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Abstract

Scheduling and load balancing of applications on distributed or shared memory machine

architectures can be executed by optimizing algorithms in various levels of the architecture.

We are viewing four di�erent levels, namely, the application layer, the compiler layer, the

run time layer, and the operating system layer. The approach to scheduling and load

balancing ranges from very specialized and directly dependent on the application, in the

application layer, to a more general approach taken by the operating system layer. In

the application layer, the application's computation is decomposed and evenly assigned

to the processors, while communication and synchronization are minimized. In addition,

speci�c knowledge about the application is taken into account to select the approach to

problem solution. In the compiler layer, the application code is automatically decomposed

by the compiler, most of the work being concentrated in the parallelization of language

constructs. In the run time layer, the results of the application and the compiler layer are

implemented. Finally, in the operating system layer, a fair allocation of the processors of

the parallel machine is allocated to competing applications.
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1 Introduction

The problem of balancing the load of a parallel system has been investigated from many

di�erent points of view. It is a problem that is still of great interest mainly because of signi�cant

technology advances every few years.

The bene�t of load balancing can be illustrated by the following simple example. Suppose

that a particular step of a distributed computation is to be executed on n distinct proces-

sors, so that the i-th processor has a total computational load of Li, expressed in total run

time. Assume that the computation has to be synchronized at the end of that step. Let

LA = [
Pn
i=1 Li]=n be the average execution time of the processors, and let LM be the largest

of the execution times. Then, processor i will remain idle for a time LM � Li at the end of

this particular step, and as a whole, the processors will remain idle for a total of:

nX

i=1

[LM � Li] = n[LM � LA] (1)

time units. Since nLA is the total amount of computational work involved and is a constant

for that particular step, the computation will be accelerated by making LM as close to LA as

possible, which summarizes to minimizing imbalance.

One's �rst reaction would be to suggest policies which use full knowledge of the Li to make

an \optimal" load balancing decision. However, the information available will in general only

provide an estimate of these quantities for several reasons:

� In many cases, the granularity of the computation does not allow a detailed evaluation

of computation times.

� Also, computation times are often data dependent, and cannot be completely evaluated

in advance.

� Even when full information allowing evaluation of computation times is indeed avail-

able, the evaluation of these times from the information may itself be particularly time

consuming (as in the molecular dynamics simulations, where the exact position of each

particle determines computation times).

� Finally, in many cases, the loads at each node can only be broadcast relatively infre-

quently in order not to generate excessive overhead, so that load information may not

be fully up to date.

Thus, adaptive on-line policies for load balancing are of particular interest. Among such poli-

cies, those which are decentralized are the simplest since they require less coordination among

nodes. Decentralized policies present, however, the obvious danger of being counterproductive,

since one may unknowingly overload a node which initially seemed lightly loaded. Thus care

must be taken to guarantee that this does not happen.
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Non adaptive decentralized policies are also used for compute-intensive applications when

the computation is mostly static and data dependencies do not change during execution.

In this study, we begin by reviewing the state of the art in load balancing of parallel

systems, with the ambition of covering most facets of it, and provide an integrated view of

the problem. We have classi�ed the various aspects of it into di�erent levels, namely, the

application layer, the compiler layer, the run time layer and the operating system layer. This

re
ects the investigations on load balancing that have been undertaken by researchers with

various backgrounds and expertise.

In the application layer, we review problems that arise in science/engineering. In this layer

applications are decomposed so that the computation is evenly assigned to the system pro-

cessors, while communication and synchronization among them is minimized. This is usually

stated in a mathematical model and optimization techniques are employed for its solution.

Most of these optimization problems are NP complete and various heuristics are used for their

solution. The heuristic techniques are summarized as clustering, deterministic and stochastic

optimization heuristics.

In the compiler layer, usually existing code of the application is automatically decomposed

by the compiler with most of the work concentrated in the parallelism of the programming

language constructs. Optimization techniques are used in scheduling, such as loop scheduling,

thread scheduling and synchronization.

In the run time layer, either the results of the application layer scheduling or the compiler

layer scheduling are implemented. Both in the application and run time layers the computa-

tion of an application is usually represented by an acyclic graph. Clustering techniques are

used for the scheduling of such graphs. Even when the run time environment does not have

elaborate graph information it can still take advantage of communication and synchronization

information that may be provided by the compiler or gathered dynamically at run time.

Finally, the operating system is responsible for the e�cient and fair allocation of the mul-

tiprocessor to the competing applications. Usually the operating system has the least amount

of information about the parallel applications running, but based on user input or run time

monitoring, it can share the multiprocessor among applications e�ciently.

In order to run applications as fast as possible, the largest and fastest multiprocessors were

used, that have been the distributed memory ones. Thus, most approaches on the applications

layer have considered underlying distributed memory multiprocessors. On the contrary, the

compiler, run-time, and operating system level research has considered shared-memory mul-

tiprocessors. This has been the case because, traditional distributed memory multiprocessors

lack the necessary mechanisms for e�cient process/thread migration, and thus make scheduling

and load balancing both expensive and di�cult to implement.

The deep understanding of load imbalance issues at all four levels (applications, com-

pile/run time and operating system) of the system is necessary in order to achieve high proces-

sor utilization. In the rest of the paper we present a survey of the load balancing mechanisms

and policies in these levels.
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2 Application Layer

Compute intensive applications are usually related to scienti�c computing applications. The

computational models of such applications in general, simulate physical situations or artifacts

and they depend on the available computing resources. The recent advances in high per-

formance computing technologies have provided the opportunity to speed up computational

models and increase dramaticaly their numerical resolution and complexity. Parallel schedul-

ing and load balancing are mainly responsible for exploiting the available speedup capability

of the machine. Parallel scheduling methodologies for compute intensive applications have

been developed mostly for distributed memory machines or clusters of workstations. At the

application level the interest is focused on policies that make direct use of the knowledge of

the applications. We present parallel scheduling and load balancing policies for two di�erent

applications, Partial Di�erential Equations and Molecular Biology.

2.1 Partial Di�erential Equations

PDEs are considered the fundamental tool for describing the physical behavior of many appli-

cations in science and engineering. We are focusing on parallel scheduling and load balancing

issues for computational tasks of problems related to PDE computing on distributed memory

parallel machine architectures. We start with problems using a grid or a mesh to approx-

imate the geometric domain of computation and formulate a problem solution on it. The

methodologies we shall be reviewing have their source in solution methods applied to partial

di�erential equations. The same methods can be easily extended to computations associated

with numerical simulation and to more complicated computational models [139], [113], [47].

Scheduling the computational tasks of a PDE problem on a target parallel machine has been

viewed as a two phase approach, as follows: First, the partitioning of the computations into

load balanced tasks is achieved, requiring minimum synchronization and communication among

them and second their allocation onto the parallel processors. The methodology to achieve a

problem partition in such problems draws from the problem characteristic. The computation

is usually based on a large static data structure (domain) and the amount of computation is

about the same for each data element. To keep the load balanced among processors one should

decompose the data structure as evenly as possible, since the computation is decomposed in the

same way. For the data decomposition the Domain Decomposition (DD) approach is used. We

review the discrete domain decomposition, which is based on a grid or mesh decomposition of

the underlying computation. Continuous DD is also possible and the approach is similar. The

discrete DD has been extensively studied for PDE elliptic solvers and is regarded as the most

suitable for such problems [25], [99]. The basic idea is to decompose the grid or mesh of the

PDE domain into subdomains. This results into splitting the discrete equations corresponding

to the node or grid points of the subdomain and their interfaces (boundary). The programming

model for such computations is single program-multiple data where parallelism is achieved by

partitioning the underlying geometric data structures (grid/mesh) of the PDE problem and
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allocating the disjoint subproblems or subcomputations to the parallel processors. During

each iteration the processors perform (i) an exchange of local data (interface unknowns) with

the processors that handle geometrically adjacent subdomains in order to enforce continuity

requirements of the PDE solution (local synchronization/communication); (ii) an execution

of matrix-vector operations (local computation); and (iii) an evaluation of stopping criteria

and acceleration of the convergence (global synchronization). The high performance of these

computations on distributed memory MIMD machines, depends on the minimization of the

local and global communication time and on the synchronization delays. Global communica-

tion/synchronization depends on the e�cient hardware/software implementation of broadcast

operations of parallel machines [73], [144].

