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ABSTRACT 

Conventional fixed point evaluation techniques evaluate recursions by applying all 
rules repeatedly using an initial set of tuples (i.e., a given extensional database instance) 
until no new tuples are generated, but there is no specific order in which rules are 
applied. We can speed up the evaluation by applying rules in an appropriate order. In 
this paper, we propose a new fixed point evaluation technique, called the dynamically 
ordered semi-naive evaluation (or simply DYN), in which the next rule to be applied is 
determined at run time dynamically. DYN consists of a semi-naive algorithm and a set 
of selection strategies, The semi-naive algorithm allows dynamic ordering of rule 
applications and makes tuples generated by a rule application immediately available in 
the subsequent rule applications. After each rule application, the selection strategies 
determine the next rule by considering the syntactic structure of recursion and some 
information about the intermediate result up to the present. We develop these selection 
strategies so that the total number of rule applications and joins can be reduced. 
Through experimental comparisons, we shows that DYN outperforms the previous 
evaluation techniques in terms of the total number of rule applications and joins. 
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1. INTRODUC~ON 

Datalog is a logical language based on function-free Horn clause logic. 
It can be used as a database language and a lot of research has been done 
[25, 26, 8]. Its expressiveness is more powerful than that of conventional 
relational database languages. It allows users to compose complex queries, 
especially those involving recursions. The detailed syntax and semantics of 
datalog can be found in [9, 25]. Efficient evaluation of recursions is an 
important issue in processing datalog queries, since it may often require 
many costly join operations. 

The naive evaluation techniques based on Tarski's fixed point theorem 
[23] evaluate a recursion by applying all the rules of the recursion repeat- 
edly in a loop by using an initial set of tuples until no new tuples are 
generated. However, the naive evaluation is inefficient because it does not 
satisfy the following two properties, which are desirable for efficient 
evaluation of recursions [27, 8, 25]. 

• Semi-naive property: A n  efficient evaluation technique should not 
repeat the same computation (or reasoning). The evaluation tech- 
nique that satisfies this property, usually called the semi-naive evalua- 
tion technique, involves a phase that rewrites recursive rules into the 
equivalent ones that do not repeat the same computation by using the 
differential notation proposed in [1, 2]. 

• Relevant-data-onlyproperty: A n  efficient evaluation technique should 
not generate tuples irrelevant to the answer for a given query. There 
have been a lot of research results on this property, such as the magic 
set and counting/reverse counting methods [3, 5], the marking algo- 
rithm [10], the static filtering method [14], and the factoring tech- 
nique [18]. By propagating the constants given in the query, such 
techniques rewrite recursive rules in the recursion so as to minimize 
processing irrelevant tuples to the answer. 

Besides the above two properties, the efficient evaluation technique 
should maximize the effect of each rule application in a loop. The effect of 
a rule application can be defined as the number of inferences made by the 
application. Here, an inference is the process that derives a tuple (fact) 
from a given set of ground facts by applying a rule. Since semi-naive 
evaluation techniques do not repeat the same inference, they are all 
equivalent in the total number of inferences made during the evaluation of 
a recursion for a given extensional database instance [13, 20]. Therefore, 
making each rule application produce more tuples can reduce the total 
number of rule applications required in the evaluation of recursions [20]. 
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The fact that more inferences are made by each rule application implies 
that more inferences can be made using a set of tuples in a page fetched 
from disk [20]. Thus, we can expect that the total number of I / O  
operations is reduced. The number of rule applications is closely related to 
the number of joins, i.e., the reduction of the number of rule applications 
leads to the reduction of the number of joins. (This is not always true. 
More details will be given in Section 5.) Furthermore, the reduction of the 
number of joins (or rule applications) can also reduce the cost due to some 
fixed overheads associated with each join (or each rule application) [20]. 

There are two classes of studies to maximize the effect. 

• Immediate utilization of tuples: In the basic naive/semi-naive evalua- 
tion, the tuples produced by a rule application in an iteration can 
only be used in the next iteration. Making new tuples produced by a 
rule application immediately available in the subsequent rule applica- 
tions can speed up the evaluation [17, 7, 16]. 

• Selection of an appropriate ordering: The order of rule applications in 
the loop is not specified in the basic naive/semi-naive evaluation. 
However, the order of rule applications may affect the performance 
of evaluation significantly. There have been some results [20, 16] for 
finding a good order of rule applications. In this paper, we concen- 
trate on this subject. 

Since all the previous techniques set the order of rule applications at 
compile time, we call them static ordering techniques. When they choose 
an order of rule applications for a given recursion, they consider only the 
syntactic structure of the recursion which is a set of dependency relation- 
ships between recursive rules and recursive predicates in the recursion. 
However, the optimal ordering that minimizes the total number of rule 
applications also depends on the content of the extensional database 
instance given at evaluation time. There is no guarantee that an ordering 
that is optimal on one extensional database instance is also optimal for 
another extensional database instance. 

In this paper, we propose a new fixed point evaluation technique, called 
the dynamically ordered semi-naive evaluation (or simply DYN), in which 
the next rule to be applied is determined at run time dynamically. DYN 
consists of a semi-naive algorithm and a set of selection strategies. The 
semi-naive algorithm allows dynamic ordering of rule applications and 
makes tuples generated by a rule application immediately available in the 
subsequent rule applications. After each rule application, we classify 
recursive rules into two groups: active rules, if there are some tuples that 
have not been used in their previous applications, and inactive rules, 
otherwise. The selection strategies determine the next rule by considering 
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the syntactic structure of recursion and some information from the inter- 
mediate result up to the present. The information from the intermediate 
result at a given time is as follows: for each recursive rule, whether it is 
active or inactive, and for each active rule, the number of rule applications 
that have been made after its most recent application. Even after the same 
sequence of rule applications, such information varies according to the 
content of the extensional database instance used in the evaluation. We 
develop the selection strategies so that the total number of rule applica- 
tions and joins can be reduced. Through experimental comparisons, we 
show that DYN outperforms the previous evaluation techniques in terms 
of the total number  of rule applications and joins. 

We do not deal with the relevant-data-only property in this paper. One 
can achieve this property by applying some rewriting techniques that deal 
with this property such as the magic set method [3] to a given recursion 
before using the technique proposed in this paper. 

This paper is organized as follows. In the next section, we explain our 
motivation and summarize the related work. In Section 3, we introduce the 
terminology used in this paper. In Section 4, we present an algorithm that 
allows the dynamic ordering of rule applications. In Section 5, we present 
the selection strategies. In Section 6, we compare performances between 
our technique and the previous techniques through experiments. Finally, 
we conclude the paper in Section 7. 

2. R E L A T E D  W O R K  AND MOTIVATION 

2.1. RELATED WORK 

Let us consider the datalog program ~1,  shown in Figure 1. ~1  is a 
version of a nonlinear same generation program rewritten using the 
supplementary magic set technique [5]. Here,  up, down, and flat are 
extensional predicates. 

