrast to the classical, de-
terministic, sequential operation of a Turing machine.

Unlike classical bits, where a single string of length n, consisting of zeros and
ones suffices to completely describe the state of n bits, a physical system of n
qubits requires 2n complex numbers to describe its state. For example, a two-
qubit state can be represented as:

aj00i þ bj01i þ cj10i þ dj11i
for arbitrary complex numbers a; b; c, and d, subjected only to the normal-
ization constraint

jaj2 þ jbj2 þ jcj2 þ jdj2 ¼ 1:

Another feature of qubits is the property of entanglement. Some special states
such as

ðj01i � j10iÞ=p2

cannot be factored.
When these two qubits are measured, they yield either 0 and 1 or 1 and 0,

with equal probabilities 1=2 but which of these two outcomes will occur is not
determined until the measurement is actually performed. This has no classical
analogous. Computers that thrive on entangled quantum information could
run exponentially faster than classical computers because n qubits require 2n

numbers for their description. A few simple logic operations by unitary
transformations on these qubits can affect all 2n numbers through the use of
quantum parallelism and quantum interference. Examples of this are e.g.
Shor’s algorithm [11] and Grover’s search algorithm for databases.

4. Neural network and quantum computation

A model of a classical NN is given in Fig. 1.
When the unit i receives input from the units j the activation of the unit i, ui,

is given by
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ui ¼
X

j

wi;jsj; j ¼ 1; 2; . . . ; n; ð1Þ

i.e. the weighted sum of the inputs sj. The activation ui is subsequently used to
determine the output (i.e. the new state) of the neuron i by evaluating a non-
linear threshold function f

snewi ¼ f ðuiÞ:
In a net of real neurons the wi;j represent the weights of the synapses. We note
that the inputs sj are independent from each other and at any synapse j only
one input is active. Recent experiments [20–22] show that this simple model of
a neural net is not realistic. At every synapse many different inputs interact in a
synergistic way in order to activate an axon. In order to model the real single
neuron better we propose a different model of a neural net, the morphogenetic
model, schematically given in Fig. 2. In Eq. (2) we give the formal definition of
the morphogenetic neuron.

The activation ui of the morphogenetic neuron equals the output and is
given by

ui ¼
X

j

wi;jwjðs1; . . . ; snÞ; j ¼ 1; 2; 3; . . . ; 2n: ð2Þ

Fig. 1. NN, where si represents the output (state) of neuron i and the wij are the connecting

weights.

Fig. 2. Morphogenetic neural network built of states wi connected by weights wij.
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The parameters wi;j are the synaptic weights and wj represents the state of the
neuron j [21,22]. We remark that this MN is more general than the classical
neuron, since the non-linearity of the classical neuron can be modelled as a
superposition of non-linear functions w, e.g. a Heaviside function could be
expanded in sine and cosine functions via the Fourier transform. In the clas-
sical neuron the superposition is applied before the non-linear function,
whereas in the MN we superimpose non-linear functions.

As an example we consider a neuron with two inputs s1 and s2

u ¼ w1w1ðs1; s2Þ þ w2w2ðs1; s2Þ þ w3w3ðs1; s2Þ þ w4w4ðs1; s2Þ;
where w1ðs1; s2Þ, w2ðs1; s2Þ, w3ðs1; s2Þ, w4ðs1; s2Þ are the elementary states of the
neuron. The elementary states of the neuron can be written also in the fol-
lowing way: w00ðs1; s2Þ, w10ðs1; s2Þ, w01ðs1; s2Þ, w11ðs1; s2Þ, so that the morpho-
genetic neuron model can be written as

u ¼ w1w00ðs1; s2Þ þ w2w01ðs1; s2Þ þ w3w10ðs1; s2Þ þ w4w11ðs1; s2Þ:
We remark that superposition of the morphogenetic neuron states has an
analogy with the superposition of states in quantum mechanics. To stress
the connection between the quantum mechanics and the morphogenetic
neuron model we rewrite Eq. (2) using the Dirac formalism in the following
way:

ui ¼
X

j

wi;j j1; j2; . . . ; jnj i

¼ wi;1 0; 0; . . . ; 0j i þ wi;2 1; 0; . . . ; 0j i þ 	 	 	 þ wi;2n 1; 1; . . . ; 1j i; ð3Þ

where we used the Dirac notation from quantum mechanics

wjðs1; . . . ; snÞ ¼ jj1; j2; . . . ; jni: ð4Þ

Example 1. If the connection terms wi;j form a unitary matrix, Eq. (3) repre-
sents a unitary transformation in quantum mechanics and can be interpreted as
an instruction in the quantum computer

a1;1 a1;2 a1;3 a1;4
a2;1 a2;2 a2;3 a2;4
a3;1 a3;2 a3;3 a3;4
a4;1 a4;2 a4;3 a4;4

2
664

3
775

j00i
j01i
j10i
j11i

2
664

3
775 ¼

a1;1j00i þ a1;2j01i þ a1;3j10i þ a1;4j11i
a2;1j00i þ a2;2j01i þ a2;3j10i þ a2;4j11i
a3;1j00i þ a3;2j01i þ a3;3j10i þ a3;4j11i
a4;1j00i þ a4;2j01i þ a4;3j10i þ a4;4j11i