The main issue in most studies has been the minimization of local communication time per

iteration. The local communication time depends both on data partitioning characteristics such

as, interface length, degree of connectivity of the subdomains, and machine characteristics. The

data partition problem is NP-Complete [54] and many heuristic methods have been proposed

for �nding good sub-optimal partitions of the data. These heuristics are divided into three

classes, namely, data clustering, deterministic optimization and stochastic optimization.

2.2 Scheduling and Load Balancing for Grid/Mesh based problems

The geometric data structures mesh/grid used in discretization procedures of PDE problems,

are either an orthogonal grid, for a �nite di�erence method, or a mesh (non orthogonal grid),

for a �nite element method. In either case, the partitioning and allocation heuristics applied

have been the same, thus we shall not distinguish between the two structures.

The objective function for the mapping of a mesh/gridM onto a distributedmemory MIMD

machine so that the workload of the processors is balanced and the required communication

and synchronization among processors is minimum, is formulated in [24] and is as follows:

min
m

max
1�i�P

fW (m(Di)) +
X

Dj2CDi

C(m(Di);m(Dj))g; (2)

where Di is the set of mesh points (subdomain) that are assigned to the same processor, CDi

is the set of subdomains that are adjacent to the subdomain Di, m: fDig
P
i=1 �! fPig

P
i=1 is an

assignment function that maps the subdomains to processors, W (m(Di)) is the computational

workload of the processor m(Di) per iteration, which is related to the number of mesh points

on Di, and C(m(Di), m(Dj)) is the communication workload required (per iteration) between

the processorsm(Di) and m(Dj). P is the number of available processors of the target parallel

machine. The synchronization of the processors is a nonlinear correlation of computational

and communication workload. In general, it can be included in the W (m(Di)).

One approach to solve the optimization problem is to approximate its objective function (2)

by another function which is smoother, more robust and suitable for the existing optimization

methods [53] [51], [157], [98]. A second approach is to split the optimization problem into
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two distinct phases corresponding to the partitioning and allocation of the mesh [24], [23],

[136]. In the partitioning phase the mesh (or grid) is decomposed in a pre-speci�ed number

(usually equal to the number of processors) of subdomains such that the following criteria are

approximately satis�ed:

(i) the maximum di�erence in the number of mesh (or grid) points of the subdomains is

minimum,

(ii) the ratio of the number of interface points to the number of interior points for each

subdomain is minimum,

(iii) the number of subdomains that are adjacent to a given subdomain is minimum,

(iv) each subdomain is a connected domain.

In the allocation phase these subdomains are assigned to processors such that the following

objective is satis�ed.

(v) the communication requirements of the underlying computation between the processors

of a given architecture are minimum.

2.3 Geometry Splitting Based Partitioning Methodologies

Most of the heuristic methods proposed for the partitioning phase can be classi�ed into three

large classes. The �rst class involves clustering techniques where the main idea is to sort the

geometric mesh data in some direction and then partition the resulting sequence of elements

in P ways. The second class consists of the deterministic optimization techniques. The idea

is to �nd \semi"-optimal feasible solutions in linear time. These methods tend to terminate

in some local minimum without always being able to move to a global minimum. A more

computationally expensive alternative is to use a stochastic optimization technique, which

locates a global minimum \most" of the time. In [69], simulated annealing and neural network

techniques have been implemented for the mesh partitioning problem. Next, we give a brief

review of these methodologies.

Clustering Techniques Farhat [46] proposed a method for ordering the topological data

of a mesh. The underlying idea of his scheme is equivalent to the well known Cuthill-McKee

method of ordering, [91], [57], [58], [59], as applied to order �nite element meshes so that

the corresponding linear algebraic system of equations has minimum bandwidth and pro�le.

According to this technique one �nds all the unlabeled neighbors of element (node) i and

labels them in order of increasing connectivity (communication with neighbors). This method

is referred as CM-cluster. Another naive way for splitting meshes is to sort some geometric

data of the mesh (i.e., coordinates of vertices, coordinates of sector origin of the elements,
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coordinates of the centroid of the elements) and subdivide the sorted lists in sublists of length

N=P, where N is the number of the geometric data of the mesh. The same idea is also applied

to the data (topological data) of the mesh. These sorting algorithms are referred as 1 � P

geometric/topological partitioning and P�Q geometric/topological partitioning algorithms.

Deterministic Optimization Techniques The problem of partitioning geometric meshes

into load balanced subdomains is formulated on the topological graph of the mesh. This is

equivalent to disconnecting a graph into nearly equally sized subgraphs by cutting the minimum

number of edges. This problem has been formulated as an optimization problem by de�ning an

objective function whose minimum value corresponds to the optimal partition of the mesh. In

order to satisfy the load balancing constraint among the subdomains, the objective function has

two components; one which is minimized when there are no edges in the partition (minimum

communication), and the other is minimized when an equal number of nodes is assigned to each

subdomain. These two sub-objectives tend to compete with one another in that the �rst goal is

satis�ed when the nodes are uniformly distributed across the speci�ed number of sub-graphs,

while the second goal is met (trivially) by collapsing all the nodes into a single partition.

The simplest graph partitioning problem is the 2-way one, in which the graph nodes are

divided between two partitions (subdomains), D
1
and D

2
. The mathematical foundations of

the optimization problem are stated in [23]. A domain decomposer tool [22] has a library of

various P-way algorithms for minimizing the above cost functions. It includes the well-known

Kernighan-Lin heuristic [74], [24] technique for minimizing the cut-cost of the mesh graph,

assuming the solution satis�es the constraints of the balanced partitioning. The idea of this

approach is to identify an improved feasible solution by interchanging elements among the

subdomains that optimize a pro�t function. In [23] a P-way partitioning algorithm has been

developed with a modi�ed pro�t function based on Kernighan-Lin's idea of selecting improved

feasible solutions [24]. This method is referred as the GGP (Geometric Graph Partitioning)

algorithm. A recursive variation of this algorithm based on a modi�ed 2-way Kernighan-Lin

algorithm has been also developed [24] and named GGP-rec; this heuristic is also called or-

thogonal recursive bisection [53], [157]. These algorithms require an appropriate initial feasible

solution, which is selected by the user out of the set of predetermined initializations.

Stochastic Optimization Techniques A signi�cant advance in optimization was made in

1983 with the invention of simulated annealing (SA) [76]. SA has been used in [51], [53] and

[157]. Hop�eld neural networks [67] constitute another avenue for solving discrete combinatorial

problems. These networks involve many simple computing units (or arti�cial neurons) whose

objective is to minimize an energy function associated with the optimization problem. In

[69] various arti�cial neural networks (ANN) have been considered for solving the partitioning

phase of the mapping problem.