Consider the basic naive/semi-naive evaluation [4] that does not satisfy 
the immediate utilization of tuples. The evaluation of ~ a  begins with the 
application of ra which is the exit rule of the recursion having the seven 
recursive rules, r2, r 3 . . . . .  r 8. After applying the exit rule, the seven recur- 
sive rules should be applied repeatedly in a loop. We assume that, in the 
loop, the order of rule applications for ~a  is O1, (rz,r3,r4,rs, r6,ry, rs). 
Before starting the loop, the relations for all the recursive predicates 
except msg are empty. The application of the exit rule r I produces a new 
tuple (1) for msg. In the first iteration, only two applications of r 2 and r 5 
are meaningful, i.e., only the application of r2 and r 5 may generate some 
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(~1) r l :  m~g(1). 

r2 : s u p m 2 ( X , Y )  +- m s g ( X ) , u p ( X , Y ) .  

ra : s u p m 3 ( X , Y )  +- s u p m 2 ( X , Z ) , s g ( Z , Y ) .  

r4 : s u p m 4 ( X , Y )  ¢- s u p m 3 ( X , Z ) , f l a t ( Z , Y ) .  

r5 : s g ( X , Y )  +- m s g ( X ) , f l a t ( X , Y ) .  

r6 : s a ( X , Y )  +- supra4(X,Z) ,  s g ( Z , W ) , d o w n ( Z , Y ) .  

r7 : m s g ( X  ) +-- supm2(Z ,X) .  

rs: m s g ( X )  +- supm4(Z ,X) .  

to: query(Y)  +- sg(1,Y) .  

Fig. 1. ~1- 
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tuples since msg is not empty. The applications of other rules in the first 
iteration are meaningless since they include joins (or projections) with 
empty relations. The application of r 7 becomes meaningful in the second 
iteration if the application of r 2 in the first iteration generates some new 
tuples for supra2. Furthermore, the application of r 8 remains meaningless 
at least until the fourth iteration. 

The evaluation techniques satisfying immediate utilization of tuples 
were independently developed by Ceri et al. [7], Kildall [15], Cai and Paige 
[6], and Lu [17]. The technique proposed by Ceri et al. [7] is the naive 
evaluation technique based on immediate utilization of tuples and is 
identical to the basic naive/semi-naive evaluation in that an iteration 
consists of applying all the recursive rules in a given recursion. However, in 
this technique, each rule application in an iteration uses the results of 
previous rule applications in the same iteration. For example, under the 
order O1, the application of rule r 7 in the first iteration is meaningful if 
the application of r 2 generates some tuples for sump2.  If all the meaning- 
ful applications produce some tuples, then the application of r 8 becomes 
meaningful in the second iteration. 

Kildall [15] and Cai and Paige [6] proposed iterative algorithms to 
evaluate systems of fixed point equations. Their algorithms iterate each 
equation individually. That is, each iteration computes only one fixed point 
equation. Therefore, the result from the computation of an equation is 
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used immediately in the subsequent computation (or iteration). However, 
they do not address the ordering of rule applications. In the context of 
transitive closure, Lu [17] proposed a technique that could utilize tuples 
immediately in the same iteration in which they were generated. Even 
though the transitive closure for a given relation is a simple recursion with 
only one recursive rule, Lu's technique applies the rule multiple times in 
an iteration. Each rule application in an iteration uses a subset of the 
relation, and the other rule applications in the same iteration use the 
resulting tuples with the remaining part of the relation. 

According to the order defined above, only applications of r e, r 5, and r 7 
are meaningful in the first iteration, even if we use the technique based on 
immediate utilization of tuples and assume that all the meaningful applica- 
tions produce some new tuples. Consider a different order 02, 
(r2, r7, rs, r 6, r 3, r4, rs). In this order, the applications of all the recursive 
rules except r 6 are meaningful in the first iteration under the same 
assumption. The application of r 6 in the first iteration includes a join with 
empty relation because r 6 is applied before r 4 that is the only rule with 
supra4 as its head. This indicates that ordering rule applications may 
significantly affect the performance of evaluation. There have been a few 
research results [20, 16] on finding a good order of rule applications. 

Ramakrishnan et al. [20] presented a theoretical analysis of rule appli- 
cation orderings for recursions. They divided the orderings into two 
classes: fair orderings, in which no rule is applied more often than others, 
and nonfair orderings, in which some rules are applied more frequently 
than others. They concluded that, in the absence of information about the 
contents of extensional database relations, one type of fair orderings, 
called cycle-preserving fair orderings, is preferable. For example, the new 
order 02 is a cycle-preserving fair ordering for ~ .  They also proposed the 
generalized semi-naive evaluation (GSN) algorithm that is based on imme- 
diate utilization of tuples and that can handle a large class of orderings 
including cycle-preserving fair orderings. Note that, however, there are 
recursions that have no cycle-preserving fair ordering [20]. Furthermore, 
efficient checking of the existence of a cycle-preserving fair ordering and 
finding such an ordering are open problems [20]. 

Kuittinen et al. [16] proposed an algorithm to determine an order of 
rule applications, which was implemented by a nested loop structure. For a 
recursion, the algorithm splits it into subcomponents repeatedly and se- 
lects a topological order between subcomponents. Each subcomponent is 
implemented by its own loop. Their evaluation technique also satisfies the 
immediate utilization of tuples, but it does not satisfy the semi-naive 
property. Their technique performs well only on the extensional database 
instances having some specific structures [20]. 
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There have been a number of research results [21, 19, 22] in finding 
other types of ordering to optimize the evaluation of recursions. Schmidt 
et al. [21] proposed a technique for ordering tuples of the given extensional 
database instance or the intermediate results. Srivastava et al. [22] devel- 
oped a framework to optimize storage space by ordering tuples produced 
in the evaluation of reeursions. Ramakrishnan et al. [19] proposed a hybrid 
technique between breadth-first search based bottom-up evaluation and 
depth-first search based top-down evaluation. According to the depth-first 
search order, the technique uses recursive subgoals generated in a bottom- 
up manner, but computes answers in a tuple-at-a-time manner. 

ZZ OUR APPROACH 

We refer to all the previous evaluation techniques that set the order of 
rule applications at compile time as static ordering techniques. We observe 
the following drawbacks of static ordering techniques. 

• Static ordering techniques cannot totally avoid the meaningless rule 
applications during the evaluation. As we described before, the evalu- 
ation of 9 a by GSN based on the cycle-preserving fair ordering may 
include a lot of meaningless rule applications, even under the assump- 
tion that all the meaningful applications produce some new tuples. 
Furthermore, the assumption does not hold in general. For example, 
in the evaluation of 91 by the cycle-preserving fair ordering, let us 
assume that the application of r s in the first iteration does not 
produce any tuple. Then all the remaining four applications of r 6, r3, 
r4, and r 8 are meaningless. 

• As Ramakrishnan et al. [20] pointed out, since static ordering tech- 
niques consider only the syntactic relationships between recursive 
rules involved in the recursion, they may have extremely bad perfor- 
mance on some specific extensional database instances. In order to 
find an optimal order of applying rules in evaluating a recursion, we 
should consider the structure of the extensional database instance 
given at evaluation time as well as the syntactic relationships between 
recursive rules involved in the recursion. Finding the optimal order 
for a given extensional database instance requires examining the 
extensional database instance thoroughly, which usually is not practi- 
cal due to excessive cost. 

A major contribution of this paper is to completely avoid meaningless 
rule applications by determining the order of rule applications at run time 
dynamically. The dynamically ordered semi-naive evaluation technique (or 
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simply DYN) proposed in this paper  maintains the set of active rules 
during the evaluation. At  a given time, a rule is active if its application at 
that t ime is meaningful and inactive, otherwise. We will redefine the terms 
active and inactive more  formally in Section 4. D Y N  selects a rule f rom 
the set of  active rules as the next rule to be  applied. Note  that the set of  
active rules is changed each time after a rule application. 

