o Applications
z lﬁﬁ

=

NORTH-HOLLAND

Dynamically Ordered Semi-Naive Evaluation of Recursive Queries

KI-HYUNG HONG*
YOON-JOON LEE

and

KYU-YOUNG WHANG

Department of Computer Science, Korea Advanced Institute of Science and Technology,
373-1, Kusong-Dong, Yusong-Gu, Taejon, 305-701, 807 South Korea

Communicated by Ahmed K. Elmagarmid

ABSTRACT

Conventional fixed point evaluation techniques evaluate recursions by applying all
rules repeatedly using an initial set of tuples (i.e., a given extensional database instance)
until no new tuples are generated, but there is no specific order in which rules are
applied. We can speed up the evaluation by applying rules in an appropriate order. In
this paper, we propose a new fixed point evaluation technique, called the dynamically
ordered semi-naive evaluation (or simply DYN), in which the next rule to be applied is
determined at run time dynamically. DYN consists of a semi-naive algorithm and a set
of selection strategies. The semi-naive algorithm allows dynamic ordering of rule
applications and makes tuples generated by a rule application immediately available in
the subsequent rule applications. After each rule application, the selection strategies
determine the next rule by considering the syntactic structure of recursion and some
information about the intermediate result up to the present. We develop these selection
strategies so that the total number of rule applications and joins can be reduced.
Through experimental comparisons, we shows that DYN outperforms the previous
evaluation techniques in terms of the total number of rule applications and joins.
© Elsevier Science Inc. 1997

*Current address: Database Section, Software Department, Computer Division,
Electronics and Telecommunications Research Institute, 161 Kajong-Dong, Yusong-Gu,
Taejon, 305-350, South Korea.

INFORMATION SCIENCES 96, 237-269 (1997)
© Elsevier Science Inc. 1997 0020-0255 /97 /$17.00
655 Avenue of the Americas, New York, NY 10010 PII S0020-0255(96)00160-0

238 K.-H. HONG ET AL.

1. INTRODUCTION

Datalog is a logical language based on function-free Horn clause logic.
It can be used as a database language and a lot of research has been done
[25, 26, 8]. Its expressiveness is more powerful than that of conventional
relational database languages. It allows users to compose complex queries,
especially those involving recursions. The detailed syntax and semantics of
datalog can be found in [9, 25]. Efficient evaluation of recursions is an
important issue in processing datalog queries, since it may often require
many costly join operations.

The naive evaluation techniques based on Tarski’s fixed point theorem
[23] evaluate a recursion by applying all the rules of the recursion repeat-
edly in a loop by using an initial set of tuples until no new tuples are
generated. However, the naive evaluation is inefficient because it does not
satisfy the following two properties, which are desirable for efficient
evaluation of recursions [27, 8, 25].

o Semi-naive property: An efficient evaluation technique should not
repeat the same computation (or reasoning). The evaluation tech-
nique that satisfies this property, usually called the semi-naive evalua-
tion technique, involves a phase that rewrites recursive rules into the
equivalent ones that do not repeat the same computation by using the
differential notation proposed in [1, 2].

e Relevant-data-only property: An efficient evaluation technique should
not generate tuples irrelevant to the answer for a given query. There
have been a lot of research results on this property, such as the magic
set and counting/reverse counting methods [3, 5], the marking algo-
rithm [10], the static filtering method [14], and the factoring tech-
nique [18]. By propagating the constants given in the query, such
techniques rewrite recursive rules in the recursion so as to minimize
processing irrelevant tuples to the answer.

Besides the above two properties, the efficient evaluation technique
should maximize the effect of cach rule application in a loop. The effect of
a rule application can be defined as the number of inferences made by the
application. Here, an inference is the process that derives a tuple (fact)
from a given set of ground facts by applying a rule. Since semi-naive
evaluation techniques do not repeat the same inference, they are all
equivalent in the total number of inferences made during the evaluation of
a recursion for a given extensional database instance [13, 20]. Therefore,
making each rule application produce more tuples can reduce the total
number of rule applications required in the evaluation of recursions [20].

EVALUATION OF RECURSIVE QUERIES 239

The fact that more inferences are made by each rule application implies
that more inferences can be made using a set of tuples in a page fetched
from disk [20]. Thus, we can expect that the total number of I1/0
operations is reduced. The number of rule applications is closely related to
the number of joins, i.e., the reduction of the number of rule applications
leads to the reduction of the number of joins. (This is not always true.
More details will be given in Section 5.) Furthermore, the reduction of the
number of joins (or rule applications) can also reduce the cost due to some
fixed overheads associated with each join (or each rule application) [20].

There are two classes of studies to maximize the effect.

e Immediate utilization of tuples: In the basic naive /semi-naive evalua-
tion, the tuples produced by a rule application in an iteration can
only be used in the next iteration. Making new tuples produced by a
rule application immediately available in the subsequent rule applica-
tions can speed up the evaluation [17, 7, 16]. ‘

» Selection of an appropriate ordering: The order of rule applications in
the loop is not specified in the basic naive/semi-naive evaluation.
However, the order of rule applications may affect the performance
of evaluation significantly. There have been some results [20, 16] for
finding a good order of rule applications. In this paper, we concen-
trate on this subject.