2
664

3
775;

when

a1;1 a1;2 a1;3 a1;4
a2;1 a2;2 a2;3 a2;4
a3;1 a3;2 a3;3 a3;4
a4;1 a4;2 a4;3 a4;4

2
664

3
775 ¼

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775
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we obtain the transformation

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775

j00i
j01i
j10i
j11i

2
664

3
775 ¼

1j00i þ 0j01i þ 0j10i þ 0j11i
0j00i þ 1j01i þ 0j10i þ 0j11i
0j00i þ 0j01i þ 0j10i þ 1j11i
0j00i þ 0j01i þ 1j10i þ 0j11i

2
664

3
775 ¼

j00i
j01i
j11i
j10i

2
664

3
775:

That realize by the superposition the two Boolean functions

The unitary transformations used in this example affect qubits j00i; j01i;
j10i; j11i in a synchronic way by the use of quantum parallelism and quantum
interference.

This unitary transformation can formally be represented by the graph de-
picted in Fig. 3.

We know that in quantum mechanics the superposition of the states gives a
new coherent state in which the previous states are mixed. In the morphoge-
netic neuron the superposition of synchronous inputs creates the output state
in which the previous input states are mixed.

X Y Boolean function X

0 0 0
0 1 0
1 0 1
1 1 1

X Y XOR

0 0 0
0 1 1
1 0 1
1 1 0

Fig. 3. Quantum transformation represented as a network.
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5. Filtering with the morphogenetic neuron

5.1. Orthogonality

Given the elementary states we can generate a mixed state when we know
the coefficients, but from the mixed state is difficult to obtain the coefficients of
the elementary states (tuning process), e.g. by the superposition of the states
w1; w2; w3; w4 we may generate the function w ¼ w1 � 2w2 þ w3 þ 1=2w4. The
elementary states wi ði ¼ 1; . . . ; 4Þ, generate a basis for an n-dimensional Hil-
bert space, where n ¼ 4 is the number of basis states. We know that the scalar
product for continuous basis functions is defined as:

wiðxÞ 	 wjðxÞ ¼
Z

X
wiðxÞwjðxÞdx:

In numerical calculations the continuous basis is often replaced by a discrete
one, and the scalar product is then approximated by

wiðxÞ 	 wjðxÞ 

X
k

wiðxkÞwjðxkÞ:

We note that in case a discrete basis exists, this approximation of the scalar
product reduces to an exact definition. When the basis exists in the ordinary
Hilbert space the states are orthogonal when the metric tensor G ¼ fgi;kg
satisfies

gi;k ¼ G ¼

w1 	 w1 w1 	 w2 	 	 	 w1 	 wn

w2 	 w1 w2 	 w2 	 	 	 w2 	 wn

	 	 	 	 	 	 	 	 	 	 	 	
wn 	 w1 wn 	 w2 . . . wn 	 wn

2
664

3
775 ¼

1 0 	 	 	 0
0 1 	 	 	 0
	 	 	 	 	 	 	 	 	 	 	 	
0 0 	 	 	 1

2
664

3
775

¼ dj;k:

We know that for a unitary transformation S we have SST ¼ 1, where ST is the
transpose of S.

For the unitary transformation S we then have

wk 	 wj ¼ Swk 	 Swj ¼ SSTwk 	 wj:

It follows that the scalar product is invariant under S. This is an example of a
tensor invariant (see Section 7). When G ¼ 1 and when the basis set of states is
orthogonal, S transforms the basis set of states to another basis set that is again
orthogonal. The metric gi;k does not change. We conclude that the states
w1;w2; . . . ;wn generate an ‘‘entity’’ or space that we cannot separate in parts
and that when the states are orthogonal no relation exists between the states.

When the basis states are orthogonal it is possible to filter (decompose) a
mixed state in its elementary states by using the scalar product. We can see this
as follows.
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Let w be a mixed state given by

w ¼
X

j

ajwj:

We can obtain the projections along the basis functions wk by taking the scalar
product with wk

w 	 wk ¼ wk 	
X

j

ajwj ¼
X

j

ajwj 	 wk ¼
X

j

ajdj;k ¼ ak:

We note that in the mixed state we can have a large number of basis states
(‘‘features’’) superposed with different intensities. A mixed state thus com-
presses a huge amount of information in one function. Given the basis state wk

we can select inside the mixed state the intensity of the state wk. The function
wk acts as a feature selector, since the scalar product with w gives the feature
strength ak

ak ¼ w 	 wk:

Finally we note that the computation of the ak has low computational cost. In
contrast, recording all the states and coefficients and finding the desired coef-
ficient ak amongst all the others are computationally expensive processes. Next
we will investigate how the orthogonal basis functions (‘‘features’’) behave
under a transformation R. If the transformation R changes the basis function
wk to w

k ¼
P

j Rk;jwj we obtain:

w ¼
X
k

a
kw


k ¼

X
k

a
k

X
j

Rk;jwj ¼
X

j

X
k

Rk;ja

k

" #
wj ¼

X
j

ajwj;

X
k

Rk;ja

k ¼ aj:

Example 2. Given the operator R

Rw ¼ cosðhÞ � sinðhÞ
sinðhÞ cosðhÞ

� 
w1

w2

� 
¼ w1 cosðhÞ � w2 sinðhÞ

w1 sinðhÞ þ w2 cosðhÞ

� 
¼ w

1

w
2

� 

with the scalar product and orthogonal states w1 and w2 we have

cosðhÞ sinðhÞ
� sinðhÞ cosðhÞ

� 
a
1

a
2

� 
¼ a1

a2

� 
:

5.2. Neural pattern recognition and scalar product in biological systems

Research results from neurobiology and neurophysiology suggest that the
concept of morphogenetic neuron can be useful to describe what happens in
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human or animal brains when doing pattern recognition tasks. Studies on
auditory cortex of bats indicated, e.g. the presence of neurons sensitive to the
frequency distribution of the input signal (cf. [12]). Moreover, the cortex
output can be viewed more as an output function rather than as a sum of single
neural impulses. The study of the role of hippocampal cells as determinants of
the spatial memory of a rat and from the analysis of motion detectors of insects
further corroborate these findings [13,14]. In this section we will describe a
possible application of morphogenetic neurons in the design of an artificial
device able to classify input patterns. Such a device is based on models of
pattern recognition proposed within Cognitive Psychology (see e.g. [4]). One of
these models is based on the so-called ‘‘template matching’’ process. According
to such a model every recognition system contains, hard-wired into it, a
number of ‘‘template’’ patterns. A given input pattern is compared, through a
matching operation, with each stored template. The template corresponding to
the best match specifies automatically the class to which the input pattern
belongs.

The scalar product defined previously gives us the opportunity to connect
additive superposition of functions with the scalar product. We know that in
the biological neuron network the scalar product

Pn ¼ V1 	 Vn; n ¼ 1; 2; 3; . . . ;N ;

between the external stimulus vector V1 and n internal vectors or reference
vectors is the basic instrument for a tuning process by which we can select a
desired feature inside the stimulus. Fig. 4 illustrates the scalar product as

Fig. 4. The measured response of a biological network of neurons depends on the scalar product of

the external stimulus and internal reference prototypes (templates).
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mechanism for coupling stimuli with pre-programmed templates in order to
generate a neuron response.

5.3. Non-orthogonal basis set

When two basis states w1 and w2 are not orthogonal, their scalar product
does not vanish

w1 	 w2 ¼ jw1jjw2j cosðhÞ; where jwj ¼
ffiffiffiffiffiffiffiffiffiffi
w 	 w

p
and h;

is the angle between the two states. When jw1j ¼ 1 and jw2j ¼ 1 we have

w1 	 w2 ¼ cosðhÞ:
Therefore we conclude that when the elementary states are not orthogonal, i.e.
gj;k 6¼ dj;k, we cannot use the scalar product to decompose a mixed state into
basis states.

This can be illustrated by projecting the mixed state w1 � 2w2 onto w2

½w1 � 2w2� 	 w2 ¼ w1 	 w2 � 2w2 	 w2 ¼ cosðhÞ � 2 6¼ �2:
We note that for a mixed state such as ða1w1 þ a2w2Þ ¼ w the scalar product

wi 	 w ¼
w1

w2

� 
	 ða1w1 þ a2w2Þ ¼

a1w1 	 w1 þ a2w2 	 w1

a1w1 	 w2 þ a2w2 	 w2

� 

¼
w1 	 w1 w1 	 w2

w2 	 w1 w2 	 w2

� 
a1
a2

� 
¼
P

j gi;jaj ¼ Ga:

In this case the scalar product does not give the coefficients. In order to keep
the nice properties found previously for the orthogonal case, we have to modify
the scalar product in a suitable way. Therefore we suggest the following
method: create a new basis consisting of the scalar products of the original
basis states with the morphogenetic network given in Fig. 5.

In this way we have the new scalar product

Pj;k ¼
X

i

wj;iwi 	 wk: ð5Þ

Fig. 5. Morphogenetic neural network used for orthogonalization of basis functions wk .
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That can be written in the following way:

P ¼ WG ¼

w11 w12 	 	 	 w1n

w21 w22 	 	 	 w2n

	 	 	 	 	 	 	 	 	 	 	 	
wn1 wn2 	 	 	 wnn

2
664

3
775

w1 	 w1 w1 	 w2 	 	 	 w1 	 wn

w2 	 w1 w2 	 w2 	 	 	 w2 	 wn

	 	 	 	 	 	 	 	 	 	 	 	
wn 	 w1 wn 	 w2 	 	 	 wn 	 wn

2
664

3
775:

We now choose the weight matrix W in such a way that P is diago-
nal

WG ¼

w11 w12 	 	 	 w1n

w21 w22 	 	 	 w2n

	 	 	 	 	 	 	 	 	 	 	 	
wn1 wn2 	 	 	 wnn

2
664

3
775

w1 	 w1 w1 	 w2 	 	 	 w1 	 wn

w2 	 w1 w2 	 w2 	 	 	 w2 	 wn

	 	 	 	 	 	 	 	 	 	 	 	
wn 	 w1 wn 	 w2 	 	 	 wn 	 wn

2
664

3
775

¼

1 0 	 	 	 0
0 1 	 	 	 0
	 	 	 	 	 	 	 	 	 0
0 0 0 1

2
664

3
775 ð6Þ

it follows that W ¼ G�1, where the matrix G is the metric of the state space. The
matrix W changes the metric of the space and compensates the errors that we
introduce when the states are not orthogonal.