Now, we introduce our  technique briefly using ~1.  After  applying the 
exit rule in ~ ,  we have two active rules, r 2 and r 5. We assume that r 2 is 
selected. I f  the application of r 2 produces some new tuples for supm2,  

then r 7 becomes newly active. In such a case, we say that the application 
of r 2 activates r 7. Rule r 2 becomes inactive since this application of r 2 
consumes all the tuples that the application of the exit rule r l produced. 
However,  r 5 remains active because the tuples generated by the exit rule 
are not used yet. Next, we assume that r 7 is selected and that its 
application produces some new tuples for msg. Then the application of r 7 
activates r 2 and r 5. Rule r 2 becomes active again, r 7 becomes inactive, and 
r 5 still remains active. At  this time, the set of msg tuples for r 5 may not be 
equal to the set of  msg tuples for r z. The former  still contains the result of  
the exit rule, but the latter does not since the evaluation result of  the exit 
rule already was used in the previous application of r 2. Note  that, so far, 
there have been two rule applications (the exit rule and r 7) that activate rs, 
but only one rule application ( r  7) that activates r2. D Y N  continues such 
selection and application until there is no active rule. 

Another  major  contribution of this work is the development  of  three 
selection strategies that determine the next rule f rom the current set of 
active rules. The selection strategies are designed such that the total 
number  of  rule applications can be reduced. The selection strategies use 
the activation state of each recursive rule and the dependency relation- 
ships between active rules as the basic information. For  each recursive 
rule, the activation state represents whether  it is active or  inactive and, if it 
is active, how many rule applications that activated it have been made. 
Even after the same sequence of rule applications, the set of active rules 
varies according to the content of  the extensional database instance used 
in the evaluation. The activation states and the dependency relationships 
can easily be obtained by maintaining only two in-memory arrays. Since 
the selection strategies determine the next rule by considering information 
about the intermediate results together  with the syntactic relationships 
between recursive rules, D Y N  performs well compared  with the static 
ordering techniques and has no extremely bad performance  depending on 
some specific extensional database instances. 

D Y N  also satisfies the immediate  utilization of tuples and the semi-naive 
property.  D Y N  iterates each recursive rule individually in the same man- 
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ner as the algorithms proposed by Kildall [15] and Cai and Paige [6]. For  
the semi-naive property, we transform recursive rules into equivalent ones 
that satisfy the semi-naive property by using the differential notation 
proposed by Balbin and Ramamohanarao [1], There  is another differential 
notation proposed by Bancilhon [2], but it requires more joins than the 
former. 

3. PRELIMINARIES  

Datalog is a language based on function-free Horn  clause logic. We 
assume that the reader  is familiar with the standard logic terminology [11] 
and the notation of datalog [25]. 

A datalog program consists of an extensional database (EDB) and an 
intensional database (IDB). The EDB is the set of tuples (facts) that are 
assumed to be stored explicitly in the storage. The IDB is the set of rules, 
each of which is of the form 

Po ~--Pl,P2,... ,Pn" 

For the sake of simplicity, we have omitted arguments of each predicate. 
We call P0, the left-hand side of ~ ,  the head of the rule, and call 
Pl,P2,...,Pn, the right-hand side of ~ ,  the body of the rule. 

Given two predicates p and q, we say that p derives q (p ~ q )  if q is the 
head of a rule and p occurs in the body of the rule. We say that p derives 
q transitively ( p ~ +  q) if p ~ q  or there is a predicate s such that p ~ s  
and s ~ +  q. A predicate p is recursive if p ~ +  p. Two predicates p and q 
are mutually recursive to each other if p ~ + q  and q ~ + p .  A rule is 
recursive if there is a predicate in its body that is mutually recursive to its 
head. 

We refer to predicates appearing in EDB facts as extensionalpredicates 
and predicates appearing in the heads of rules as intensionalpredicates. As 
most researchers do, we assume that the set of extensional predicates and 
the set of intensional predicates are disjoint, i.e., no extensional predicate 
appears in the heads of rules in IDB. The program that has predicates 
appearing in both EDB facts and the heads of rules can be normalized to 
make two predicate sets disjoint [25]. We also assume that there is no rule 
whose head has constants or repeated variables. Rules that have constants 
and repeated variables in their heads can easily be transformed into 
equivalent generalized ones [12] which have neither constants nor repeated 
variables in their heads [25, 27]. For  example, the rule r 1 in ~1  has a 
constant in its head. It can be transformed into the following rule that has 
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no constant in its head: 

msg( X ) + X =  1. 

The evaluation result of the transformed rule is a unary relation having a 
single tuple whose value is 1 [24]. In this paper, we consider only bottom-up 
evaluable rules [4] in order to guarantee the safety of evaluation. The 
safety means that the final and intermediate results are finite [25, 27]. 

In this paper, we represent a datalog program as a graph, called the 
unified rule/goal graph, which is a simplification of the rule/goal graph 
proposed in [24]. The rule/goal graph for a datalog program consists of 
rule nodes, goal nodes, and arcs. There is a goal node p~ for each 
predicate p and a rule node r/3 for each rule r. a and /3 are adornments 
that represent the binding status of variables in a rule or arguments in a 
predicate. There is an arc from a rule node r t~ to a goal node p~ if p is 
the head of rule r, and there is an arc from a goal node p~ to a rule node 
r t~ if p appears in the body of rule r. The binding information represented 
by adornments is very important for the optimization focused on the 
relevant-data-only property. Since we do not deal with this optimization, 
we need not specify any adornment. The rule/goal graph without specify- 
ing any adornment is referred to as the unadorned rule/goal graph [4]. 
The unified rule/goal graph is equivalent to the unadorned rule/goal 
graph except that, instead of drawing the arcs from rule nodes to goal 
nodes, all nodes for the rule with the same head predicate are grouped 
together into the goal node for the head predicate. Thus, in the unified 
rule/goal graph, every rule node has only incoming arcs and every goal 
node has only outgoing arcs. We denote each goal node by a rectangle 
labeled with the predicate name and each rule node by a circle labeled 
with the rule number. We denote an arc from a goal (or predicate) Pi to a 
rule rj by (Pi,J). We call the goal Pi the tail of the arc and the rule rj its 
head. For example, the unified rule/goal graph for the program ~1 is 
given in Figure 2. Note that there is no rule node in the goal nodes of 
extensional predicates. 

We can easily identify the data flow during the evaluation of a datalog 
program by using the unified rule/goal graph. A goal node collects the 
tuples produced by the rule nodes in it and sends them along its outgoing 
arcs. A rule node produces all the tuples that can be derived using the 
corresponding rule and the set of tuples that are received through its 
incoming arcs. We call the process for producing tuples by a rule node rj 
the application of the rule rj. An  arc (Pi,J) represents that the tuples 
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Fig. 2. The unified rule/goal graph of'~,~l. 

produced by applications of the rules that define the predicate Pi are used 
in the application of the rule rj. 

We now define strongly connected components (SCC) in the unified 
ru le /goa l  graph. Let  the unified ru le /goa l  graph for a datalog program be 
G = (R,  P, A),  where R is a set of rule nodes, P is a set of goal nodes, and 
A is a set of arcs. A strongly connected component  (SCC) of G is a 
subgraph G ' =  (R ' ,  P ' ,  A ' ) t h a t  satisfies the following properties: 

• P '  is a maximum subset of P such that, when we regard each arc 
(Pi,J) as an arc from Pi to the goal node of the rj's head predicate, 
there is a path between any pair of two goal nodes in P ' .  