Since all the previous techniques set the order of rule applications at
compile time, we call them static ordering techniques. When they choose
an order of rule applications for a given recursion, they consider only the
syntactic structure of the recursion which is a set of dependency relation-
ships between recursive rules and recursive predicates in the recursion.
However, the optimal ordering that minimizes the total number of rule
applications also depends on the content of the extensional database
instance given at evaluation time. There is no guarantee that an ordering
that is optimal on one extensional database instance is also optimal for
another extensional database instance.

In this paper, we propose a new fixed point evaluation technique, called
the dynamically ordered semi-naive evaluation (or simply DYN), in which
the next rule to be applied is determined at run time dynamically. DYN
consists of a semi-naive algorithm and a set of selection strategies. The
semi-naive algorithm allows dynamic ordering of rule applications and
makes tuples generated by a rule application immediately available in the
subsequent rule applications. After each rule application, we classify
recursive rules into two groups: active rules, if there are some tuples that
have not been used in their previous applications, and inactive rules,
otherwise. The selection strategies determine the next rule by considering

240 K.-H. HONG ET AL.

the syntactic structure of recursion and some information from the inter-
mediate result up to the present. The information from the intermediate
result at a given time is as follows: for each recursive rule, whether it is
active or inactive, and for each active rule, the number of rule applications
that have been made after its most recent application. Even after the same
sequence of rule applications, such information varies according to the
content of the extensional database instance used in the evaluation. We
develop the selection strategies so that the total number of rule applica-
tions and joins can be reduced. Through experimental comparisons, we
show that DYN outperforms the previous evaluation techniques in terms
of the total number of rule applications and joins.

We do not deal with the relevant-data-only property in this paper. One
can achieve this property by applying some rewriting techniques that deal
with this property such as the magic set method [3] to a given recursion
before using the technique proposed in this paper.

This paper is organized as follows. In the next section, we explain our
motivation and summarize the related work. In Section 3, we introduce the
terminology used in this paper. In Section 4, we present an algorithm that
allows the dynamic ordering of rule applications. In Section 5, we present
the selection strategies. In Section 6, we compare performances between
our technique and the previous techniques through experiments. Finally,
we conclude the paper in Section 7.

2. RELATED WORK AND MOTIVATION

2.1. RELATED WORK

Let us consider the datalog program 2,, shown in Figure 1. &, is a
version of a nonlinear same generation program rewritten using the
supplementary magic set technique [5]. Here, up, down, and flat are
extensional predicates.

Consider the basic naive /semi-naive evaluation [4] that does not satisfy
the immediate utilization of tuples. The evaluation of £, begins with the
application of r, which is the exit rule of the recursion having the seven
recursive rules, r,,75,...,rg. After applying the exit rule, the seven recur-
sive rules should be applied repeatedly in a loop. We assume that, in the
loop, the order of rule applications for 2, is Oy, (ry,75, 74, s5FsF75T5)-
Before starting the loop, the relations for all the recursive predicates
except msg are empty. The application of the exit rule r; produces a new
tuple (1) for msg. In the first iteration, only two applications of r, and r;
are meaningful, i.e., only the application of r, and r; may generate some

EVALUATION OF RECURSIVE QUERIES 241
(P1) 7r: msg(l).
r2: supm2(X,Y) <+ msg(X),up(X,Y).
r3: supm3(X,Y) <« supm2(X,Z),sg(Z,Y).

re: supmd(X,Y) <« supm3(X,2Z), flat(Z,Y).

rs: sg(X,Y) «— msg(X), flat(X,Y).
re: sg9(X,Y) — supmd(X,Z),s9(Z,W),down(Z,Y).
r7: msg(X) +« supm2(Z,X).
rg : msg(X) +«~ supmd(Z,X).
ro: query(Y) +«— sg9(1,Y).
Fig.1. 2.

tuples since msg is not empty. The applications of other rules in the first
iteration are meaningless since they include joins (or projections) with
empty relations. The application of r; becomes meaningful in the second
iteration if the application of r, in the first iteration generates some new
tuples for supm?2. Furthermore, the application of r; remains meaningless
at least until the fourth iteration.

The evaluation techniques satisfying immediate utilization of tuples
were independently developed by Ceri et al. [7], Kildall [15], Cai and Paige
[6], and Lu [17] The technique proposed by Ceri et al. [7] is the naive
evaluation technique based on immediate utilization of tuples and is
identical to the basic naive/semi-naive evaluation in that an iteration
consists of applying all the recursive rules in a given recursion. However, in
this technique, each rule application in an iteration uses the results of
previous rule applications in the same iteration. For example, under the
order O,, the application of rule r, in the first iteration is meaningful if
the application of r, generates some tuples for sump?2. If all the meaning-
ful applications produce some tuples, then the application of ry becomes
meaningful in the second iteration.

Kildall [15] and Cai and Paige [6] proposed iterative algorithms to
evaluate systems of fixed point equations. Their algorithms iterate each
equation individually. That is, each iteration computes only one fixed point
equation. Therefore, the result from the computation of an equation is

242 K.-H. HONG ET AL.

used immediately in the subsequent computation (or iteration). However,
they do not address the ordering of rule applications. In the context of
transitive closure, Lu [17] proposed a technique that could utilize tuples
immediately in the same iteration in which they were generated. Even
though the transitive closure for a given relation is a simple recursion with
only one recursive rule, Lu’s technique applies the rule multiple times in
an iteration. Each rule application in an iteration uses a subset of the
relation, and the other rule applications in the same iteration use the
resulting tuples with the remaining part of the relation.