Remark. When the basic functions are not orthogonal, we can write the non-
orthogonal set wi as the transformation by R of the orthogonal set of functions
gi. So we have

wi ¼ Rgi:

In this case we have that

G ¼ RRT:

For two non-orthogonal, normal states w1 and w2 making an angle h with each
other the metric G tensor is

G ¼ 1 cosðhÞ
cosðhÞ 1

� 

and the compensation matrix W is

W ¼ G�1 ¼ 1 � cosðhÞ
� cosðhÞ 1

� 
1

1� cos2ðhÞ :
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Given the mixed state w ¼ a1w1 þ a2w2, we have

W wi 	 w ¼ W wi 	 ða1w1 þ a2w2Þ

¼ 1

1� cos2ðhÞ
1 � cosðhÞ

� cosðhÞ 1

� 
w1

w2

� 
	 ða1w1 þ a2w2Þ

¼ 1

1� cos2ðhÞ
1 � cosðhÞ

� cosðhÞ 1

� 
a1 þ a2 cosðhÞ
a1 cosðhÞ þ a2

� 

¼ 1

1� cos2ðhÞ
1 � cosðhÞ

� cosðhÞ 1

� 
1 cosðhÞ

cosðhÞ 1

� 
a1
a2

� 

¼ a1
a2

� 
and we arrive at the classical scalar products between orthonormal states wj

and wk.
We conclude that for the non-orthogonal set of states the scalar product

wi 	 w can be written as

wi 	 w ¼ wi 	
X

j

ajwj ¼
X

j

ajwi 	 wj ¼
X

j

Gi;jaj:

So X
i

G�1
k;i

X
j

Gi;jaj ¼ G�1Ga ¼ a

and we obtain the coefficients a as in the orthogonal set of functions.
When W ¼ RG�1 we have

RG�1Ga ¼ Ra:

When R is a unitary transformation RRT ¼ 1, we move from one orthogonal to
another orthogonal set of functions. When R is not unitary, we move from an
orthogonal set of functions, to a non-orthogonal set of functions.

5.4. Dependency of states: invariant relations

When the determinant of G is zero, the inverse matrix G�1 does not exist. In
this case the states are linear dependentX

bhwh ¼ 0; where not all bk ¼ 0:

Let us illustrate this with an example. Suppose that inside the space spanned by
w1; w2; w3; w4, the internal relation, Eq. (7), holds

4w1 þ w2 � w3 ¼ 0: ð7Þ
One of the major applications of the morphogenetic neuron is to find the in-
ternal relations (‘‘invariants’’) between given numerical data. Given G we must
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find the minor of G with non-zero determinant. In the previous example when
we take w3 as a mixed state of w1; w2

w3 ¼ 4w1 þ w2;

we move from the space w1; w2; w3 to the subspace w1; w2: This can be done
by filtering the mixed state w3 via the non-orthogonal projection. In this way
we determine the internal relation (Eq. (7)). This has been discussed in Section
5.3.

6. The morphogenetic neural network to encode abstract rules.

In this section we will show that the morphogenetic neuron can simulate the
well-known property of the brain to extract rules from patterns of data. How
human learners extract rules from pattern of data is one of the foci in the
investigations of human learning. Here we will focus on the question how we
can extract symbolic expressions from raw numerical data. In the following we
describe the algorithm to generate invariants from numerical data.

To obtain the invariant forms we constructed the following algorithm:
(1) G � NTN,
where N is the p � n matrix in Table 1.
And identifying Gi;k ¼

P
k wiðxkÞwjðxkÞ 
 gi;k ¼ wi 	 wk ¼

R
X wiðxÞwjðxÞdx.

(2) W � G�1.
Given the mixed function w ¼

P
j ajwj with the numerical table w. In

Table 2 we show the sampled data set of the function w.
(3) C � W NTW, where C equals the vector of the coefficients aj and

NTW ¼
P

k wiðxkÞwðxkÞ 
 wi 	 w.

7. Invariants of a tensor

From tensor algebra (see e.g. [15]) it is known that from a given tensor one
can derive infinite many invariant forms. In order to illustrate the concept of

Table 1

Matrix of experimental data in terms of features and samples

Features

w1 w2 	 	 	 wn

Values sample 1 w1ðx1Þ w2ðx1Þ wnðx1Þ
Values sample 2 w1ðx2Þ w2ðx2Þ wnðx2Þ
Values sample 3 w1ðx3Þ w2ðx3Þ wnðx3Þ
..
.