• R '  is the set of rule nodes that belong to a goal node of P ' .  
• A'  is the set of arcs that connect goal nodes in P '  with rule nodes 

in R' .  
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Note that there are two types of SCCs: one is the trivial SCC whose set of 
arcs is empty; the other  is the nontrivial SCC whose set of arcs is not 
empty. A trivial SCC has only one goal node. In Figure 2, there is only one 
nontrivial SCC, G 2. The arcs that are in a nontrivial SCC are referred to as 
recursive arcs, and the arcs that connect between two SCCs are referred to 
as nonrecursive arcs. For  example, there are five nonrecursive arcs-- (up,  2), 
(down, 6), (flat, 4), (flat, 5), and (sg, 9) - - in  Figure 2. All the other arcs are 
recursive. We define a recursion as a nontrivial SCC. Trivial SCCs corre- 
spond to nonrecursive predicates (or nonrecursive rules) in the datalog 
program. The nodes for recursive rules have at least one incoming recur- 
sive arc in the unified ru le /goa l  graph. Note that, according to our 
definition of the recursion, the set of rule nodes in a recursion includes the 
nodes for the exit rules of  the recursion. An exit rule is a nonrecursive rule 
whose head predicate is recursive. Rule nodes without any recursive arc in 
a recursion correspond to the exit rules of the recursion. In Figure 2, for 
example, there is only one recursion, G 2. q is the exit rule of G2. 

4. T H E  DYNAMICALLY O R D E R E D  
SEMI-NAIVE E V A L U A T I O N  

Now, we formally describe the dynamically ordered semi-naive (DYN) 
evaluation algorithm. Let  G s = (Rs, Is,  As)  be a recursion to be evaluated. 
DYN maintains a differential relation A(pi, j) for each recursive arc (Pi, J) 
in A s as well as a relation Pi for each recursive predicate Pi in Ps. The 
relation Pi for each intensional predicate has the complete result for the 
predicate up to the present. At a given point, A(pi, j )  keeps a set of tuples 
that were produced by applications of some rules defining Pi, but haven't 
yet been used in any previous applications of rj. For  the semi-naive 
property, A(p i , j )  is set to empty after every application of the rule r/, 
except when rj defines Pi. Note that if rj defines Pi (in the unified 
ru le /goa l  graph, the rule node for r/ belongs to the goal node for Pi and 
there is an arc from Pi to rj), then the application result of r1 should be 
added to A(pi , j ) .  

We now redefine the terms active and inactive for the recursive rules 
on the unified ru le /goa l  graph. We say that a recursive arc is active if its 
differential relation is not empty, and is inactive, otherwise. At a given 
point, a recursive rule is active if the corresponding rule node has at least 
one active incoming arc, and is inactive, otherwise. DYN maintains a set V 
of active rules, and V is initially set to empty. 

DYN begins with applying all exit rules. Let  rek be an exit rule defining 
p~, i.e., the rule node rek belongs to the goal node p~. The application of 



E V A L U A T I O N  OF R E C U R S I V E  QUERIES  249 

re~ includes the transformation of the rule to a relational algebra expres- 
sion of the form ~L(E) [25], where L is the list of arguments of p~ and E 
is the relational algebra expression corresponding to the body of rek. We 
refer to the transformed relational algebra expressions for rek as RAE(re). 
Note that, for the exit rules, we do not necessarily need to use the 
differential notation for the semi-naive property. Let  3rek be the applica- 
tion result of the rule rek. 6rek is added to the relation for Pk and the 
differential relations for all the outgoing arcs of pe, 

After applying all the exit rules, we have some active arcs and some 
active rules. Among these active rules, DYN selects a rule using some 
selection strategies and applies it through Algorithm EvalRNode. We will 
describe the details of Algorithm EvalRNode later. The application of an 
active rule may produce some new tuples for its head predicate. These new 
tuples are also added into the differential relations for all outgoing arcs of 
the goal node, and then the set of active rules may be changed. DYN 
continues this selection and application until there is no active rule, i.e., 
V =  ~ .  In the next section, we describe the selection strategies developed 
so that the total number  of rule applications can be reduced. The dynami- 
cally ordered semi-naive evaluation algorithm for G s is given in Figure 3. 

In order  to explain Algorithm EvalRNode for the application of an 
active rule, we use the following rule r 6 in 91:  

r6: sg( X , Y )  ~supm4( X , Z ) , s g (  Z ,W),down(  Z , Y ) .  

Here,  sg and supra4 are mutually recursive to the head, and down is an 
EDB predicate. Figure 4 shows the part of the unified ru le /goa l  graph 
around the rule r 6. If r 6 is active, then A(supm4, 6), A(msg, 6), or both are 
not empty. The following expression is the version of r 6 resulting from the 
semi-naive rewriting based on the differential notation proposed in [1] (for 
the sake of simplicity, we have omitted the join conditions and the 
projection list): 

~- (A( supra4, 6) t~ sg • down U supm 4 °la t~ A( sg, 6) t~ down) - sg. 

Here,  supra4 TM =supm4-  A(sump4,6). For  an arbitrary recursive rule rj, 
we refer to a semi-naive rewritten version of rj as semiRAE(r) and the 
application result of rj at a time as 6r~. Then, we have 6r 6 =semiRAE(r6). 
Note that 6rj is the application result of rj, i.e., the set of new tuples that 
are generated by an application of rj, while the differential relation 
A(pi, j )  maintains all the Pi tuples that have not yet been used in any 
previous application of rj. 
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Algorithm DYN(G~) 

{ 

(1) for every pi E Ps, Pi = 0; 

(2) for every recursive arc, (Pi , j )  • As, A(pi , j )  = 0; 

(3) y = O; 

(4) for every exit rule rek, do begin 

/*  Let Pk (E Ps) be the head predicate of re~. */  

(5) 6re~ = RAE(re~) ;  

(6) for every pk's outgoing arc (pa , j ) ,  do begin 

if) ZX(pk, j) = ~(pk, J) u aro~; 

(8) y = v u  {r~};  

(9) endfor; 

(i0) p~ = Pk U 6re~; 

(11) endfor; 

(12) while ( V ¢ 0) do begin 

(13) select a rule, r i, from V using some selection strategies 

(14) EvalRNode(rj); 

(15) endwhile; 

Fig. 3. Algor i thm DYN.  

After  computing the above equation, to ensure the semi-naive property, 
we set the differential relations for all the incoming arcs of  r 6 to be empty; 
i.e., A(supm4, 6) = A(sg, 6) = •. Then we add 6r 6 into sg and the differen- 
tial relations for all outgoing arcs of sg, A(sg, 6) and A(sg, 3). 

The general description of Algorithm EvalRNode is given in Figure 5. 
Note  that by lines (4) and (8) of Algorithm EvalRNode,  the set V of active 
rules may vary after each application of an active rule. 

D Y N  can also be  used with a static order  by modifying the loop 
contents. Instead of line (13) and (14), we call Algori thm EvalRNode for 
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G2 

msg sg 

,6) 

~~(sg, 
Fig. 4. The part of the unified rule/goal graph in Figure 2. 

each recursive rule in the static order. The resulting algorithm from this 
modification of D Y N  is similar to GSN [20]. However,  for each recursive 
arc (Pi,J) while GSN maintains the old version of the relation Pi with 
respect to the rule rj, D Y N  maintains the differential relation A(pi,j). In 
general, the differential relation is much smaller than the old version of 
the relation. Therefore,  D Y N  requires a relatively small amount  of  space 
for the intermediate data. 