According to the order defined above, only applications of r,, s, and r,
are meaningful in the first iteration, even if we use the technique based on
immediate utilization of tuples and assume that all the meaningful applica-
tions produce some new tuples. Consider a different order O,,
(ry, 77, Fs, g, 135 74, 7). In this order, the applications of all the recursive
rules except r, are meaningful in the first iteration under the same
assumption. The application of r in the first iteration includes a join with
empty relation because r,; is applied before r, that is the only rule with
supm4 as its head. This indicates that ordering rule applications may
significantly affect the performance of evaluation. There have been a few
research results [20, 16] on finding a good order of rule applications.

Ramakrishnan et al. [20] presented a theoretical analysis of rule appli-
cation orderings for recursions. They divided the orderings into two
classes: fair orderings, in which no rule is applied more often than others,
and nonfair orderings, in which some rules are applied more frequently
than others. They concluded that, in the absence of information about the
contents of extensional database relations, one type of fair orderings,
called cycle-preserving fair orderings, is preferable. For example, the new
order O, is a cycle-preserving fair ordering for &#,. They also proposed the
generalized semi-naive evaluation (GSN) algorithm that is based on imme-
diate utilization of tuples and that can handle a large class of orderings
including cycle-preserving fair orderings. Note that, however, there are
recursions that have no cycle-preserving fair ordering [20]. Furthermore,
efficient checking of the existence of a cycle-preserving fair ordering and
finding such an ordering are open problems [20].

Kuittinen et al. [16] proposed an algorithm to determine an order of
rule applications, which was implemented by a nested loop structure. For a
recursion, the algorithm splits it into subcomponents repeatedly and se-
lects a topological order between subcomponents. Each subcomponent is
implemented by its own loop. Their evaluation technique also satisfies the
immediate utilization of tuples, but it does not satisfy the semi-naive
property. Their technique performs well only on the extensional database
instances having some specific structures [20].

EVALUATION OF RECURSIVE QUERIES 243

There have been a number of research results [21, 19, 22] in finding
other types of ordering to optimize the evaluation of recursions. Schmidt
et al. [21] proposed a technique for ordering tuples of the given extensional
database instance or the intermediate results. Srivastava et al. [22] devel-
oped a framework to optimize storage space by ordering tuples produced
in the evaluation of recursions. Ramakrishnan et al. [19] proposed a hybrid
technique between breadth-first search based bottom-up evaluation and
depth-first search based top-down evaluation. According to the depth-first
search order, the technique uses recursive subgoals generated in a bottom-
up manner, but computes answers in a tuple-at-a-time manner.

2.2. OUR APPROACH

We refer to all the previous evaluation techniques that set the order of
rule applications at compile time as static ordering technigues. We observe
the following drawbacks of static ordering techniques.

» Static ordering techniques cannot totally avoid the meaningless rule
applications during the evaluation. As we described before, the evalu-
ation of %%, by GSN based on the cycle-preserving fair ordering may
include a lot of meaningless rule applications, even under the assump-
tion that all the meaningful applications produce some new tuples.
Furthermore, the assumption does not hold in general. For example,
in the evaluation of £, by the cycle-preserving fair ordering, let us
assume that the application of r; in the first iteration does not
produce any tuple. Then all the remaining four applications of #,, 5,
ry, and rg are meaningless.

¢ As Ramakrishnan et al. [20] pointed out, since static ordering tech-
niques consider only the syntactic relationships between recursive
rules involved in the recursion, they may have extremely bad perfor-
mance on some specific extensional database instances. In order to
find an optimal order of applying rules in evaluating a recursion, we
should consider the structure of the extensional database instance
given at evaluation time as well as the syntactic relationships between
recursive rules involved in the recursion. Finding the optimal order
for a given extensional database instance requires examining the
extensional database instance thoroughly, which usually is not practi-
cal due to excessive cost.

A major contribution of this paper is to completely avoid meaningless
rule applications by determining the order of rule applications at run time
dynamically. The dynamically ordered semi-naive evaluation technique (or

244 K.-H. HONG ET AL.

simply DYN) proposed in this paper maintains the set of active rules
during the evaluation. At a given time, a rule is active if its application at
that time is meaningful and inactive, otherwise. We will redefine the terms
active and inactive more formally in Section 4. DYN selects a rule from
the set of active rules as the next rule to be applied. Note that the set of
active rules is changed each time after a rule application.

Now, we introduce our technique briefly using ;. After applying the
exit rule in &;, we have two active rules, r, and r;. We assume that r, is
selected. If the application of r, produces some new tuples for supm?2,
then r; becomes newly active. In such a case, we say that the application
of r, activates r;. Rule r, becomes inactive since this application of r,
consumes all the tuples that the application of the exit rule r; produced.
However, r; remains active because the tuples generated by the exit rule
are not used yet. Next, we assume that r, is selected and that its
application produces some new tuples for msg. Then the application of r,
activates r, and r;. Rule r, becomes active again, 7, becomes inactive, and
rs still remains active. At this time, the set of msg tuples for r; may not be
equal to the set of msg tuples for r,. The former still contains the result of
the exit rule, but the latter does not since the evaluation result of the exit
rule already was used in the previous application of 7,. Note that, so far,
there have been two rule applications (the exit rule and r,) that activate rs,
but only one rule application (r,) that activates r,. DYN continues such
selection and application until there is no active rule.