Values sample p w1ðxpÞ w2ðxpÞ wnðxpÞ
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invariant, we consider the vector A, which has components given by Ai in a
rectangular coordinate system K. Let A0

i be the components of A in another
rectangular coordinate system K 0. It is easy to prove by explicit calculation that
the scalar product of A with itself A 	 A, which is the square of the length of A,
is the same in both coordinate systems

AiAi ¼ A2
1 þ A2

2 þ A2
3 ¼ A0 2

1 þ A0 2
2 þ A0 2

3 ¼ A0
iA

0
i:

This simple example shows that expressions exist that do not change under
transformation from one coordinate system to the other. Such an expression is
called an invariant of A. A vector is a tensor of first order. Tensors of higher
order also have invariants. This can be understood by considering the char-
acteristic equation of a second-order tensor gik

g11 � k g12 g13
g21 g22 � k g23
g31 g32 g33 � k

������
������ ¼ 0:

After expanding this determinant we obtain the equation

k3 � k2ðg11 þ g22 þ g33Þ þ k
g22 g32
g23 g33

����
����

�
þ g11 g21

g12 g22

����
����þ g11 g31

g13 g33

����
����
�

�
g11 g12 g13
g21 g22 g23
g31 g32 g33

������
������ ¼ 0:

The numbers k; k2; k3 are scalars and therefore independent of the choice of
coordinate system and so are their coefficients in the characteristic equation;
they form invariants Ij of gi;k

I1 ¼ g11 þ g22 þ g33:

I1 is known as the trace of gi;k

I2 ¼
g22 g32
g23 g33

����
����þ g11 g21

g12 g22

����
����þ g11 g31

g13 g33

����
����; I3 ¼

g11 g12 g13
g21 g22 g23
g31 g32 g33

������
������:

Table 2

Vector of samples of general mixed function w

w

Values sample 1 w(x1)
Values sample 2 w(x2)
Values sample 3 w(x3)
..
.

Values sample p w(xp)
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From these invariants we may derive infinitely many other invariants, e.g.

I21 ¼
X3
i¼1

gii

 !2

or I21 � 2I2 ¼
X3
i¼1

X3
k¼1

gikgik:

Invariants thus encapsulate part of the internal structure of the transformation
represented by the tensor gik in a form that is not dependent on a specific
representation (e.g. a coordinate system). This makes invariants excellent ve-
hicles to extract information reflecting the internal structure of a system (e.g.
symbolic expressions). In the following section we will sketch applications to
the robotic of the tensor invariants.

8. Application to a SCARA robot

It is easy to write the equations linking the angular position of the links
q ¼ ða; bÞ with the position of the gripper in the Cartesian space u ¼ ðX ; Y Þ (see
Fig. 6)

X ¼ L1 cosðaÞ þ L2 cosða þ bÞ;
Y ¼ L1 sinðaÞ þ L2 sinða þ bÞ

with the basic functions

w1 ¼ L1 cosðaÞ þ L2 cosða þ bÞ; w2 ¼ L1 sinðaÞ þ L2 sinða þ bÞ:
For L1 ¼ 1 and L2 ¼ 1, we have the fundamental tensor for the variation of the
angle a

g1;1 ¼ w1 	 w1 ¼
Z p

0

ðcosðaÞ þ cosða þ bÞÞ2 da;

g2;2 ¼ w2 	 w2 ¼
Z p

0

½sinðaÞ þ sinða þ bÞ�2 da;

Fig. 6. Scheme of SCARA robot.
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evaluating the fundamental tensor and by simple computations we have

g11 þ g22 ¼ 2a þ 2a cos b: ð8Þ
By derivation of Eq. (8) with respect to a we obtain the invariant

X 2 þ Y 2 ¼ 2ð1þ cosðbÞÞ:
For L1 and L2 as free parameters we have:

X 2 þ Y 2 ¼ L12 þ L22 þ 2L1L2 cosðbÞ:
By varying the angle b we obtain the invariant

X 2 þ Y 2 ¼ L22 � L12 þ 2L1½X cosðaÞ þ Y sinðaÞ�:
From these two invariants, we can calculate the angles a and b when we know
X , Y , L1, and L2.

9. Application to a spherical robot

Kinematics equations:

X ¼ ½L1 cosðaÞ þ L2 cosða þ bÞ� cosðcÞ;
Y ¼ ½L1 cosðaÞ þ L2 cosða þ bÞ� sinðcÞ;
Z ¼ ½L1 sinðaÞ þ L2 sinða þ bÞ�

with the basic functions:

w1 ¼ ½L1 cosðaÞ þ L2 cosða þ bÞ� cosðcÞ;
w2 ¼ ½L1 cosðaÞ þ L2 cosða þ bÞ� sinðcÞ;
w3 ¼ ½L1 sinðaÞ þ L2 sinða þ bÞ�:

For the variation in c we have

g11 ¼
Z c

0

w1ða; b; cÞ
2
dc; g22 ¼

Z c

0

w2ða; b; cÞ
2
dc;

and obtain the invariant for the angle c

X 2 þ Y 2 ¼ ½L1 cosðaÞ þ L2 cosða þ bÞ�2:
Let B ¼ �pðX 2 þ Y 2). We may then reduce the spherical robot to the SCARA
robot with the equations:

B ¼ L1 cosðaÞ þ L2 cosða þ bÞ;
Z ¼ L1 sinðaÞ þ L2 sinða þ bÞ:

This set of equations we can solve. By introducing the new variable B, we can
reduce the number of variables from three to two. The two variables are the
angles a and b of the SCARA robot.
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10. The representation of semantic uncertainty in the morphogenetic neuron

Given the proposition ‘‘the element a belongs to A’’ this proposition can be
true or false. In the classical information theory the two logical statement (true
and false) are represented by a bit whose value is one for ‘‘true’’ and zero for
‘‘false’’. For the proposition ‘‘a belongs to A’’ where is the meaning of the
qubit? In fuzzy set theory for the proposition ‘‘the element a belongs to A’’, we
associate a fuzzy set where for any element ‘‘a’’ we define a measure of degree
of truth lAðaÞ.