In [23] a list of partitioning algorithms have been developed for the parallel ELLPACK

system [70]. In parallel ELLPACK all the existing public domain software for PDE solvers is

included that support well de�ned mathematical models of multiple applications [130], [61],
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Table 1: Mesh Partitioning Algorithms

Name Description

1�P 1-D strips

P�Q 2-D strips

ORB-E Eigenvalue Ortho. Rec. Bisection [19]

ORB-M Mass Center ORB [157]

ORB-I Inertia Axis ORB[Chri91]

ORB-KL Kernighan-Lin ORB [74]

ORB-GGP Modi�ed K-L ORB [24]

ORB-ANN Neural Net [68]

ORB-SA Simulated Annealing

GGP P -way Geometric Graph Part [24]

SA P -way SA [157]

CM-Clustering Cuthill-Mckee [46]

[129], [137], [97], [108], [109]. The analysis and performance evaluation of these partitioning

algorithms is reported in [24], [23], [22]. Four basic types of heuristics have been implemented

for partitioning meshes. They include 1�P strips, P�Q lattices, and 2-way recursive bisection

and P-way partitionings. The 1�P-way partitions are obtained by sorting the x (or y or z)

coordinates of the centroid of the elements and subdividing the sorted list in groups of N=P

elements. In this case, the assignment of the subdomains to an array of processors is the

identity. This is referred to as algorithm 1�P. A P�Q-way partitioning is obtained by sorting

the coordinates of the element centroid in x and y directions. We refer to these techniques

as P � Q. Variations of it have been proposed in [119], and the Simulog's system. Another

important class of heuristics included in this library are the so-called Orthogonal Recursive

Bisection (ORB) techniques based on di�erent 2-way partitioning heuristics. In [22] a number

of geometry based, mesh/grid heuristic algorithms have been implemented for the parallel

ELLPACK system. Comparative preformance analysis of these algorithms is also reported.

They are listed in Table 1.

2.4 Molecular Dynamics

Another important application area which will be discussed in this paper pertains to load bal-

ancing for Molecular Dynamics which is one of the major grand challenge parallel processing

applications [1, 107]. It has very broad implications in the understanding of the detailed struc-

ture of materials and of large biomolecules, and is a fundamental tool for the computer aided

design of new chemical and biochemical compounds. There are many forces acting between

the atoms in a biomolecular system, but the simple Coulomb force is the most challenging to
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compute, as its long range requires in principle all pairwise combinations of atoms to be con-

sidered. The resulting electrostatic N -body problem characterizes the Coulomb interactions

between a set of charged bodies. The same equations also characterize interactions between

gravitating bodies for astrophysical applications. Molecular dynamics can thus be improved by

developing and implementing e�cient algorithms for solving the N -body problem for particle

systems on parallel and distributed computing platforms [18, 79, 17].

Workload and data (�le) imbalance continues to be an impediment to massively parallel

implementations of such codes [13, 95]. Now that numerous programmer-years of e�ort have

been invested in hand-optimizing these codes for particular architectures and particular types

of particle distributions, we need to research \automatic" balancing of such codes. If an ad-

equate automatic load balancing and data contention reducing scheme can be implemented,

future versions will be far more e�cient and will require much less \hand optimization". It is

therefore important to determine the general principles which can be used to provide optimum

on-line load balancing for Molecular Dynamics. The discussion will concentrate on optimized

N -body codes which use the linear-time Fast Multipole Algorithm (FMA) [21, 17] and re-

lated methods. The same N -body codes are currently used in production molecular dynamics

work [17]. Speci�cally, we will discuss adaptive load balancing based on the gradient descent

paradigm to compute optimal on-line decisions on a process-by-process basis, in line with our

recent work [55, 56]. The algorithms we consider make all decisions locally, and are activated

upon the creation of a task.

2.5 Parallel Scheduling for Molecular Dynamics

Molecular dynamics (MD) has been long known as a major computational task which can

revolutionize the way science is done [1, 107, 146]. It is both a major scienti�c problem

area for computational physics and chemistry, and one which has very broad applications in

the study and design of biomolecules and of new chemical compounds. This is one of the

major grand challenge parallel processing applications [13, 95]. Molecular dynamics studies

the Newtonian interactions of a system of interacting particles (atoms), so as to determine

their movement, equilibrium state, and other static and dynamical properties. In biomolecular

simulations, a wide variety of forces act on each atom, but only the electrostatic force is long-

ranged, so that the evaluation of the Coulomb interaction requires the great majority of CPU

time (> 99% for large particle systems). In its electrostatic version, the N -body problem

characterizes the Coulomb interactions between a set of charged bodies, and its consequences

on the motion of the particles in 3-D space. Molecular dynamics can thus be improved by

developing and implementing e�cient algorithms for solving the N -body problem for particle

systems on parallel and distributed computing platform[18, 79, 17]

The evaluation of electrostatic interactions calls upon a \direct Coulomb solver" algorithm

[1, 13], which generally uses two nested loops to consider all pairwise combinations of particles

yielding runtime complexity O(N2) for N particles. Though it can be a prohibitively time-

consuming computation { even in parallel { this \direct" approach can be easily implemented in
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fully parallel code, even when the particle distributions in 3�D space are highly nonuniform.

However, load balancing is still a major issue because each iteration of the algorithm will

compute new positions of the particles leading to imbalance between the processors [13]. In

this discussion we concentrate on a computationally more e�cient method, the Fast Multipole

Algorithm [60, 17], which runs in O(N) time complexity.

The Fast Multipole Algorithm (FMA) [60], and other related multipole approximation

methods [5, 12, 156], solve this N -body problem in O(N logN) or O(N) time. They hierar-

chically divide the simulation region (a cubic box for simplicity) into successively �ner boxes.

In 3 � D, each box is subdivided into eight child boxes; this subdivision is continued until a

small (and machine dependent) number of particles remains in each \terminal box" { which

we will refer to as a \box" in the sequel.

When particle distributions in space are reasonably uniform, a uniform oct-tree of boxes

will result. On the other hand when particle distributions are highly nonuniform, a selectively

re�ned (irregular) tree of boxes can yield a more e�cient algorithm [21]. However, this can

signi�cantly complicate e�orts to parallelize and balance the algorithm [80].

One iteration of any Molecular Dynamics solution algorithm carries out the following four

major computational steps:

� Step 1 It �rst determines which particles need to interact, and in which way. For in-

stance, in solids certain approximations [95] assume that only particles which are closer

than some distance rmax need to interact. In our case, we need to consider all parti-

cle interactions: the multipole expansion approximates \far" interactions, while simple

particle-to-particle Coulomb forces describe \near" interactions.

� Step 2 Next, it calculates forces (as indicated above).

� Step 3 Thirdly it carries out time integration.

� Step 4 Finally it updates the positions of all particles.

Step 2 is the computationally most intensive portion, while the fourth and last step is where

the amount of work at each processor is being changed.

There are two principal sources of load imbalance when parallelizing the FMA which limit

scalability:

� The �rst is structural - depending on the boundary conditions used in a given simulation,

when creating the hierarchical oct-tree of cubes in space, some boxes are at corners or

are on edges or faces and thus have fewer neighbors than boxes on the interior. Interior

boxes run slower than exterior boxes, with corner boxes running fastest of all, because

of their small numbers of \close" neighbors.
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� The second imbalance is data-dependent; even a mildly non-uniform spatial distribution

of particles results in di�erent runtimes, as much as 10:1 di�erences for Step 2 processes.