Another major contribution of this work is the development of three
selection strategies that determine the next rule from the current set of
active rules. The selection strategies are designed such that the total
number of rule applications can be reduced. The selection strategies use
the activation state of each recursive rule and the dependency relation-
ships between active rules as the basic information. For each recursive
rule, the activation state represents whether it is active or inactive and, if it
is active, how many rule applications that activated it have been made.
Even after the same sequence of rule applications, the set of active rules
varies according to the content of the extensional database instance used
in the evaluation. The activation states and the dependency relationships
can easily be obtained by maintaining only two in-memory arrays. Since
the selection strategies determine the next rule by considering information
about the intermediate results together with the syntactic relationships
between recursive rules, DYN performs well compared with the static
ordering techniques and has no extremely bad performance depending on
some specific extensional database instances.

DYN also satisfies the immediate utilization of tuples and the semi-naive
property. DYN iterates each recursive rule individually in the same man-

EVALUATION OF RECURSIVE QUERIES 245

ner as the algorithms proposed by Kildall [15] and Cai and Paige [6]. For
the semi-naive property, we transform recursive rules into equivalent ones
that satisfy the semi-naive property by using the differential notation
proposed by Balbin and Ramamohanarao [1]. There is another differential
notation proposed by Bancilhon [2], but it requires more joins than the
former.

3. PRELIMINARIES

Datalog is a language based on function-free Horn clause logic. We
assume that the reader is familiar with the standard logic terminology [11]
and the notation of datalog [25].

A datalog program consists of an extensional database (EDB) and an
intensional database (IDB). The EDB is the set of tuples (facts) that are
assumed to be stored explicitly in the storage. The IDB is the set of rules,
each of which is of the form

Po<DP15DP25-++5Pn-

For the sake of simplicity, we have omitted arguments of each predicate.
We call p,, the left-hand side of <, the head of the rule, and call
P1s Pas---> Py, the right-hand side of <, the body of the rule.

Given two predicates p and g, we say that p derives q (p = q) if g is the
head of a rule and p occurs in the body of the rule. We say that p derives
q transitively (p="q) if p=gq or there is a predicate s such that p=s
and s =" g. A predicate p is recursive if p=" p. Two predicates p and g
are mutually recursive to each other if p="¢ and g="*p. A rule is
recursive if there is a predicate in its body that is mutually recursive to its
head. :

We refer to predicates appearing in EDB facts as extensional predicates
and predicates appearing in the heads of rules as infensional predicates. As
most researchers do, we assume that the set of extensional predicates and
the sét of intensional predicates are disjoint, i.e., no extensional predicate
appears in the heads of rules in IDB. The program that has predicates
appearing in both EDB facts and the heads of rules can be normalized to
make two predicate sets disjoint [25]. We also assume that there is no rule
whose head has constants or repeated variables. Rules that have constants
and repeated variables in their heads can easily be transformed into
equivalent generalized ones [12] which have neither constants nor repeated
variables in their heads [25, 27). For example, the rule r, in %, has a
constant in its head. It can be transformed into the following rule that has

246 K.-H. HONG ET AL.

no constant in its head:
msg(X)«<X=1.

The evaluation result of the transformed rule is a unary relation having a
single tuple whose value is 1 [24]. In this paper, we consider only bottom-up
evaluable rules [4] in order to guarantee the safety of evaluation. The
safety means that the final and intermediate results are finite [25, 27].

In this paper, we represent a datalog program as a graph, called the
unified rule /goal graph, which is a simplification of the rule/goal graph
proposed in [24]. The rule/goal graph for a datalog program consists of
rule nodes, goal nodes, and arcs. There is a goal node p® for each
predicate p and a rule node r? for each rule r. @ and B8 are adornments
that represent the binding status of variables in a rule or arguments in a
predicate. There is an arc from a rule node r# to a goal node p® if p is
the head of rule r, and there is an arc from a goal node p* to a rule node
r# if p appears in the body of rule r. The binding information represented
by adornments is very important for the optimization focused on the
relevant-data-only property. Since we do not deal with this optimization,
we need not specify any adornment. The rule /goal graph without specify-
ing any adornment is referred to as the unadorned rule/goal graph [4].
The unified rule/goal graph is equivalent to the unadorned rule/goal
graph except that, instead of drawing the arcs from rule nodes to goal
nodes, all nodes for the rule with the same head predicate are grouped
together into the goal node for the head predicate. Thus, in the unified
rule /goal graph, every rule node has only incoming arcs and every goal
node has only outgoing arcs. We denote each goal node by a rectangle
labeled with the predicate name and each rule node by a circle labeled
with the rule number. We denote an arc from a goal (or predicate) p; to a
rule r; by (p;, /). We call the goal p; the ail of the arc and the rule 7; its
head. For example, the unified rule/goal graph for the program £, is
given in Figure 2. Note that there is no rule node in the goal nodes of
extensional predicates.

We can easily identify the data flow during the evaluation of a datalog
program by using the unified rule/goal graph. A goal node collects the
tuples produced by the rule nodes in it and sends them along its outgoing
arcs. A rule node produces all the tuples that can be derived using the
corresponding rule and the set of tuples that are received through its
incoming arcs. We call the process for producing tuples by a rule node r;
the application of the rule r;. An arc (p;,j) represents that the tuples

EVALUATION OF RECURSIVE QUERIES 247

e

Fig.2. The unified rule /goal graph of #,.

produced by applications of the rules that define the predicate p, are used
in the application of the rule r;.