5. S E L E C T I O N  S T R A T E G I E S  

In general, we may have more  than one active rule at a t ime during the 
evaluation of  a recursion. In this section, we describe three selection 
strategies for determining the next rule to be  applied among these active 
rules. The  goal of  these strategies is to minimize the total number  of rule 
applications by maximizing the effect of  each rule application in the 
evaluation. 

First, we define some notat ion useful for explaining selection strategies. 
If  there is a recursive arc (p,j) in a recursion, then we say that the rule rj 
is directly dependent on each rule defining the predicate p. The d i rec t  
dependencies between rules represent  the direction of data flow. For  
example, in the recursion shown in Figure 6, the rule r 6 is directly 
dependent  on the rule r4, but the rule r 4 is not directly dependent  on the 
rule r 6. The fact that  the rule r 6 is directly dependent  on the rule r 4 means 
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Algori thm EvalRNode(vj) 

/ *  Let r j  be P0 ~- Pl ,p2,  - .- ,P, , ,q1,. . .  ,qm, 

where pi's, I < i < n, are mutual ly recursive to Po and qk's, I < k < m, are not. * /  

(1) if n > 1, then 

for each i, 2 < i < n , p  °ta = Pi - A(pi , j ) ;  

(2) 6rj =semiRAE(r j ) ;  

(3) for each i, 1 < i <_ n , A ( p i , j )  = 0; 

(4) v = v - (~j};  

(5) if Jr j  ~ 0 then begin 

(6) for every outgoing arc (/90, l)  of/90, do begin 

(7) zXO,o,O = ~X(po,O u ~ ;  

( s )  v = v u ( ~ d ;  

(g) endfor; 

(lO) po = ~ u(~r~; 

(11) endif; 

Fig. 5. Algor i thm EvalRNode .  

p 

U 

Fig. 6. A n  example  recursion.  
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that if an application of rule r 4 produces some new tuples, then we must 
apply the rule r 6 subsequently by using these new tuples. A(p,  j)i denotes 
A ( p , j )  after the ith rule application. Note  that A ( p , j )  i and A ( p , j )  k may 
be different when i v~ k. 

The  first selection strategy is as follows. 

SELECTION STRATEGY 1 ($1). I f  we have more  than one active rule, then 
we select the one that is not directly dependent  on other  active rules 
including itself. 

This selection strategy is based on the following observation. Let  us 
assume that after i rule applications, there are only two active arcs A(s, 4) i 
and A(s, 6) i in the recursion shown in Figure 6. Then, we have two active 
rules, r 4 and r 6. This means that each of them should be  applied at least 
once before the end of the evaluation. I f  we apply r 6 with A(s, 6) i first, 
then we may need another  application of  r 6 after the application of r 4 with 
A(s,4) i. The  reason is that, if the later application of r 4 using A(s,4) i 
produces some new tuples, then r 6 becomes active again. However,  if we 
apply r 4 with A(s,4) i first, then the new tuples produced by this applica- 
tion will be  used with A(s, 6Y in the future application of  r 6. Thus, if we 
apply an active rule that is directly dependent  on other active rules, we 
may need additional applications of it after the applications of  those other 
active rules. 

Consecutive applications of  a particular rule may have an adverse effect 
on maximizing the effect of  each rule application while there are some 
other active rules. The rule that  is dependent  on itself may be applied 
consecutively until its application does not produce any new tuple, if we do 
not consider the self-dependency in the strategy $1. In Figure 6, let us 
assume that only two rules, r 5 and r 6, are active after a number  of rule 
applications. Rule r 5 is not directly dependent  on the other  active rule r6, 
but is directly dependent  on itself. I f  we do not consider the self-depend- 
ency, then r 5 is selected for the next application. Since r 5 remains active as 
long as its application produces some new tuples, the other  active rule r 6 
cannot  be  selected while the application of r 5 produces some new tuples. 

Before we describe the second selection strategy, we define the activa- 
tion rate ARrj of an active rule ry as 

ARr, =Acz.A,.,. 

Here,  Irj is the number  of  incoming recursive arcs of rj, i.e., the number  of  
recursive predicates in its body. ACTrj is the number  of rule applications 
that  activated ry. ACT~j is set to zero each t ime after applying ry, and is 
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incremented by 1 if some new tuples are produced by applying a rule on 
which rj is directly dependent.  Consider the following sequence s l  of rule 
applications for the recursion in Figure 6: 

$1." i i+1 i+2 i+3 /.~+4 i+5 i+6 . . . , r~ , rg  , r  2 , r  3 , r~ ,rg . . . . .  

In this notation of the rule application sequence, r~ means the ith rule is 
r 4. If all the applications in the sequence produce some new tuples, then 
the activation r a t e  ARr6 after the (i + 5)th application is 1 ( =  3 /3) ,  i.e., 
Ir6 = 3 and ACTr6 = 3. At the point after the (i + 5)th application, there 
have been four applications including the (i + 5)th application since the 
recent [ ( i+  1)th] application of r 6. However, since r 6 is not directly 
dependent  on r 2, there have been three applications that activated r 6. If 
the (i + 4)th application does not produce any tuple, then ARr6 is 2 / 3  at 
that point. 

When we consider each rule individually, it is better  to delay its 
application as late as possible. The delayed application makes more 
inferences than the early application. For  example, consider another 
sequence s2 of rule applications for the recursion in Figure 6: 

s2: . . . .  r~, F~ +1,/'~+ 2 r~+3, F~+4 . . . . .  

Let  us assume that s l  and s2 have the same subsequence until the 
( i +  1)th application. After the (i + 1)th application, s2 applies r 6 faster 
than sl .  Let  us assume that all the rule applications in both s l  and s2 
produce some new tuples. The (i + 6)th application of r 6 in s l  uses all the 
results of three rule applications that activated r6, while the ( i + 4 ) t h  
application of  r 6 in s2 uses only the result of the (i + 3)th application. It is 
obvious that the delayed application of r 6 in s l  makes more (at least the 
same) inferences than the early application in s2, because the former uses 
larger (at least the same) number of tuples than the latter. When we 
consider all the active rules together, we expect that the one having the 
maximum activation rate may make relatively more inferences than others. 

SELECTION STRATEGY 2 ($2). We choose the rule having the maximum 
activation rate as the next rule. 

The main objective of selection strategy 2 is to avoid repeated applica- 
tions of only those rules that form a particular cycle, even if there are 
some other  active rules in other  cycles. The following example shows the 
possibility of repeated application of rules in a particular cycle of a 
recursion. 
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E X A M P L E  1. C o n s i d e r  a r ecu r s ion  shown in F igu re  7, which  consists  o f  
two cycles C 1 and  C 2. E a c h  arc  in F igu re  7 r ep re sen t s  tha t  the  ru le  o f  its 
h e a d  is d i rec t ly  d e p e n d e n t  on  the  ru le  o f  its tail.  F o r  t he  sake  o f  simplici ty,  
we a s sume  tha t  each  ru le  def ines  a d is t inct  p red ica te .  A cycle C 1 consists  
of  fou r  rules ,  r l ,  r2, r3, and  r 4, and  the  o t h e r  cycle, C2, consists  o f  r 1, r 5, r 6, 
and  r 4. A s s u m e  tha t  the  ru le  r~ is the  only act ive rule  a f te r  the  i th  
app l ica t ion .  I f  the  (i  + 1)th app l i ca t ion  of  r I p r o d u c e s  some  new tuples ,  
t hen  two rules,  r 2 and  r 5, b e c o m e  active. Since  these  two ru les  a re  no t  
d i rec t ly  d e p e n d e n t  on  each  o ther ,  we  canno t  select  one  for  the  next  
app l i ca t ion  by S1. I f  we choose  one  arbi t rar i ly ,  t hen  we may  have  the  
sequence  o f  ru le  app l i ca t ions  shown in t he  second  co lumn  (Only  S1) of  
T a b l e  1. Thus ,  only  the  four  rules  tha t  a re  involved in C 1 a re  a pp l i e d  
r e p e a t e d l y  unt i l  an  app l i ca t ion  o f  one  o f  t h e m  p r o d u c e s  no  new tuple ,  even 
if t h e r e  is an act ive ru le  r 5 in the  o t h e r  cycle, C 2. 