To give a meaning to the qubit w1 ¼ j1i, we associate the qubit with the
basic probability assignment from the evidence theory. When the universal set
U equals {0,1}, we have the power set P ¼ f;; f0gf1gf0; 1gg. To each element
of the power set we associate a basic probability assignment in the evidence
theory. The representation of the quantum uncertainty by evidence theory was
independently proposed in 1995 by van der Wal [16] and in 1999 by Resconi
et al. [17]

mð;Þ ¼ 0; mðf0gÞ ¼ h0j0i ¼
Z

X
w0ðxÞ �ww0ðxÞdx;

mðf1gÞ ¼ h1j1i ¼
Z

X
w1ðxÞ �ww1ðxÞdx;

mðf0; 1gÞ ¼ h01j01i ¼
Z

X
wðxÞ �wwðxÞdx

with

mð;Þ þ mðf0gÞ þ mðf1gÞ þ mðf0; 1gÞ ¼ 1;

where

w ¼ aj0i þ bj1i:
In quantum mechanics the superposition state represents a conflicting situa-
tion. According to the coherence principle the state

aj0i þ bj1i

is a new state where the single states j0i and j1i are inseparable from each
other: we cannot reduce the superposition states to the elementary states
j0i; j1i. This is in agreement with the evidence theory where the evidence for
every subset is independent from the evidence of the elementary states

P1 ¼ mðf1gÞ ¼ jw1ðxÞj
2 ¼

Z
X

w1ðxÞ �ww1ðxÞdx ¼ h1j1i;

P0 ¼ mðf0gÞ ¼ jw0ðxÞj
2 ¼

Z
X

w0ðxÞ �ww0ðxÞdx ¼ h0j0i:
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Because the superposition state is w ¼ aj0i þ bj1i we have

hwjwi ¼ mðf1; 0gÞ ¼ jwðxÞj2 ¼ jaw1ðxÞ þ bw0ðxÞj
2

¼ a2½w1ðxÞ 	 w1ðxÞ� þ b2½w0ðxÞ 	 w0ðxÞ� þ 2ab½w0ðxÞ 	 w1ðxÞ�;

where ‘‘	’’ denotes the scalar product
R

X wðxÞ �wwðxÞdx

w0ðxÞ 	 w1ðxÞ ¼
Z

X
w0ðxÞ �ww1ðxÞdxdy:

So, we have

mðf0gÞ ¼ a2½w1ðxÞ 	 w1ðxÞ�; mðf1gÞ ¼ ðb2½w0ðxÞ 	 w0ðxÞ�;
mðf0; 1gÞ ¼ mðf0gÞ þ mðf1gÞ þ 2ab½w0ðxÞ 	 w1ðxÞ�;

where 2ab½w0ðx; yÞ 	 w1ðx; yÞ� is the interference term that can be positive or
negative.

From the theory of evidence [18], we know that the evidence is connected
with any subset without any a priori restriction or connection between the
elements of the universal set and the subsets. We are completely free to give any
type of evidence to the subsets. If A and B are disjoint sets, A \ B ¼ ;, when we
know the evidence of A and B (basic probability assignment) we cannot use any
type of rules to calculate the evidence of mðA [ BÞ 	 mðAÞ; mðBÞ and mðA \ BÞ
can assume any value.

So we can distinguish three possible cases:
1. mðA [ BÞ > mðAÞ þ mðBÞ superadditivity, the evidence of the union is

greater of the sum of the evidence for the single sets;
2. mðA [ BÞ ¼ mðAÞ þ mðBÞ additivity, the evidence of the union is equal of the

sum of the evidence for the single sets;
3. mðA [ BÞ < mðAÞ þ mðBÞ subadditivity, the evidence of the union is less of

the sum of the evidence for the single sets.
When we have mðA [ BÞ ¼ mðAÞ þ mðBÞ (additivity case), we have the tradi-
tional probability rule for A \ B ¼ ;.

With the quantum mechanical representation we can suggest a new vectorial
interpretation of the basic probability assignment. In fact when we associate
with the singleton sets {1} and {0} the infinite dimensional vectors w1ðxÞ; w0ðxÞ
(the wave function for the qubits j1i and j0i, respectively)

f1g ! w1ðxÞ; f0g ! w0ðxÞ

in the formula mðf0; 1gÞ ¼ mðf0gÞ þ mðf1gÞ þ S01.
S01 is given by the expression

S01 ¼ 2ab½w0ðxÞ 	 w1ðxÞ�:

We can denote the term S01 synergetic term between the state j1i or ‘‘true’’ and
the state j0i or ‘‘false’’.
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In this way we obtain a simplification of the evidence theory and it is exactly
this observation that justifies the intuitive ideas of sensor fusion [19]. Given a
universal set U we can associate with each subset with only one element (sin-
gleton) a wave function or a vector. The evidence of the singletons is pro-
portional to the scalar product of each vector with itself. The evidence of the
other subsets is proportional to the mixed scalar products.