The local direct step also su�ers structural imbalance, since particles in corner boxes

interact with fewer other particles than those in interior boxes.

Data contention also limits e�ciency. It results from the fact that two or more processes

may try to interact with the same box at the same time. If we do not address this problem,

the resulting implementation may be balanced but still ine�cient. Since force and electrostatic

potential computations are symmetric (force on A due to B is equivalent force on B due to A

with appropriate sign change), it is tempting to update both boxes in one interaction to avoid

duplicating the computation. This, however, requires both boxes to be locked in write-mode,

while other processes must wait to use the same boxes. If the remote box is kept read-only, then

the multipole computation must be repeated when the boxes exchange roles in the procedure.

The same problem a�ects particle interactions in the local direct step.

The multipole parts of the computation are currently partitioned statically among the avail-

able processes as described above by distributing level 3 boxes. The structural load imbalance

discussed above remains a problem for certain numbers of processors (i.e. 8 processors each

have one corner, but with 16 processors some boxes have corners and some do not). The local

direct step is treated di�erently: individual boxes or small groups of nearby boxes from the

�nest level of the tree (as opposed to level 3) are dispatched from a central work queue to

the next available processor. By dividing at the �nest level, we create many parcels of work

for this step so that a processor which happens to be assigned a sparsely populated box (or a

corner box with few neighbors) can rapidly complete it and begin on another box while another

processor continues to work on a more densely populated box.

Since numerous programmer-years of e�ort have been invested in hand-optimizing these

codes for particular architectures and particular types of particle distributions, we now must

�nd new \automatic" methods for balancing of such codes. If an adequate automatic load

balancing and contention reducing scheme can be implemented, future versions of molecular

dynamics simulations will require much less e�ort. Since hand-optimized codes are available

to compare with, we can assess the penalty of turning the optimization over to a balancing

procedure for a variety of particle systems.

A class of policies which are applicable to Molecular Dynamics { will move work from one

node to another in a \grouped" manner, in advance of the actual execution time of tasks. We

shall call such policies Load Imbalance Based. In this case we will have to take precautions

not to overlaod a particular host, which can be caused by poor decentralized decision making.

This will be achieved by restricting ourselves to receiver initiated policies.

Consider a computation which will be executed on n nodes, and suppose that before the

computation is initiated, the system balances the load. Initially, all nodes broadcast the value

of their computational load: let Li be the load at node i. Clearly, before and after load

balancing, the application's average computational load LA remains the same, though there

will be additional work and communication related to moving the work.
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After each node has broadcast its load value, and this information is received by all nodes,

every node knows LA and can determine two subsets of nodes: S the potential senders of

work { and R the potential receivers of work. Clearly, for s 2 S, Ls > LA, and for r 2 R,

Lr < LA. The receiver initiated policies considered will then proceed as follows:

� Each potential receiver r will compute a decision variable �sr for each possible sender s

{ This variable will be interpreted as follows: if �sr = 0, then r will not request work

from s, while if �sr = 1 it will request as much work \as possible" from s.

� The receiver r will then select some senders for which �sr > �r, from which it wishes to

receive work, where �r is a threshold value. Then each r will send a message requesting

an amount of work Wsr to be sent to it, from each selected sender s. In order to avoid

overload at the receiver, r will never request more work than what is required to move

it's load up to the average workload value:
Pn
r=1 Wsr � LA � Lr.

� Finally, each sender s which is solicited by a receiver, will respond by sending at most as

much work as is requested.

Since the objective is to reduce imbalance, we are interested in minimizing some function of

the absolute value of the di�erence between each node's load and the average load. However

we should include communication overhead at each node in its load. Let the time taken up in

transfering the work Wsr, be f(Wsr) at the receiving node, and g(Wsr) at the sending node.

The functions f and g which relate the amount of work transfered to the time it takes the

receiving and sending PU can generally be estimated.

The cost function C to be minimized by the load balancing algorithm can now be expressed

as:

C =
1

M

X

r2R

f Lr +
X

s2S

�srf(Wsr) � LAg+
1

M

X

s2S

f Ls +
X

r2R

�srg(Wsr) � LAg
M (3)

where the exponent M will be an even number (typically M = 2), so that C can be positive.

3 Compiler and Run-time Environment Layer

The parallel execution of scienti�c/engineering and parallel database related applications use

similar representation methods and techniques for task assignment. The problem formulation is

usually di�erent since it draws mainly on knowledge about the problem characteristics, such as,

the problem can be decomposed if the data can be decomposed. Thus, domain decomposition

is used to decompose the data which results into the computation decomposition in grid/mesh

based applications. The grain of parallelism is usually medium to coarse and the resulting

scheduling is executed at run-time.
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The compiler and run-time approach to parallel application execution, is a more general

approach and it addresses all applications. It takes a di�erent point of view of an application.

Parallel execution is achieved by working directly on the code of an application, without any

other knowledge of its characteristics. Optimizing compilers address programming language

optimization by techniques like executing as much of the code as possible at compile-time, per-

forming code transformations, creating many threads of execution, parallelizing loops, schedul-

ing threads in e�cient ways, investigating synchronization, conditional execution of code, and

creating calls to the run-time support system. The techniques used in each area continue to

evolve, as not a single framework exists, just isolated e�orts to handle special cases and to

de�ne a more general framework. These frameworks do not usually achieve the same degree

of parallelism as when there is a clear knowledge of the characteristics of the problem.

The programmer may not have enough knowledge of the characteristics of the problem to

restructure it in a way that reveals a lot of its parallelism, but may have enough knowledge

to indicate some of the possible existing parallelism in his program. In this case he can use

directives to indicate optimizations to the compiler, which would otherwise be very hard for the

compiler to �nd. Thus, the knowledge that the parallelizing compiler has about the possible

parallelism comes from both the code analysis and user hints. Tools and utilities have been

developed that help users to express their knowledge of the problem to compiler directives

that will improve the parallelization of the problem. A usual approach is the creation of

a consistent set of experimental program variants and the interpretation of compilation and

performance result [106], [43]. Bacon et al, in [27] presents an extensive survey of high-level

program restructuring techniques for imperative languages.

With the use of a smart compiler, reliable sequential programs can, without being rewritten,

be compiled into object codes that are suitable for parallel execution, and also can be �ne-

tuned to �t various modern computer architectures. A lot of work in the compilers area has

been done on revealing parallelism without the programmers hints. In the next sections we

will examine these ways of revealing parallelism.

3.1 Loop Transformations

Loop transformations are becoming critical to exploiting parallelism and data locality in par-

allelizing and optimizing compilers. Loops are the single largest source of parallelism in most

applications. Executing the many iterations of a loop on di�erent processors enables applica-

tions to take advantage of parallel processors, and thereby reduce their running time. Both

static and dynamic loop scheduling methods have been used to assign the iterations of a loop

to processors. Static methods assign iterations to processors statically, minimizing run-time

synchronization overhead. Traditionally, optimizing compilers attempt to improve the perfor-

mance of programs by applying source to source transformations, such as loop interchange,

loop skewing and loop distribution.

Static scheduling algorithms, such as block scheduling, cyclic scheduling, and block cyclic

scheduling, assign a �xed number of loop iterations to each processor.
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Block scheduling assigns to each processor an equal number of adjacent loop iterations.

If the amount of computation performed by each iteration di�ers, then block scheduling can

perform poorly because of load imbalance.

Cyclic scheduling assigns loop iterations to processors in a cyclic order. It obtains better

load balance than block scheduling for iteration spaces where the amount of computation

increases/decreases linearly with the iterations.