F o r  each  cycle C in a recurs ion ,  we re fe r  to  the  rule  n o d e s  tha t  a re  
d i rec t ly  d e p e n d e n t  on  some  nodes  in C bu t  be long  to o t h e r  cycles as t he  

TABLE 1 

Two Possible Sequences of Rule Applications 

Only S1 $1 and $2 

Rule Active rules Active rules 
application Selected after applying Selected after applying 

no. rule the selected rule rule the selected rule 

i + 1 r 1 {rz, r 5} 
i + 2 r 2 {r3, r5} 
i + 3 r 3 {r4, r5} 
i + 4 r 4 {rl, rs} 
i + 5 r a {rE, rs} 
i + 6  

rl {r2(1.0), rs(1.0)} 
r 2 {r3(1.0), rs(1.0)} 
r 3 {r4(0.5), rs(1.0)} 
r 5 {r4(0.5) , r6(1.0)} 
r6 {r40.0)} 
r4 {r1(1.0)} 
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neighbor nodes of C. Since a recursion is a strongly connected component,  
C has at least one neighbor node, and at least one rule node in C is a 
neighbor node of another  cycle if the recursion has two or more cycles and 
at least one cycle includes two or more rule nodes. Among all the neighbor 
nodes of C, we call the one having minimum incoming arcs the next-turn 
neighbor node of C. Let  k be the number of  incoming arcs of the next-turn 
neighbor node of C. The activation rate of the next-tum neighbor node is 
incremented by at least 1 / k  each time after applying all the rules in C. 
Therefore,  after k consecutive repetitions of C, the activation rate of the 
next-turn neighbor node becomes larger than or equal to 1. In the 
meanwhile, the nodes in C that are neighbor nodes of other cycles have 
two or more incoming arcs: one from another  node in C and all the others 
from nodes in other cycles. This means that the activation rates of those 
nodes in C are less than 1 as long as only C is repeated consecutively. 
Therefore,  by $2, C cannot be repeated more than k times consecutively. 
As the result of the discussion so far, we conclude that, using $2, the 
maximum number of consecutive repetitions of a particular cycle is limited 
to the number of incoming arcs of its next-turn neighbor node. 

For  example, the next-turn neighbor node of the cycle C 1 in Figure 1 is 
r 5. Using $2, there is no consecutive repetition C1, since the number of 
incoming arcs of r 5 is 1. The last column (S1 and $2) of Table 1 gives the 
sequence of rule applications for the recursion of Example 1 by $2. We 
also show the activation rate for each active rule. After the (i + 3)th rule 
application, we have two active rules, r 4 and r 5. The activation rate of r 4 
(0.5) is less than that of r 5 (1.0). Then, by $2, r 5 is selected as the rule for 
the (i  + 4)th application. 

Unfortunately, using $2 with S1, we do not completely avoid repetitive 
rule applications along a particular cycle for every possible recursion. The 
recursion shown in Figure 8 is an example whose evaluation has such 
repetitive rule applications even if we use $2 in the rule selection. Two 
rules, r i and rj, are directly dependent  on each other, and both of the two 
rules are not directly dependent  on themselves. Besides, there is another  
rule rk, which is directly dependent  on both of these two rules. Suppose an 
application of r i produces some new tuples. Then, we have two active 
rules, rj and r k. By S1, we select rj as the next rule to be applied. If the 
application of rj also produces some new tuples, then r i becomes active 
again. At  that time, even if the activation rate of r k is larger than that of  
ri, we select r~ again since S1 has a higher priority over $2. For  such a 
recursion, we prevent the repetition of rule applications along a particular 
cycle by assigning a threshold value for the activation rate. Thus, if the 
activation rate of an active rule is greater than the threshold value, then 
we select it without considering S1. 
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We can view the selection of the next rule by S1 and $2 as a priority- 
based scheduling process. S1 and $2 define the priority of a rule r i in a 
recursion as 

S(r,) X (T(r , )  Xc 

Here,  S ( r  i) is a function whose value is 1, if r i is active, and 0, otherwise. 
T ( r  i) is also a function whose value is 1, if r i is not directly dependent  on 
some other active rules, and 0, otherwise, c is a threshold value for the 
activation rate. For  a recursion with n recursive rules and s cycles, we use 
n x s as the threshold value in this paper, n x s is a simple estimation of 
the maximum number of rule applications after all the s cycles are 
evaluated, since each cycle may have maximum n rules and a rule may 
belong to every cycle. We select the rule with the highest priority as the 
next rule to be applied. Note that the priority of each rule is changed 
dynamically after a rule application, and the priority of an inactive rule is 
z e r o .  

When more  than one active rule remains after applying the above two 
selection strategies, we select one among them by the following selection 
strategy. 

SELECTION STRATEGY 3 ($3). Select the active rule with the smallest 
number  of joins expected in its application. 

It is ideal to select the active rule with the lowest cost expected in its 
application. However, how to estimate the cost of a rule application is 
beyond the scope of this paper. In order  to estimate the cost, we may have 
to consider various factors such as the size of EDB relations, the size of 
each differential relation at the application time, the join selectivities 
between body predicates of the rule, the method of joins, and so on. In this 
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paper,  we use the number  of joins required in a rule application as a 
simple estimation of its cost. 

The previous studies [20, 16] assumed that the number  of  joins was 
proport ional  to the number  of  rule applications. However,  it is not always 
true. Consider a recursion with two recursive rules, r 1 and r 2. The rules r~ 
and r 2 require one and three joins per  application, respectively. Suppose 
there are two different evaluation techniques, called A and B. For  a given 
EDB instance, suppose that  A applies rl seven times and r 2 five times. 
Then A performs a total of  12 rule applications and a total of  22 joins. 
Suppose that B applies r~ three times and r 2 seven times for the same 
EDB. Then B performs a total of  10 rule applications and a total of  24 
joins. In total, A performs two rule applications more  than B does, but A 
performs two joins less than B does. Thus, even if a technique is bet ter  
than the other  technique in terms of the total number  of  rule applications, 
the former  may be worse than the latter in terms of the number  of  joins 
when the former  applies the rules that  require a large number  of  joins 
more  than the latter does. 

The number  of  joins required in a rule application is calculated as 
follows. Consider an active rule r 1 of the form 

rj: po ~ - - p l , . . . , p n , q l  . . . . .  qm" 

Here,  Pi' s, 1 < i < n, are mutually recursive with P0, and qi' s, 1 <~ i <~ m,  are 
not. The semi-naive version of rj, 

3 5 = ( A ( p l , j )  M p2 M p3M ... M p , ,N  q ~  ... ~4qm 

U p~ld~ A ( p z , j  ) t~ p3t~ ... M p,,~4 q l ~  ... Mqm 

U " ' °  

U p~Jd ~ p~ld M ... ~4 p °~  a M A ( p n , j )  N ql t~ ... Nqm ) 

- - P o  ' 

involves the union of n join terms. There  is one join te rm for each 
occurrence of reeursive body predicates. 