We now define strongly connected components (SCC) in the unified
rule /goal graph. Let the unified rule/goal graph for a datalog program be
G=(R, P, A), where R is a set of rule nodes, P is a set of goal nodes, and
A is a set of arcs. A strongly connected component (SCC) of G is a
subgraph G’ =(R’, P’, A') that satisfies the following properties:

e P’ is a maximum subset of P such that, when we regard each arc

- (p;,j) as an arc from p; to the goal node of the r;’s head predicate,
there is a path between any pair of two goal nodes in P’.

e R’ is the set of rule nodes that belong to a goal node of P'.

e A’ is the set of arcs that connect goal nodes in P’ with rule nodes
in R'.

248 K.-H. HONG ET AL.

Note that there are two types of SCCs: one is the #rivial SCC whose set of
arcs is empty; the other is the nontrivial SCC whose set of arcs is not
empty. A trivial SCC has only one goal node. In Figure 2, there is only one
nontrivial SCC, G,. The arcs that are in a nontrivial SCC are referred to as
recursive arcs, and the arcs that connect between two SCCs are referred to
as nonrecursive arcs. For example, there are five nonrecursive arcs—(up, 2),
(down, 6), (flat,4), (flat,5), and (sg,9)—in Figure 2. All the other arcs are
recursive. We define a recursion as a nontrivial SCC. Trivial SCCs corre-
spond to nonrecursive predicates (or nonrecursive rules) in the datalog
program. The nodes for recursive rules have at least one incoming recur-
sive arc in the unified rule/goal graph. Note that, according to our
definition of the recursion, the set of rule nodes in a recursion includes the
nodes for the exit rules of the recursion. An exit rule is a nonrecursive rule
whose head predicate is recursive. Rule nodes without any recursive arc in
a recursion correspond to the exit rules of the recursion. In Figure 2, for
example, there is only one recursion, G,. r, is the exit rule of G,.

4. THE DYNAMICALLY ORDERED
SEMI-NAIVE EVALUATION

Now, we formally describe the dynamically ordered semi-naive (DYN)
evaluation algorithm. Let G,=(R_, P,, A,) be a recursion to be evaluated.
DYN maintains a differential relation A(p;, j) for each recursive arc (p,, j)
in A, as well as a relation p; for each recursive predicate p; in P,. The
relation p,; for each intensional predicate has the complete result for the
predicate up to the present. At a given point, A(p;, j) keeps a set of tuples
that were produced by applications of some rules defining p;, but haven’t
yet been used in any previous applications of r;. For the semi-naive
property, A(p,,j) is set to empty after every application of the rule r;,
except when r; defines p,. Note that if r; defines p; (in the unified
rule/goal graph, the rule node for 7; belongs to the goal node for p; and
there is an arc from p; to r;), then the application result of r; should be
added to A(p,, j).

We now redefine the terms active and inactive for the recursive rules
on the unified rule /goal graph. We say that a recursive arc is active if its
differential relation is not empty, and is inactive, otherwise. At a given
point, a recursive rule is active if the corresponding rule node has at least
one active incoming arc, and is inactive, otherwise. DYN maintains a set V/
of active rules, and V is initially set to empty.

DYN begins with applying all exit rules. Let r, be an exit rule defining
Dx> i.e., the rule node r, belongs to the goal node p,. The application of

EVALUATION OF RECURSIVE QUERIES 249
r,, includes the transformation of the rule to a relational algebra expres-
sion of the form =, (E) [25], where L is the list of arguments of p, and E
is the relational algebra expression corresponding to the body of r, . We
refer to the transformed relational algebra expressions for r, as RAE(r,).
Note that, for the exit rules, we do not necessarily need to use the
differential notation for the semi-naive property. Let dr, be the applica-
tion result of the rule r, . 6r, is added to the relation for p, and the
differential relations for all the outgoing arcs of p,.

After applying all the exit rules, we have some active arcs and some
active rules. Among these active rules, DYN selects a rule using some
selection strategies and applies it through Algorithm EvalRNode. We will
describe the details of Algorithm EvalRNode later. The application of an
active rule may produce some new tuples for its head predicate. These new
tuples are also added into the differential relations for all outgoing arcs of
the goal node, and then the set of active rules may be changed. DYN
continues this selection and application until there is no active rule, i.e.,
V'={. In the next section, we describe the selection strategies developed
so that the total number of rule applications can be reduced. The dynami-
cally ordered semi-naive evaluation algorithm for G, is given in Figure 3.

In order to explain Algorithm EvalRNode for the application of an
active rule, we use the following rule r; in .2;:

re: sg(X,Y) < supmd(X,Z),sg(Z,W),down(Z,Y).

Here, sg and supm4 are mutually recursive to the head, and down is an
EDB predicate. Figure 4 shows the part of the unified rule /goal graph
around the rule r,. If ry is active, then A(supm4,6), A(msg,6), or both are
not empty. The following expression is the version of r; resulting from the
semi-naive rewriting based on the differential notation proposed in [1] (for
the sake of simplicity, we have omitted the join conditions and the
projection list):

m(A(supm4,6) X sg Xdown U supm4°9 X A(sg,6) Xdown) —sg.