Block cyclic scheduling is a combination between block scheduling and cyclic scheduling,

and assigns blocks of a �xed size to processors in a round robin fashion. The previous block

scheduling algorithms can be described as a special case of block cyclic scheduling.

The simple static scheduling algorithm divides the number of loop iterations among the

available processors as evenly as possible, in the hope that each processor receives about the

same amount of work. This algorithm minimizes run-time synchronization overhead, but does

not balance the load dynamically. If all iterations do not take the same amount of time, or if

processors begin executing loop iterations at di�erent points in time, then load imbalance may

arise, which will cause some processors to be idle while other processors continue to execute

loop iterations.

Dynamic methods defer the assignment of iterations to processors until run-time, and

therefore can achieve better load balancing in the presence of unpredictable transient loads

and variable iteration execution times. The major di�culty in dynamic loop scheduling is to

keep the run-time synchronization overhead small, while balancing the load.

The simplest dynamic algorithm for scheduling loop iterations is called self-scheduling [138,

147]. In this algorithm, each processor repeatedly executes one iteration of the loop until all

iterations are executed. The algorithm relies on a central work queue of iterations, where

each idle processor gets one iteration, executes it, and repeats the same cycle until there are

no more iterations to execute. Self-scheduling achieves almost perfect load balancing, since

all processors �nish within one iteration of each other. Unfortunately, this algorithm incurs

signi�cant synchronization overhead; each iteration requires atomic access to the central work

queue. This synchronization overhead can quickly become a bottleneck in large-scale systems,

or even in small-scale systems if the time to execute one iteration is small.

Uniform-sized chunking [77] reduces synchronization overhead by having each processor

take K iterations, instead of one. This algorithm amortizes the cost of each synchronization

operation over the execution time of K iterations, resulting in less synchronization overhead.

Uniform-sized chunking has a greater potential for imbalance than self-scheduling however, as

processors �nish within K iterations of each other in the worst case. In addition, choosing an

appropriate value for K is a di�cult problem, which has been solved for limited cases only.

Guided self-scheduling [118] is a dynamic algorithm that changes the size of chunks at run-time,

allocating large chunks of iterations at the beginning of a loop so as to reduce synchronization

overhead, while allocating small chunks towards the end of the loop to balance the workload.

Under guided self-scheduling, each processor is allocated 1=P th of the remaining loop iterations,

where P is the number of processors. Assuming all loop iterations take the same amount of
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time to complete, guided self-scheduling ensures that all processors �nish within one iteration

of each other and use the minimal number of synchronization operations.

Since processors take only a small number of iterations from the work queue at the end

of each loop, guided self-scheduling can su�er from excessive contention for the work queue.

If each iteration takes a short time to complete, then processors spend most of their time

competing to take iterations from the work-queue, rather than executing iterations. Adaptive

guided self-scheduling [39] addresses this problem by using a back-o� method to reduce the

number of processors competing for iterations during periods of contention. This algorithm also

avoids assigning all the time-consuming iterations to one processor by assigning consecutive

iterations to di�erent processors, which reduces the risk of load imbalance that arises when

the execution times of consecutive iterations vary widely but in a correlated fashion (e.g.

if the execution time of iterations decreases linearly). As a result of these modi�cations,

adaptive guided self-scheduling performs better than guided self-scheduling in many cases.

The Chorus operating system [40] is using guided self-scheduling, with an adaptive mechanism

that automatically adjusts granularity appropriately.

In some cases guided self-scheduling might assign too much work to the �rst few processors,

so that the remaining iterations are not su�ciently time-consuming to balance the workload.

This situation arises when the initial iterations of a loop are much more time-consuming than

later iterations. The factoring algorithm [71] addresses this problem. Under factoring, the

allocation of loop iterations to processors proceeds in successive phases. During each phase,

only a subset of the remaining loop iterations (usually one half) is divided equally among

the available processors. Because factoring allocates a subset of the remaining iterations in

each phase, it balances load better than guided self-scheduling when the computation times

of loop iterations vary substantially. In addition, the synchronization overhead of factoring is

not signi�cantly greater than that of guided self-scheduling .

Like the factoring algorithm, the tapering algorithm [96] is designed for loops where the

execution time of iterations varies in such a way as to cause load imbalance under guided

self-scheduling. Tapering is used for irregular loops, where the execution time of iterations

varies widely and unpredictably. The tapering algorithm uses execution pro�le information to

estimate the average iteration time and the variance in iteration times. These estimates are

used to select a chunk size that, with high probability, limits the amount of load imbalance

that can occur to be within a given bound. Although guided self-scheduling minimizes the

number of synchronization operations needed to achieve perfect load balancing, the overhead

of synchronization can become signi�cant in large-scale systems with very expensive synchro-

nization primitives. Trapezoid self-scheduling [154] tries to reduce the need for synchronization,

while still maintaining a reasonable balance in load. This algorithm allocates large chunks of

iterations to the �rst few processors, and successively smaller chunks to the last few processors.

The �rst chunk is of size N
2P
, and consecutive chunks di�er in size N

8P 2 iterations. The di�erence

in the size of successive chunks is always a constant in trapezoid self-scheduling, whereas it is

a decreasing function both in guided self-scheduling and in factoring.

All of these loop scheduling algorithms attempt to balance the workload among the proces-

14



sors without incuring substantial synchronization overhead. Each of the algorithms assumes

that an individual iteration takes the same amount of time to execute on every processor. This

assumption is not valid, however, on many shared-memory multiprocessors. The existence

of memory that is not equidistant from all processors (such as local memory or a processor

cache) implies that some processors are closer to the data required by an iteration than others.

Loop iterations frequently have an a�nity [141] for a particular processor | the one whose

local memory or cache contains the required data. By exploiting processor a�nity, we can

reduce the amount of communication required to execute a parallel loop, and thereby im-

prove performance. A�nity Loop Scheduling is one loop scheduling policy that exploits the

a�nity an iteration may have for a particular processor [103, 101]. The idea behind A�nity

Loop Scheduling is that iterations are assigned statically to processors (to reduce run-time

overhead), but can be rescheduled when load imbalance happens. A�nity Loop Scheduling

has been implemented in several shared-memory multiprocessors, and has shown performance

improvements of up to a factor of three. Li at. al. have applied a similar idea in the Hector

NUMA multiprocessor: each iteration is assigned for execution on the processor where the

data it uses have been allocated - if load imbalance happens the iteration may be rescheduled

[85].

The static algorithms ignore the fact that the amount of computation performed per it-

eration may di�er and it cannot always be determined a priori and even the speed of each

processor may also di�er because of multitasking interference. Therefore static scheduling

often su�ers from load imbalance.

Algorithms that combine static and dynamic loop scheduling have also been created [115],

[123], where an initially static assignment of iterations to processor may be dynamically

rescheduled, when imbalance is detected. This approach combines the load balancing quality

of the dynamic approaches and the low overhead of the static approaches.

When there are dependencies among the loop iterations, the degree of parallelism is more

limited, and harder to �nd. However, there are a lot of techniques for this case too, although

they usually consist of revealing the dependency structure and are not implemented in the

optimizing compilers, as the pro�t will be very small.

Overview of loop optimization issues as well as scheduling techniques and comparison re-

sults on �ne-grained and coarse-grained parallel architectures can be found in [87]. A survey

of several experimental studies on the e�ectiveness of parallelizing compilers, together with an

overview of parallelizing techniques, covering dependence analysis techniques of loop transfor-

mations too, are found in [11].