We assume that each pair of  adjacent body predicates needs only one 
join operation. Then  there are n + rn - 1 join operations in each join term. 
We have to calculate all the join terms with the nonempty  differential 
relations. Therefore,  if there are k (1 ~< k ~< n) active arcs, then the number  
of join operations required in an application of r] is k x (n + m - 1). 
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6. E X P E R I M E N T A L  RESULTS 

In this section, we present a performance study on the effect of dynamic 
ordering of rule applications. We compare our technique (DYN) with the 
following three different techniques through the similar way used in the 
performance study of [20]. 

• BSN: The basic semi-naive evaluation technique in which the order  of 
rule applications is not specified. 1 

• GSN: The generalized semi-naive evaluation technique proposed by 
[20] in which the order  of  rule applications is a c~¢de-preserving fair 
ordering of a given recursion. 

• NESTED: The evaluation technique proposed by [16] in which rules 
are applied in a nested loop. 

We use the same two datalog programs, ~1  and g 2 ,  as used in [20]. ~1  
has already been given in Figure 1. ~2  (see Appendix) is a version of 
another  nonlinear same generation program rewritten by using the count- 
ing technique [5]. For  each evaluation technique, we measure the total 
number  of rule applications and the total number  of joins. 

In order  to show the benefit  of D Y N ,  we first compare our technique 
with BSN and GSN by using ~1.  For  GSN, we use the c3zcle-preserving fair 
ordering (r2, r7, rs, r6, r3, r4, rs). The EDB instances we use for ~1  are A n, 
Bn, Cn, Fn, Tn,,,,, and Un,m. A n  and B n a r e  the same data sets as used in 
[16], and C n and F n are the same data sets as used in [20]. Tn, m and Un, m 
are from [4]. The  graphical description of these data sets is presented in 
the Appendix. A n has a unique path from a node to its same generation, 
i.e., there is a unique sequence of inferences to get the answer, but it 
requires a large number  of rule applications. B n and C n have a moderate 
number  of different paths between two nodes in the same generation and 
takes a moderate  number of rule applications. C n takes less rule applica- 
tions than Bn, but has more paths than B n. Fn, Tn,,n, and Un, m have a large 
number of different paths between two nodes in the same generation, but 
require a small number  of rule applications. 

Then  we compare our technique with GSN and N ES TED  by using ~2- 
The EDB instances we use for ~ 2  are C n and Sn, which were used in [20]. 
C n is designed in such a way that NESTED performs well, and S n is 
designed in such a way that N E S T E D  performs very badly compared to 
GSN [20]. The graphical description of  these two data sets and the static 

1In the implementation, we use the order given by the user, i.e., the user written 
order. 
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TABLE 2 
Total Number of Rule Applications: g l  

Data sets BSN GSN DYN GSN-m 

A 4 357 105 67 70 
A10 25,053 7,161 4,647 4,984 
B 4 203 63 39 48 
B64 1,029 476 189 466 
C 4 161 49 36 42 
C16 329 126 66 115 
F 5 91 35 20 26 
/710 161 49 40 39 
F15 231 140 147 127 
7"3, 3 112 42 29 31 
Ts. 3 161 70 48 59 
U3, 3 77 35 22 25 
U5,10 154 56 36 43 

orderings for GSN and N E S T E D  are also presented in the Appendix. 
Through this performance comparison, we try to show that, while the 
performance of static ordering techniques may vary depending on EDB 
instances, our  technique performs steadily well on every possible EDB 
instance. 

Table 2 shows the total number  of  rule applications per formed by each 
evaluation technique on ~1.  The column GSN-m gives the total number  of  
only the meaningful rule applications taken by GSN. D Y N  is bet ter  than 
two other  evaluation techniques for every data set we considered. D Y N  
performs about  70% (Ts, 3) to 81% ( F  5) bet ter  than BSN, and performs 
about  18% (F10) to 60% (B64) bet ter  than GSN. 

The great reduction in the total number  of  rule applications resulted 
from the fact that the rule applications taken by D Y N  are all meaningful. 
As we ment ioned in Section 2, the static ordering techniques may take a 
lot of  meaningless rule applications. We can get the number  of  meaning- 
less rule applications in GSN by subtracting the value of column GSN-m 
from the value of column GSN. 

D Y N  is also bet ter  than GSN-m in most  cases. 2 This means that the 
sequence of rule applications done by D Y N  is bet ter  than that by GSN. 
Thus, the dynamic ordering determined by the selection strategies is bet ter  
than the cycle-preserving fair ordering that was proved as the best among 
the static orderings in [20]. Note  that for data sets on which GSN performs 

2For the exceptional cases Flo and F15, we will give an analysis later. 
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relatively less number  of  meaningless rule applications, D Y N  is much 
bet ter  than GSN (for example, see B64 and C16). 

Table 3 shows the total number  of joins taken by each evaluation 
technique on ~1- There  are two columns for each technique. N o R J  gives 
the number  of  real (nonnull) joins and NoNJ  gives the number  of  null 
joins. The null join is a join in which one of its operand relations is empty, 
and the result of  such a join is empty. In the meaningful rule application, 
we may have null joins if the rule has more  than one recursive predicate in 
its body. Consider a rule having two recursive body predicates. As we 
ment ioned in the previous section, the semi-naive relational algebra equa- 
tion has two join terms: one includes the differential relation for one of 
the recursive body predicates, and the other  includes that for the remain- 
ing recursive body predicate.  The  rule becomes active even when either of  
these two differential relations is not empty. 

Table 3 shows that D Y N  need fewer joins than the other  two evaluation 
techniques on all the data sets we consider. For  the nonnull joins, D Y N  is 
about  52% (U3, 3) to 88% (B64) bet ter  than BSN and is about  3% (A 4) to 
75% (B64) bet ter  than GSN. For  a data set F10, D Y N  requires one more  
nonnull join than GSN does. However,  on the total number  of  joins 
(NoRJ  + NoNJ), D Y N  is also bet ter  than GSN for that data set. 

The  reduction in t h e  total number  of real joins and rule applications 
shown in Tables 2 and 3 is the strong evidence of that our  selection 
strategies are good in maximizing the effect of a rule application (or a 

TABLE 3 
Total Number of Joins: ~1 

BSN GSN DYN 

Data sets NoRJ NoNJ NoRJ NoNJ NoRJ NoNJ 

A 4 192 216 70 50 68 16 
Aa0 15,307 13 ,325  5,612 2,572 4,901 773 
B 4 143 89 52 20 40 7 
B64 1,104 72 530 14 130 7 
C 4 122 62 44 12 36 6 
C16 299 77 129 15 54 6 
F 5 46 58 24 16 17 4 
F10 104 80 42 14 43 4 
F15 167 97 160 16 149 5 
T3, 3 71 57 33 15 29 4 
Ts, 3 138 46 65 15 48 4 
U3, 3 44 44 26 14 21 4 
U5,10 126 50 47 17 34 3 
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TABLE 4 
Total Number of Rule Applications: ~2 

Data sets GSN NESTED DYN GSN-m 

C16 204 174 124 148 
S64 580 2,533 573 573 

join). Remember  that three techniques are all equivalent in the total 
number  of inferences made for a given data set, since they all satisfy the 
semi-naive property, and any semi-naive evaluation techniques do not 
repeat  the same inference [13]. Therefore,  DYN makes more inferences 
per rule application (or join) than the other techniques on average. The 
number  of null joins is also reduced by DYN significantly because DYN 
applies only active rules. 