Here, supm4°“ =supm4 — A(sump4,6). For an arbitrary recursive rule r;,
we refer to a semi-naive rewritten version of 7; as semiRAE(r;) and the
application result of 7; at a time as 8r7;. Then, we have 8r;=semiRAE(r,).
Note that &r; is the apphcatlon result of r;, i.e., the set of new tuples that
are generated by an application of r;, while the differential relation
A(p;, j) maintains all the p; tuples that have not yet been used in any

previous application of r;.

250 K.-H. HONG ET AL.

Algorithm DYN(G,)

{
(1) for every p; € Py, p; = §;
(2) for every recursive arc, (ps, §) € As, Api,7) = 0;
BYV=06
(4) for every exit rule ., , do begin
/* Let px (€ P;) be the head predicate of r,,. */
(5) dre, = RAE(r.,);
{6) for every pi's outgoing arc (px,7), do begin
(7) Alpr, 5) = Ape,) U bre,.;
B)V=vVu{r}
(9) endfor;
(10) pr = pr U dre,;
(11) endfor;
(12) while (V # 0) do begin
(13) select a rule, r;, from V' using some selection strategies
(14) EvalRNode(r;);

(15) endwhile;

Fig. 3. Algorithm DYN.

After computing the above equation, to ensure the semi-naive property,
we set the differential relations for all the incoming arcs of r, to be empty;
i.e., A(supm4,6) = A(sg,6) = . Then we add 87, into sg and the differen-
tial relations for all outgoing arcs of sg, A(sg,6) and A(sg,3).

The general description of Algorithm EvalRNode is given in Figure 5.
Note that by lines (4) and (8) of Algorithm EvalRNode, the set V' of active
rules may vary after each application of an active rule.

DYN can also be used with a static order by modifying the loop
contents. Instead of line (13) and (14), we call Algorithm EvalRNode for

EVALUATION OF RECURSIVE QUERIES 251

sg

Q[wm T ®
OQ\ (
_A(supmd, 6)

1

1

i

1

]

]

)

1

)

1

|

)

)

:

1

supm?2 S @ |
supm '
I

]

I

Fig. 4. The part of the unified rule /goal graph in Figure 2.

each recursive rule in the static order. The resulting algorithm from this
modification of DYN is similar to GSN [20]. However, for each recursive
arc (p;,j) while GSN maintains the old version of the relation p; with
respect to the rule r;, DYN maintains the differential relation A(p;,). In
general, the differential relation is much smaller than the old version of
the relation. Therefore, DYN requires a relatively small amount of space
for the intermediate data.

5. SELECTION STRATEGIES

In general, we may have more than one active rule at a time during the
evaluation of a recursion. In this section, we describe three selection
strategies for determining the next rule to be applied among these active
rules. The goal of these strategies is to minimize the total number of rule
applications by maximizing the effect of each rule application in the
evaluation.

First, we define some notation useful for explaining selection strategies.
If there is a recursive arc (p,j) in a recursion, then we say that the rule 1
is directly dependent on each rule defining the predicate p. The direct.
dependencies between rules represent the direction of data flow. For
example, in the recursion shown in Figure 6, the rule r; is directly
dependent on the rule r,, but the rule 7, is not directly dependent on the
rule r;. The fact that the rule r, is directly dependent on the rule r, means

252 K.-H. HONG ET AL

Algorithm EvalRNode(r;)

/* Let 7; be pg <= p1,P2,- -, Prr 15+ - -, I

where p;'s, 1 < i < n, are mutually recursive to pp and ¢i's, 1 < k < m, are not. */

{
(1) if n > 1, then
for each 4, 2 < i < n,p! = p; — A(ps,5);
(2) 6r; =semiRAE(r;);
(3) foreach i, 1 < i <n,A(p;,) =0;
@V =V~—{r}
(5) if dr; # @ then begin
(6) for every outgoing arc (po,!) of pg, do begin
(7) Alpo, 1) = Alpo, 1) U éry;
@B V=vu{n}:
(9) endfor;
(10) po = po U dry;
(11) endif;
}

Fig. 5. Algorithm EvalRNode.

p
s w—j’ \ '
@ Als, 6) ®/>
\ \ Alp,6 ™~
q

@ E— %

Fig. 6. An example recursion.

EVALUATION OF RECURSIVE QUERIES 253

that if an application of rule r, produces some new tuples, then we must
apply the rule r, subsequently by using these new tuples. A(p, j) denotes
A(p, j) after the ith rule application. Note that A(p,j)’ and A(p,;)* may
be different when i #k.

The first selection strategy is as follows.

SELECTION STRATEGY 1 (S1). If we have more than one active rule, then
we select the one that is not directly dependent on other active rules
including itself.

This selection strategy is based on the following observation. Let us
assume that after i rule applications, there are only two active arcs A(s,4)’
and A(s,6) in the recursion shown in Figure 6. Then, we have two active
rules, 7, and r,. This means that each of them should be applied at least
once before the end of the evaluation. If we apply r, with A(s,6) first,
then we may need another application of r after the application of r, with
A(s,4). The reason is that, if the later application of r, using A(s,4)
produces some new tuples, then r, becomes active again. However, if we
apply r, with A(s,4) first, then the new tuples produced by this applica-
tion will be used with A(s,6)' in the future application of r,. Thus, if we
apply an active rule that is directly dependent on other active rules, we
may need additional applications of it after the applications of those other
active rules.