Other special cases of loop optimization have also been studied, such as instruction level

parallelization applied at the statement level [16], and cases that it is safe to reuse copies

of o�-processor data and decrease run-time overhead at compile-time, computing global 
ow

information about the communication characteristics of the loops [65]. They even include

compiler algorithms to automatically derive e�cient message-passing programs based on data

decompositions, to minimize load imbalance and communication costs for both loosely syn-

chronous and pipelined loops [66].
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3.2 Task Mapping and Scheduling

One way to reduce the need for communication is to use scheduling polices that exploit knowl-

edge of the location of data when assigning processes to processors, improving locality of

reference by co-locating a process with the data it will require.

Signi�cant work has been done on compile-time thread scheduling with emphasis on com-

munication minimization. Partitioning and scheduling techniques are necessary to implement

parallel languages on multiprocessors. Multiprocessor performance is maximized when paral-

lelism between tasks is optimally traded o� with communication and synchronization overhead

[127], [94], and the parallel time is minimized when overlapping communication with computa-

tion [160]. Task ordering algorithms try to minimize parallel time and overlap communication

with computation [50]. Feldmann et al, in [50], have implemented a compiler tool system

named PYRROS that integrates their algorithms for scheduling and code generation. The

input of this system is a C program with annotated dependence information and the out-

put is optimized parallel C code for nCUBE-I, nCUBE-II and iPSC/860 machines. The code

generation problem for message passing architectures is similar: to optimize code by reduc-

ing communication overhead, eliminating redundant communication and improving memory

utilization [50] [160].

Data partitioning with emphasis on communication minimization has also been studied. In

many cases it is possible to prefetch required o�-processor data before a loop begins execution,

and several loops access the same o�-processor memory locations. As long as it is known

that the values assigned to o�-processor memory locations remain unmodi�ed, it is possible

to reuse stored o�-processor data. A mixture of compile-time and run-time analysis can be

used to generate e�cient code for irregular problems, and a number of optimizations can be

used to support the e�cient execution of irregular problems on distributed memory parallel

machines [29]. These primitives coordinate inter-processor data movement, manage the storage

of, and access to, copies of o�-processor data and minimize interprocessor communication

requirements, reducing communication latency and volume. In most approaches the compiler

either tries to �gure out a good distribution from the control and data 
ow graphs of a program

or explores a small number of canonical distributions for suitable ones [78].

There are still more approaches to data scheduling:

Array statements as included in Fortran 90 or High Performance Fortran (HPF) are a well-

accepted way to specify data parallelism in programs. When generating code for such a data

parallel program for a private memory parallel system, the compiler must determine when array

elements must be moved from one processor to another [143]. The irregular access patterns of

the use of indirection arrays for indexing data arrays make it di�cult for a compiler to generate

e�cient parallel code. There are methods for transforming programs using multiple levels of

indirection into simpler programs, with at most one level of indirection, thereby broadening

the range of applications that a compiler can parallelize e�ciently [28]. In another approach,

data �elds can be de�ned as functions with explicit restrictions and the static analysis can give

information about the extent of a recursively de�ned data �eld. This can be used to preallocate

16



the data �elds and map them e�ciently to distributed memory [88].

There are many approaches that try to do static data and thread placement at the same

time, and automatically �nd computation and data decompositions that optimize both par-

allelism and locality. Anderson and Lam, in [2], designed an algorithm for use with both

distributed and shared address space machines, that can exploit parallelism in both fully par-

allelizable loops as well as loops that require explicit synchronization and will trade o� extra

degrees of parallelism to eliminate communication.

The minimization of di�erent costs will suggest di�erent data and computation partitions.

Compiler strategies for mapping FORTRAN programs onto distributed memory computers, to

minimize overhead have been developed [114]. One approach to obtain good mappings, is to

isolate and examine speci�c characteristics of executing programs that determine the perfor-

mance for di�erent mappings on a parallel machine. The process consists of two steps: First,

an instrumented input program is executed a �xed number of times with di�erent mappings,

to build an execution model of the program. Next, the model is analyzed to obtain a good �nal

mapping of the program onto the processors of the parallel machine. The idea is to �nd the

best use of available memory and communication resources to minimize the global inter-task

and intra-task communication overhead [145].

Sometimes better results need user hints. A user speci�ed mapping procedure via a set

of compiler directives, allows the user to use program arrays to describe graph connectivity,

spatial location of array elements and computational load. Irregular computations can be

handled by the HPF compiler e�ectively [120].

Static thread scheduling based on probability functions, emulations, or even on di�er-

ent thread models have also been a research issue. Ha and Lee, in [64], propose scheduling

techniques for static thread assignments, using data-
ow graphs representing data-dependent

iteration, assuming a known probability mass function for the number of cycles in the data-

dependent iteration and showing how a compile-time decision about assignment and/or order-

ing as well as timing can be made.

Powerful non-strict parallel languages require fast dynamic scheduling. Tolerance to com-

munication latency and inexpensive synchronization are critical for general-purpose computing

on large multiprocessors. Schauser et al, in [128], explores how the need for multithreaded ex-

ecution can be addressed as a compilation problem, to achieve switching rates approaching

what hardware mechanisms might provide. Compiler-controlled multithreading is examined

through compilation of a lenient parallel language, for a threaded abstract machine, (TAM). A

key feature of TAM is that synchronization is explicit and occurs only at the start of a thread,

so that a simple cost model can be applied. A scheduling hierarchy allows the compiler to

schedule logically related threads closely together in time and to use registers across threads.

Compiler-controlled multithreading is examined through compilation of a lenient parallel lan-

guage, Id90, for the threaded abstract machine, TAM.

When the compiler is not sophisticated enough to extract all parallelism, the run-time

system schedules the tasks as threads independently. Most work on thread scheduling within
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an application has focused on the goal of load balancing alone. For example, in the process

control scheme [153], Uniform System [151], Brown Threads [30], and Presto [14], all threads

of the same application are placed in a FIFO central work queue. Processors take threads

from this queue and run them to completion. The load is evenly balanced in that no processor

remains idle as long as there is work to be done.

Anderson et. al. [4] argued for the use of per-processor ready queues within a thread

package to improve scalability (reducing contention for the single ready queue) and to preserve

processor a�nity. Under this scheme, a newly created thread is placed on the ready queue

of the processor on which it was created. Idle processors scan their own ready queues �rst,

looking for threads to execute. If there are no threads in the local ready queue, a processor

looks in the the ready queues of other processors.

All of these user-level policies execute a thread on the processor on which the thread was

created, or on whichever processor happens to be idle when the thread reaches the front of the

ready queue. Once a thread begins execution, it typically runs to completion on that processor,

thus preserving cache a�nity. Only in rare cases does a thread establish state on a processor

and then migrate to another. However, even in cases where a thread executes on only one

processor, it may spend a substantial percentage of its lifetime bringing the data it needs into

the local cache.

To avoid the cache-misses associated with naive thread scheduling decisions, recent thread

libraries take communication costs into account. For example, U-threads [102], and Mercury

[52] assigns threads for scheduling in processors close to their data.

Data locality in load balancing is also addressed by Hamidzadeh and Lilja, in [10], together

with scheduling and synchronization costs. They propose a self adjusting scheduling algorithm

that dedicates one processor to search for partial schedules concurrently with the execution of

tasks previously assigned to the remaining processors.