10.1. The fundamental tensor gi;j and the difference between probability and
evidence

Previously we used the fundamental tensor gi;j to help us discover models for
morphogenetic filters in a non-orthogonal functional space. In this section we
will show that the same fundamental tensor gi;j can be used to create a vector
model of evidence theory. We discover that the gi;j gives us the vehicle to
compute the synergy between elements in the set. With this tensor we reduce the
information necessary to know the basic probability assignment from 2N sets to
N vectors. In this way we give a geometrical meaning of evidence theory, in a
similar way as indeterminacy in quantum mechanics is formalized by the ge-
ometry of Hilbert spaces. Quantum mechanics inspired us to this new model of
evidence theory. The model presented in this section is not complete. In the next
section we suggest an extension of the scalar product to improve the model.

Given the universal set U ¼ fa; b; cg, wave functions or vectors
waðxÞ; wbðxÞ; wcðxÞ associate to the singletons

fag ! waðxÞ; fbg ! wbðxÞ; fcg ! wcðxÞ:
The evidence of the universal set is

mðUÞ ¼ mðfa; b; cgÞ ¼ kðwaðxÞ þ wbðxÞ þ wcðxÞÞ 	 ðwaðxÞ þ wbðxÞ þ wcðxÞÞ

¼ k
X
i;j

wi 	 wj ¼
X
i;j

gi;j;

where

gi;j ¼ G ¼
wa 	 wa wa 	 wb wa 	 wc

wb 	 wa wb 	 wb wb 	 wc

wc 	 wa wc 	 wb wc 	 wc

2
4

3
5 ¼

mðfagÞ Sa;b Sa;c

Sb;a mðfbgÞ Sb;c

Sc;a Sc;b mðfcgÞ

2
4

3
5

so

mðfa; b; cgÞ ¼ mðfagÞ þ mðfbgÞ þ mðfcgÞ þ
X

ðsynergetic termsÞ;

when the vectors waðxÞ;wbðxÞ;wcðxÞ are orthogonal we have
mðfa; b; cgÞ ¼ mðfagÞ þ mðfbgÞ þ mðfcgÞ

and the evidence theory reduces to classical probability theory (additivity
theory).
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Example 3. Let the universal set be U ¼ fð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þg.
States j00i; j10i; j01i; j11i superposition

w ¼ a1j00i þ a2j10i þ a3j01i þ a4j11i:
Evidence value for the universal set U

mðUÞ ¼ ½a1j00i þ a2j10i þ a3j01i þ a4j11i� 	 ½a1j00i þ a2j10i þ a3j01i þ a4j11i�

for

mðf00g ¼ a21h00j00i ¼ a21w00 	 w00; mðf01g ¼ a22h01j01i ¼ a22w01 	 w01;

mðf10g ¼ a23h10j10i ¼ a23w10 	 w10; mðf11g ¼ a24h11j11i ¼ a24w11 	 w11;

we have mðUÞ ¼ mðfagÞ þ mðfbgÞ þ mðfcgÞ þ
P

ðsynergetic termsÞ, where the
synergetic terms are given by the matrix

gi;j ¼

w00 	 w00 w00 	 w01 w00 	 w10 w00 	 w11

w01 	 w00 w01 	 w01 w01 	 w10 w01 	 w11

w10 	 w00 w10 	 w01 w10 	 w10 w10 	 w11

w11 	 w00 w11 	 w01 w11 	 w10 w11 	 w11

2
664

3
775:

When
P

ðsynergetic termsÞ > 0 we have positive synergy and

mðUÞ > mðfagÞ þ mðfbgÞ þ mðfcgÞ:
The evidence of U is greater of the evidence of the parts. The parts are se-
mantically more uncertain when

P
ðsynergetic termsÞ ¼ 0 we have zero synergy

and

mðUÞ ¼ mðfagÞ þ mðfbgÞ þ mðfcgÞ:
The evidence of U is equal of the evidence of the parts. The evidence in this
case is equal to the probability. The fundamental tensor is gi;j ¼ di;j the func-
tions are orthogonal.

When
P

ðsynergetic termsÞ < 0 we have negative synergy and

mðUÞ ¼ mðfagÞ þ mðfbgÞ þ mðfcgÞ:
The evidence of U is less of the evidence of the parts. The parts are semantically
less uncertainly that the universe.

11. Extension of the scalar product

From our discussions in the previous sections we have seen that the scalar
product plays a pivotal role in the biology of pattern recognition. If one studies
the measurements in Fig. 4 carefully, one observes that although the desired
feature clearly provokes by far the largest neuron response, especially in the
case that the stimulus is coherent, still the other features show non-zero
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response. This phenomenon can of course be partially attributed to measure-
ment errors, but it is interesting to note that when one extends the classical
scalar product to a more general construct, the ‘‘leakage’’ of information is a
general consequence of the scalar product extension. We try to explain our
ideas in the following.