Consecutive applications of a particular rule may have an adverse effect
on maximizing the effect of each rule application while there are some
other active rules. The rule that is dependent on itself may be applied
consecutively until its application does not produce any new tuple, if we do
not consider the self-dependency in the strategy S1. In Figure 6, let us
assume that only two rules, r; and rg, are active after a number of rule
applications. Rule r; is not directly dependent on the other active rule r,
but is directly dependent on itself. If we do not consider the self-depend-
ency, then ry is selected for the next application. Since r; remains active as
long as its application produces some new tuples, the other active rule r,
cannot be selected while the application of r; produces some new tuples.

Before we describe the second selection strategy, we define the activa-
tion rate AR, of an active rule r; as

AR, =ACT, /1, .

Here, I, is the number of incoming recursive arcs of r;, i.e., the number of
recursive predicates in its body. ACT, is the number of rule applications
that activated 7;. ACT, is set to zero each time after applying r;, and is

254 K.-H. HONG ET AL.

incremented by 1 if some new tuples are produced by applying a rule on
which 7, is directly dependent. Consider the following sequence s1 of rule
applications for the recursion in Figure 6:

. i+1 i+2 i+3 i+d _i+5 i+6
s1: . r4,r6 N AR CARIY RIS AR A S

In this notation of the rule application sequence, r; means the ith rule is
r,. If all the applications in the sequence produce some new tuples, then
the activation rate AR, after the (i + 5)th application is 1 (=3/3), i.e.,
I, =3 and ACT, =3. At the point after the (i +5)th application, there
have been four apphcatlons including the (i +5)th apphcat1on since the
recent [(i+ 1)th] application of r,. However, since r, is not directly
dependent on r,, there have been three applications that activated r,. If
the (i +4)th application does not produce any tuple, then 4R, is 2/3 at
that point.

When we consider each rule individually, it is better to delay its
application as late as possible. The delayed application makes more
inferences than the early application. For example, consider another
sequence s2 of rule applications for the recursion in Figure 6:

. i+l i+2 pit3 Lit4
§2: ., rh pEt L A2 P gl

Let us assume that s1 and s2 have the same subsequence until the
(i + Dth application. After the (i + Dth application, s2 applies r; faster
than s1. Let us assume that all the rule applications in both si and s2
produce some new tuples. The (i + 6)th application of r, in s1 uses all the
results of three rule applications that activated r, while the (i+4)th
application of rg in s2 uses only the result of the (i + 3)th application. It is
obvious that the delayed application of 7, in s1 makes more (at least the
same) inferences than the early application in s2, because the former uses
larger (at least the same) number of tuples than the latter. When we
consider all the active rules together, we expect that the one having the
maximum activation rate may make relatively more inferences than others.

SELECTION STRATEGY 2 (S2). We choose the rule having the maximum
activation rate as the next rule.

The main objective of selection strategy 2 is to avoid repeated applica-
tions of only those rules that form a particular cycle, even if there are
some other active rules in other cycles. The following example shows the
possibility of repeated application of rules in a particular cycle of a
recursion.

EVALUATION OF RECURSIVE QUERIES 255
O—O—
mI D
T3 Q/ Te

Fig. 7. A recursion with two cycles.

EXAMPLE 1. Consider a recursion shown in Figure 7, which consists of
two cycles C; and C,. Each arc in Figure 7 represents that the rule of its
head is directly dependent on the rule of its tail. For the sake of simplicity,
we assume that each rule defines a distinct predicate. A cycle C, consists
of four rules, ry, r,, r5, and r,, and the other cycle, C,, consists of r,, 7, 7,
and r,. Assume that the rule r; is the only active rule after the ith
application. If the (i + Dth application of r; produces some new tuples,
then two rules, r, and r;, become active. Since these two rules are not
directly dependent on each other, we cannot select one for the next
application by S1. If we choose one arbitrarily, then we may have the
sequence of rule applications shown in the second column (Only S1) of
Table 1. Thus, only the four rules that are involved in C, are applied
repeatedly until an application of one of them produces no new tuple, even
if there is an active rule r; in the other cycle, C,.

For each cycle C in a recursion, we refer to the rule nodes that are
directly dependent on some nodes in C but belong to other cycles as the

TABLE 1
Two Possible Sequences of Rule Applications
Only S1 S1and S2

Rule Active rules Active rules

application Selected after applying Selected after applying
no. rule the selected rule rule the selected rule

i+1 r {ry,rs} r {r,(1.0), r5(1.0)}

i+2 r, {rs, 75} 7, {r;(1.0), rs(1.0)}

i+3 rsy {7'4, r5} &) {74(0.5), I’S(]..O)}

i+4 ry {ri,rs} rs {r,(0.5), r(1.00}

i+5 r {ry,7s} Ts {r,(1.0%}

i+6 . Fy {r1(10)}

256 K.-H. HONG ET AL.

neighbor nodes of C. Since a recursion is a strongly connected component,
C has at least one neighbor node, and at least one rule node in C is a
neighbor node of another cycle if the recursion has two or more cycles and
at least one cycle includes two or more rule nodes. Among all the neighbor
nodes of C, we call the one having minimum incoming arcs the next-turn
neighbor node of C. Let k be the number of incoming arcs of the next-turn
neighbor node of C. The activation rate of the next-turn neighbor node is
incremented by at least 1/k each time after applying all the rules in C.
Therefore, after k consecutive repetitions of C, the activation rate of the
next-turn neighbor node becomes larger than or equal to 1. In the
meanwhile, the nodes in C that are neighbor nodes of other cycles have
two or more incoming arcs: one from another node in C and all the others
from nodes in other cycles. This means that the activation rates of those
nodes in C are less than 1 as long as only C is repeated consecutively.
Therefore, by S2, C cannot be repeated more than k. times consecutively.
As the result of the discussion so far, we conclude that, using S2, the
maximum number of consecutive repetitions of a particular cycle is limited
to the number of incoming arcs of its next-turn neighbor node.