There are so many di�erent cases that the compiler or the run-time system can load balance

the execution of the code, that not all of them can be mentioned here, or not all of them have

been studied. The more parallelism revealed in a program, the better the load balancing can

be. The operating system is another point of control of the load balancing on the processors

of a machine. One big di�erence on the techniques and methods used for load balancing by

the compilers and the ones used by the operating systems, is that the operating systems have

no knowledge of the behavior of the executed programs.

4 Operating System Layer

The operating system has traditionally been responsible for the fair and e�cient allocation of

resources, in general, and computing power, in particular, to various users (applications). In

this section we survey mechanisms and policies for operating system-level scheduling and load

balancing in parallel and distributed systems. We focus on policies that have been implemented,

or have at least been studied in conjunction with an existing system.
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The job of the operating system (as far as scheduling and load balancing are concerned) is

to schedule processes to processors so that each application has low response time, the system

sustains high job throughput, and the allocation of computing power to applications is done

fairly. Because it is di�cult to tradeo� these con
icting goals, most operating systems resort

to reduce the various sources of overhead experienced by parallel and distributed applications.

The idea is that if all sources of overhead are reduced, the throughput of the system increases,

which frequently decreases the average response time seen by each application. The major

sources of scheduling-related overhead the operating system needs to consider and carefully

balance are:

Load Imbalance: When some processors are idle, while some other processors have been

assigned several processes to execute, the system is underutilized and load imbalance happens.

This imbalance may be the result of a poor initial placement of processes to processors, or of

uneven assignment of computation to various processes.

Process Migration: To alleviate load imbalance, a scheduler may move a process from

one processor to another. Unfortunately, this move, includes the copying of the memory and

various other resources the migrated process needs. This overhead (called the process migration

overhead) and ranges from milliseconds (in closely coupled multiprocessors) to several seconds

(in loosely-coupled multicomputers), depending on the architecture, the application and the

operating system.

Communication - Synchronization overhead: Although processes belonging to di�erent

applications are rather independent, processes belonging to the same parallel/distributed appli-

cation communicate and synchronize towards solving the same problem. Scheduling processes

naively, may result in signi�cant communication/synchronization overhead. For example, if

two processes communicate frequently, they should be scheduled on nearby processors, or even

on the same processor (if there is enough parallelism) to avoid making expensive network

transactions each time one process wants to communicate information to the other.

Balancing the above sources of overhead is a di�cult task, because (i) the goals of scheduling

are usually in con
ict with each other (e.g. spreading processes to processors may balance the

load, but may create communication overhead) and (ii) most operating system schedulers have

incomplete information about user applications.

4.1 Early Work

The �rst scheduling and load balancing policies in shared-memory multiprocessors were based

on their uniprocessor predecessors. Small-scale bus-based shared-memory multiprocessors (like

the Sequent Symmetry and Balance [132, 133], the Encore [44], the Fire
y workstation [148],

and the Silicon Graphics multiprocessor workstations) use a central ready queue. All ready

19



processes created by all parallel and sequential applications are put in the same central ready

queue. Idle processors take the �rst process from the queue and start executing it. To avoid

starvation, processes are periodically interrupted by the hardware clock, suspended and put

back in the workqueue so that all processes have a chance to make forward progress. Although

conceptually simple, the single ready queue approach has several limitations, including unfair

allocation of resources to applications, contention, synchronization overhead, large number of

cache misses, etc.

To provide a fair policy based on a central ready queue, Leutenegger suggested that each

job should get a quantum inversely proportional to the number of processes it creates [84, 83].

Thus, each job, no matter how many processes it creates, gets its fair share of the system.

Leutenegger veri�ed the applicability of his policy using simulations.1

A system that uses a central ready queue for scheduling su�ers from contention when

several processors attempt to get a process from the ready queue to run it. To alleviate

this contention problem, distributed ready queues have been proposed. For example, in the

Renaissance parallel operating system that has been implemented on top of the Encore shared-

memory multiprocessor, the process-container abstraction is proposed [125, 124]. Each process

belongs to one process-container. Each processor can take ready processes to run from one

process-container only. By controlling the mapping of processes and processors to process-

containers, various scheduling policies can be implemented. For example, if there is a single

process-container for each processor, we have a single ready queue per processor. If there is

only one process-container in the system, we have a central-workqueue scheduling policy.

4.2 Synchronization Overhead

Even the above scheduling policies that do not su�er from contention, have signi�cant limi-

tations, because they ignore the fact that processes that belong to the same application (job)

cooperate and interact with each other. For example, processes of the same application com-

municate via critical sections, and synchronize using barriers. It has been shown that synchro-

nization primitives implemented by the run-time library interact with the scheduling policy

used by the operating system, and sometimes this interaction results in signi�cant overhead

[161, 92, 93]. For example, if a process is preemted while holding a lock, all other processes

that want to get the lock will be forced either to spin-wait for it, or suspend, but in any case,

they will not be able to make forward progress. As another example, consider the case the

parallel application consist of phases separated by synchronization barriers. If some of the

processes that compute towards the barrier are preempted by the scheduler, then the other

processes will probably reach the barrier, but they will not be able to proceed beyond the

barrier, unless the preemted processes start running and reach the barrier [100]. Although

synchronization primitives for multiprogrammed systems have been proposed [100, 158, 159],

some operating systems incorporate scheduling mechanisms to address the above synchroniza-

tion problems. Psyche, for example, [104, 131] incorporates a mechanism called the two-minute

1Leutenegger's simulations run on top of the Condor [90] load balancing system!
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warning. When a process is about to be descheduled the kernel sends an upcall called the two-

minute warning to the user application. When the application receives this upcall, it knows

that it is about to get preempted, so it should refrain from getting into a critical region, or do

whatever cleanup is necessary. Experimental results suggest that the two-minute warning may

improve performance by a factor of three is some cases [104]. In the UltraComputer system

[42], each process share a do-not-preempt-me bit with the kernel. When a process is about

to enter a critical section, it sets the do-not-preempt-me bit, and resets it when it exits the

critical section. When the scheduler is about to preempt a process, it checks the bit �rst. If

the bit is set, the scheduler does not preempt the process. To prevent malicious users from

monopolizing the CPU, the scheduler abides to the do-not-preempt-me bit, only a limited

amount of times. Scheduler activations [3] is another way to address the overhead associated

with preemption inside a critical section. Instead of avoiding the preemption problems, as

Psyche and Ultracomputer do, Scheduler Activations take an optimistic approach and correct

the problems once a process gets preempted inside a critical section and another process wants

to enter the same critical section. In this case, the latter process starts executing the rest of

the preempted process's code, until it exits the critical section. Then, the running process

starts executing its own code and enters the critical section. Scheduler activations are based

on the close cooperation of the compiler, the thread library and the operating system.

The Medusa Operating System provides a novel scheduling method called Coscheduling

[117, 116], which seems to be a general solution to all mentioned synchronization problems.