The scalar product appears as too simple.
Geometrically, the extension of the scalar product can be thought of as one

of the two vectors influencing the other before taking the classical scalar
product (i.e. a local space deformation). The generalization of the classical
scalar product to a more general concept has the consequence that we assume
some coherence between the two vectors and this can in turn be interpreted as a
‘‘softening’’ of the vector independence: we cannot separate one vector from
the other. This can also be interpreted as uncertainty or fuzziness in the defi-
nition of the vectors. The generalization of the scalar product used in this paper
is only one of the possible models. By introducing this new scalar product, we
move away from the conventional concepts used in Hilbert space, particularly
in quantum mechanics. Since quantum mechanics is not the only vehicle to
model interpretation of knowledge, we suggest a more flexible instrument,
closely resembling the cognitive approach to knowledge.

We may compare this with the existence of a family of t-norms and t-con-
orms to model operations between fuzzy variables. The existence of such
families is justified by the need for a general mechanism to model human in-
tuitive logic operations used in cognitive inference, since classical propositional
logic is too rigid for this. In a similar way the generalized scalar product in-
duces flexibility in the computation of the morphogenetic neuron described
before. This is more in line with recent findings on the functioning of the brain
[20]. Additional evidence for the need of a more general scalar product concept
follows from evidence theory: for every member of the power set we can assign
arbitrary values to the basic probability assignment. With the scalar product
we reduce the information to single elements and with some scalar product
rules we come back to the power set. This mechanism cannot rebuild com-
pletely all possible situations in evidence theory, such as total ignorance. Only
the extension of scalar product can enlarge the possibilities offered by vectorial
and scalar product approach. This is the fundamental motivation for extension
of the scalar product. Quantum mechanics on itself cannot account for the
human cognitive approach to uncertainty by evidence theory. Extension of the
scalar product helps to introduce a substantial improvement to the human
approach to uncertainty studied in evidence theory. We introduce in the
following one of the possible models for the scalar product extension. We
remember that any extension of the scalar product must satisfy at the or-
thogonality property and the boundary condition.

Let a two-dimensional Euclidean space ðx; yÞ be given. We can then define
states in this space as follows:
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w1ðx; yÞ ¼ j1i;w2ðx; yÞ ¼ j2i; . . . ;wnðx; yÞ ¼ jni:

If we take Eq. (2) with w11 ¼ 1; w12 ¼ 1; w21 ¼ 1 and w22 ¼ �1 we have the
two morphogenetic neurons:

u1 ¼ jþi ¼ jii þ jki and u2 ¼ j�i ¼ jii � jki:

The probabilities of the mixed states are

hþjþi ¼
Z

½wiðx; yÞ þ wkðx; yÞ�
2
dxdy and

h�j�i ¼
Z

½wiðx; yÞ � wkðx; yÞ�
2
dxdy:

The output function of the morphogenetic neuron is

uj;k ¼
Xn
i¼1

wj;ihijkiG; ð9Þ

where

hijkiG ¼ expð�ah�j�iÞ � expð�ahþjþiÞ: ð10Þ

The WRITE operation consists in the computation from (9) of the weight
parameters wj;i. To understand the meaning of Eq. (10) we will expand it in
Taylor form as follows:

hijkiG ¼ 4a
Z

C
wðx; yÞiwðx; yÞk dxdy 1

�
� a

Z
C
ðwðx; yÞiÞ

2
dxdy

þ
Z

C
ðwðx; yÞkÞ

2
dxdy þ 	 	 	


¼ 4ahijki½1� aðhijii þ hkjki þ 	 	 	�;

where
R

C wðx; yÞiwðx; yÞk dxdy ¼ hijki is the scalar product of the states hij and
jki. So hijkiG is an extension of the scalar product. When the parameter a ! 0
the extension of the scalar product reduces to the ordinary scalar product hijki
see e.g. [8]. If a is increased from zero we create a continuous set of operations
parameterized with a. In this way we have a flexible definition of the scalar
product that can be used for different filter operations, thus extending the
classical projection (filter) operator.

12. Conclusions

In this publication we have applied the powerful concept of the morpho-
genetic neural network architecture proposed previously by us and have
combined this concept with the theory of quantum computation. We have
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described a procedure using a morphogenetic filter that is capable of extracting
invariants and abstract rules from arbitrary numerical data sets. The procedure
proves to be very efficient and can be used as an alternative to extract minimum
expressions depending on the type of data, completely eliminating cumbersome
and error-prone calculus and analysis. The invariants generally are found in
implicit form. They allow for multi-valued solutions and are therefore more
powerful than explicit formulae.

An example of this technique is given: solving (inverse) coordinate trans-
formations in robotics without symbolic manipulation.

Finally we discovered how to give a novel model of evidence theory based
on geometry of the Hilbert space. With this model we reduce the power set of
U by a set U  of vectors that is isomorphic to U . With the set U  with the scalar
product or extension of the scalar product we can generate the value of the
basic probability assignment for all sets in the power set. We remark that
quantum superposition in Hilbert space has inspired these ideas to use the MN
to evidence theory.

In future we intend to look for possibilities to map the algorithm on a
quantum computer and to demonstrate the capability of the MN to realize
massive parallel computation until now only expected for quantum computing.
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