For example, the next-turn neighbor node of the cycle C,; in Figure 1 is
rs. Using S2, there is no consecutive repetition C;, since the number of
incoming arcs of r; is 1. The last column (S1 and S2) of Table 1 gives the
sequence of rule applications for the recursion of Example 1 by S2. We
also show the activation rate for each active rule. After the (i + 3)th rule
application, we have two active rules, r, and r;. The activation rate of r,
(0.5) is less than that of 5 (1.0). Then, by S2, r5 is selected as the rule for
the (i + Hth application.

Unfortunately, using S2 with S1, we do not completely avoid repetitive
rule applications along a particular cycle for every possible recursion. The
recursion shown in Figure 8 is an example whose evaluation has such
repetitive rule applications even if we use S2 in the rule selection. Two
rules, r; and r;, are directly dependent on each other, and both of the two
rules are not directly dependent on themselves. Besides, there is another
rule r,, which is directly dependent on both of these two rules. Suppose an
application of r, produces some new tuples. Then, we have two active
rules, r; and r,. By S1, we select r; as the next rule to be applied. If the
application of r; also produces some new tuples, then r; becomes active
again. At that time, even if the activation rate of r, is larger than that of
r;, we select r; again since S1 has a higher priority over S2. For such a
recursion, we prevent the repetition of rule applications along a particular
cycle by assigning a threshold value for the activation rate. Thus, if the
activation rate of an active rule is greater than the threshold value, then
we select it without considering S1.

EVALUATION OF RECURSIVE QUERIES 257

Fig. 8. An exceptional case of S1 and S2.

We can view the selection of the next rule by S1 and S2 as a priority-
based scheduling process. S1 and S2 define the priority of a rule 7, in a
recursion as

S(r;)) X(T(r;) Xc+AR,).

Here, S(r,) is a function whose value is 1, if 7, is active, and 0, otherwise.
T(r,) is also a function whose value is 1, if r; is not directly dependent on
some other active rules, and 0, otherwise. ¢ is a threshold value for the
activation rate. For a recursion with n recursive rules and s cycles, we use
nXs as the threshold value in this paper. n Xs is a simple estimation of
the maximum number of rule applications after all the s cycles are
evaluated, since each cycle may have maximum # rules and a rule may
belong to every cycle. We select the rule with the highest priority as the
next rule to be applied. Note that the priority of each rule is changed
dynamically after a rule application, and the priority of an inactive rule is
Zero.

When more than one active rule remains after applying the above two
selection strategies, we select one among them by the following selection
strategy.

SELECTION STRATEGY 3 (S3). Select the active rule with the smallest
number of joins expected in its application.

It is ideal to select the active rule with the lowest cost expected in its
application. However, how to estimate the cost of a rule application is
beyond the scope of this paper. In order to estimate the cost, we may have
to consider various factors such as the size of EDB relations, the size of
each differential relation at the application time, the join selectivities
between body predicates of the rule, the method of joins, and so on. In this

258 K.-H. HONG ET AL.

paper, we use the number of joins required in a rule application as a
simple estimation of its cost.

The previous studies [20, 16] assumed that the number of joins was
proportional to the number of rule applications. However, it is not always
true. Consider a recursion with two recursive rules, r, and r,. The rules r;
and r, require one and three joins per application, respectively. Suppose
there are two different evaluation techniques, called 4 and B. For a given
EDB instance, suppose that A4 applies r; seven times and r, five times.
Then A performs a total of 12 rule applications and a total of 22 joins.
Suppose that B applies r, three times and r, seven times for the same
EDB. Then B performs a total of 10 rule applications and a total of 24
joins. In total, 4 performs two rule applications more than B does, but A
performs two joins less than B does. Thus, even if a technique is better
than the other technique in terms of the total number of rule applications,
the former may be worse than the latter in terms of the number of joins
when the former applies the rules that require a large number of joins
more than the latter does.

The number of joins required in a rule application is calculated as
follows. Consider an active rule r; of the form

rj: po('—pla---stQI""’qm'

Here, p;’s, 1 <i<n, are mutually recursive with p,, and ¢g;’s, 1 <i<m, are
not. The semi-naive version of r;,

8r;=(A(py,Jj) ™ Py pyM e X PN g M- Mg,
U p?ldNA(pz,j)Np?,N"' X panlNqu
U
U pfdx psldd e pRldy M A(p,, j) M gy M Mg,)
—Po>

involves the union of n join terms. There is one join term for each
occurrence of recursive body predicates.

We assume that each pair of adjacent body predicates needs only one
join operation. Then there are n +m — 1 join operations in each join term.
We have to calculate all the join terms with the nonempty differential
relations. Therefore, if there are k (1 <k <n) active arcs, then the number
of join operations required in an application of 7; is kX (n+m —1).

EVALUATION OF RECURSIVE QUERIES 259

6. EXPERIMENTAL RESULTS

In this section, we present a performance study on the effect of dynamic
ordering of rule applications. We compare our technique (DYN) with the
following three different techniques through the similar way used in the
perform