F10 and Fls are actual examples of our argument that the number of 
joins is not always proportional to the number  of rule applications. For  
those data sets, GSN performs less rule applications than DYN does, but 
GSN requires more joins than DYN. 

Table 4 gives the total number  of rule applications performed by each 
evaluation technique on ~2 .  We can see that NESTED is bet ter  than 
GSN on C16 , but, for $64, it is much worse than the other  two techniques. 
For  C16, DYN needs about 30% less rule applications than N ES TED  and 
about 40% less rule applications than GSN. Even without considering 
meaningless rule applications in GSN, DYN is about 16% better  than 
GSN on C16 in terms of the total number  of rule applications. For  $64, the 
total number  of rule applications taken by DYN is equal to that of 
GSN-m. In fact, both of these techniques perform the same sequence of 
meaningful rule applications for this data set. 

Table 5 shows the total number  of joins taken by each evaluation 
technique on ~2 .  For  C16, DYN takes less number of nonnull joins than 
both DSN and NESTED.  The comparison results in Tables 4 and 5 
indicate the appropriateness of the information (the activation state and 

TABLE 5 
Total number of joins: ~2 

GSN NESTED DYN 

Data sets NoRJ NoNJ NoRJ NoNJ NoRJ NoNJ 

C16 392 168 307 126 255 52 
S64 1,391 88 5,297 2,041 1,391 77 
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the dependency relationships between active rules) for excluding the 
extremely bad performance depending on the content of some specific 
extensional database instances. Therefore, DYN based on the selection 
strategies using this information shows steadily good performance. 

7. CONCLUSION 

In general, bottom-up fixed point evaluation techniques evaluate a 
recursion by applying recursive rules of the recursion repeatedly until no 
new tuples are generated, using a given extensional database instance. The 
order in which the rules are applied is not specified in conventional fixed 
point evaluation techniques. However, we can speed up the evaluation by 
applying rules in an appropriate order [20, 16]. 

We have proposed a new fixed point evaluation technique, called the 
dynamically ordered semi-naive evaluation (or simply DYN). DYN consists 
of a semi-naive algorithm and a set of selection strategies. The semi-naive 
algorithm allows dynamic ordering of rule applications and makes tuples 
generated by a rule application immediately available in the subsequent 
rule applications. After each rule application, the selection strategies 
determine the next rule by considering the syntactic structure of recursion 
and some information about the intermediate result up to the present. We 
have developed the selection strategies so that the total number of rule 
applications can be minimized by maximizing the effect of each rule 
application. The effect of a rule application is defined as the number of 
inferences made by the rule application. Since any fixed point evaluation 
algorithms that satisfy the semi-naive property do not repeat the same 
inference, they are equivalent in the total number of inferences made 
during the evaluation of a recursion for a given extensional database 
instance. Therefore, making each rule application produce more infer- 
ences can reduce the total number of rule applications. The fact that more 
inferences are made by each rule application implies that more inferences 
can be made using a set of tuples in a page fetched from disk. Thus, we 
can expect that the total number of I / O  operations is reduced [20]. 

There have been some research results [20, 16] for finding a good order 
for rule applications. Since all the previous results fix the order of rule 
applications at compile time, we call them static ordering techniques. To 
find an order of a given recursion, these static ordering techniques 
consider only the syntactic structure of the recursion. The performance of 
static ordering techniques may vary according to the extensional database 
instance given at evaluation time, because the optimal order for the 
recursion also depends on the content of the extensional database in- 
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stance. Since the selection strategies also consider some information on 
the intermediate result, which varies according to the extensional database 
instance, when determining the next rule to by applied, DYN performs 
well compared with the static ordering techniques, not depending on the 
content structures of some specific extensional database instances. Through 
experimental comparisons, we have shown that DYN outperforms the 
static ordering techniques in terms of the total number  of rule applications 
and joins. 

A PPENDIX 

~ 2  is given in Figure 9. In ~ 2 ,  there are two recursions: one consists of 
four recursive rules--r1,  r2, r 7 and r8 - -and  the other five recursive rules 
- - r 3 ,  r4, r6, r9, and rio. The cycle-preserving fair ordering for the former 
recursion used in GSN is ( r T , r l , r 2 , r s ) ,  and that for the latter is 
(r9 ,  r lo,  r3 , r4 ,  r6). The nested ordering for the former recursions is 

(7~) rl : ane(X, Y~ 1) 

r2 : ane(X,Y ,N)  

ra : dese(X,Y, 1) 

r4 : dese(X, Y, N) 

r5 : sg (X ,Y)  

r6 : sg (X ,Y)  

r7 : mane(X) 

r8 : rosa(X2) 

r9 : mdese(Y1, N) 

rio : m d e s c ( X , N -  1) 

rll : msg(1). 

r12 : query(Y) 

+- manc(X) ,up(X,Y) .  

+- N > 1, mane(X), anc(X, Z, N - 1), up(Z, Y). 

+- mdesc(X, 1),down(X,Y). 

+- N > 1, m d e s e ( X , N ) , d e s e ( X , Z , N -  1),down(Z,Y). 

+- msg(X) , f la t (X ,Y) .  

• ~- msg(X), anc(X, X1, N), flat(X1,X2), 

sg( X2, Y2), flat(Y2, Y1), dese(Y1, Y, N). 

+- msg(X).  

~-- rosa(X), ~nc(X, Xl, Y),  f~Qt(Xl, X2). 

~- msg(X), anc(X, X1, N), flat(X1, X2), sg(X2, Y2), flat(Y2, YI). 

+- mdese(X, N), N > 1. 

sg(1, Y). 

Fig. 9. ~2. 
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6 7 8 

(b) Bn 

Fig. 10. Data sets A n and B, .  

(rv, rl,(r2),r8), 3 and that for the latter is (r9,(rlo),r3,(r4),r6). All the 
orderings used in this paper are the same as those used in [20]. 

In Figure 10, we depict data sets A ,  and B.  which are the same as 
those used in [16]. The left and right arrow-headed arcs represent flat 
tuples, and the up and down arrow-headed arcs represent up and down 
tuples, respectively. We also give the graphical descriptions of three data 
sets C,,  F=, and S,  in Figure 11. They are the same as those used in [20]. 
We take two other data sets T,, m and U~, m depicted in Figure 12. Tn, m is a 
tree-structured data set, where n is the height of a tree and m is the 
fan-out of each node in the tree. Un, m is a cylindric data set, where n is the 
base of a cylinder and m is the height of the cylinder. T,,m and U,, m are 
used in [4] for comparing the performances of the well-known evaluation 

3In this representation of  orderings, each pair of  parentheses is implemented by a 
loop. In this case, we have two loops: one is the inner loop that applies r 2 repeatedly, 
and the other is the outer loop that applies three rules and the inner loop repeatedly by 
the given order. 
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(a) Tn,m n : height 
m: fan out 

~O-->O-->O->Q->~ 
down 

~.t ) ~  ~ t - - ~ - - ~ )  

m 

(b) Un,m n : height 
m : base 

Fig. 12. Data sets Tn, m a n d  Un,m. 

t echniques  in the middle  of the last decade. More  deta i led descript ions of 
those data  sets can be found  in the cor responding  references.  
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