In coscheduling, either all processes of an application run at the same time, or none of them

runs. Thus, if a process wants to interact with the other processes of the same application,

all processes are running and the interaction can happen. When a process of an application is

preempted, all processes of the same application are preemted as well. So, even if the preemted

process holds a lock, no other process will ask for the lock. Coscheduling has been implemented

in the Medusa distributed operating system [117], and in the Psyche multiprocessor operating

system [26]. Although coscheduling addresses the synchronization problems mentioned above,

it may lead to processor underutilization: For example, suppose a 10-processor system, and

two applications: the one has 10 processes while the other has 5 processes. When the second

application runs, only �ve processors are used e�ectively. The other �ve may either be idle,

which leads to severe load imbalance, or they may execute �ve processes of the �rst appli-

cation, in which case the �rst application will su�er from the synchronization problems that

coscheduling was designed to address! Simulations done within the Medusa project, suggest

that in an average system about 80% of the processors execute coscheduled applications, while

the rest 20% execute some (but not all) processes of parallel applications. Coscheduling is also

di�cult to implement in large scale systems. The major requirement of coscheduling is that

all processors context switch at the same time. In a small scale system where all processors

can be connected to the same interrupt line, this requirement can be easily satis�ed. In a large

scale system, such a physical line does not exist, and other scalable software methods must be

used [48, 49].
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4.3 Communication Overhead

Recent architecture trends have changed drastically the way we should approach multiprocessor

scheduling and load balancing. Processors have become signi�cantly faster, increasing disparity

between processor and memory speeds. To hide the increasingly higher memory latencies, large

caches are being used. This implies that when a process starts running on a processor it will

experience several cold misses, but when it builds its working set in the cache, misses will

be signi�cantly reduced. If the process is suspended (e.g. due to time-sharing) and later

resumed on a di�erent processor, it will experience the same cold misses again, resulting in

high overhead. Instead, if the process is started on the processor it was previously run, most of

its working set it will still be there2. Preserving a�nity, improves cache hit rates, but may lead

to load imbalance: if processes are statically assigned to processors and never migrated, they

will preserve their a�nity, but they will introduce load imbalance, because some processors

will be idle, while other processors will be overloaded with a�nity-preserving jobs. To remedy

the imbalance, Squillante and Lazowska suggested a hierarchical structure of ready queues of

processes. Each processor has its own ready queue; there is also a single system ready queue

where newly created processes are placed. Each processor takes processes to execute from its

own ready queue. When these processes complete and the queue empties, the processor takes

processes from the single system ready queue and places them in its own ready queue. In the

(rather rare) case where the single system queue is empty as well, the processor snoops on the

queues of other processors and takes processes to execute from there. Squillante simulated his

proposed policies and showed that a�nity-preserving policies outperform the others [140, 141].

Although Squillante's work preserves a�nity in time-sharing multiprocessor scheduling

policies, it was soon realized that most scheduling overheads are related to the fact that in sev-

eral of the proposed scheduling policies, di�erent applications time-share the same processor.

Thus, most scheduling overheads will be eliminated if space-sharing policies are considered:

processors are divided among the applications in the system, so that no two applications share

a processor. The operating system is responsible for giving each application a set of proces-

sors, while the application/compiler/run-time-system is responsible for scheduling the useful

computation on top of these processors. The division of processors among applications may

be static, semi-dynamic (reevaluated at application arrival and departure), or fully dynamic

(reevaluated as application's parallelism changes).

Static policies are the easiest to implement. Their main advantage is that they provide

applications with a dependable environment that is guaranteed not to change for the entire

duration of the application. Thus, given a constant number of processors, the applications

can optimize their grain of parallelism, their communication pattern and their synchronization

primitives, to match the set of processors they are given. Unfortunately, static policies tend

to underutilize the multiprocessor. If, for example, an application completes its execution, its

processors will not be assigned to any running application, but will be assigned to the next new

application that arrives at the system (whenever that happens). To improve system utilization,

2The fact that a process has its working set on the cache of some processor is called cache a�nity.
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semi-static space-sharing scheduling policies have been proposed, implemented and simulated.

Crovella et. al. implemented a semi-dynamic space-sharing policy on top of a BBN

Butter
y plus parallel processor, and compare it to coscheduling and naive time-sharing [26].

Their result suggest that space-sharing outperforms all time-sharing policies. They suggest

that the major advantage of space-sharing stems from the fact that parallel applications have

sublinear speedup. Thus, an application can use a small number of dedicated processors much

better than using a larger number of processors, but on a time-shared basis. For example,

suppose that we have an 100-processor system and two applications. It is better to give each

application 50 processors, than giving each application half of the time in all 100 processors,

because in the latter case the communication/synchronization overhead of the application will

be much larger. Tucker and Gupta suggested that run-time systems should cooperate with the

operating system to make sure that no application employs more processes than the number of

processors it is given. This cooperation will result in a semi-static space-sharing policy. They

implemented their approach on top of an Encore shared-memory multiprocessor and showed

that it outperformed other time-sharing approaches [153, 152, 63]. Subsequent work by the

same authors [62] veri�es via simulation that space-sharing outperforms coscheduling and naive

time-sharing.

Black has reached similar conclusion when he implemented space-sharing on top of the Mach

operating system [15]. In his policy, each application is guaranteed a number of processors for

a long period of time (several minutes). After that interval, the application should be prepared

to give the processors back, or else it will be scheduled in a processor pool along with several

other applications.

Arpaci et. al. suggested that a combination of semi-static space-sharing and coschedul-

ing policies should be used for scheduling parallel and sequential applications on a network

of workstations [6]. They suggest that parallel applications should be separated from sequen-

tial applications, so that the former applications get lots of processor cycles, while the latter

applications get interactive response. Parallel applications should be scheduled in their par-

tition using coscheduling. It seems that the results of [6] contradict the rest of the research

in multiprocessors that suggests that space-sharing is better than coscheduling [26, 62]. The

reason for the seemingly contradicting results is the programming model used in [6] and in

the other approaches [26, 62]. The experimental testbed of [26, 62] consists of shared-memory

applications running on top of single-address-space multiprocessors, where it is relatively in-

expensive to change the number of processes of an application in order to take advantage of a

semi-static space-sharing policy. In [6] instead, the experimental testbed consists of message-

passing applications that run on top of a loosely-coupled workstation cluster, where changing

the number of processes and migrating them is di�cult to implement and expensive to use.

Thus, coscheduling parallel applications in a workstation cluster seems a reasonable choice that

shares the cluster among message-passing parallel applications in a fair way.

Although better than static scheduling, semi-static scheduling may still underutilize the

multiprocessor, especially when applications with varying levels of parallelism are considered.

Zahorjian and McCann pointed out that several parallel applications have a varying amount
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of parallelism. In such cases, allocating a �xed number of processors to each application

would result in signi�cant load imbalance, because applications with decreasing parallelism

will underutilize their processors, while applications with increasing parallelism could use some

extra processors [162]. In their subsequent work, McCann et. al. implemented the proposed

dynamic space-sharing policies, and showed that they dominate time-sharing policies [105].

4.4 Initial Processor Allocation

Given that each application receives a number of processors for a (rather) long period of time,

the scheduler should decide how many and which processors to give each application. To make

the right decision, information is needed by the scheduler. The simplest form of information

is how many processes an application has, while the most comprehensive information includes

the completion time of the processes, their precedence, and their interactions. Other types of

information include average, minimum, maximum parallelism, speedup, completion time, etc.

Using only elementary application performance characteristics, Sevcik proposed that when

the load in the system is high, each application should be given a number of processors close to

the number it can keep 100% busy (usually this is 1-2 processors). When the load is light, each

application should be given a number close to the maximum number it can use [135]. Sevcick

in his subsequent work proves that the optimal processor partitioning allocates processors in

proportion to the square root of the amount of work each application executes [134]. If the

speedup of each application is also known, the scheduler should give each application the

number of processors that minimizes the ratio of completion time over e�ciency [41], as Eager

et. al. suggest. If, however, either of them is not known, Eager et. al. suggest to give

each application a number of processors equal to its average parallelism. Because this policy

achieves at least half the speedup, while attaining at least 50% of the e�ciency, it provides

the guarantee that for each application either its speedup, or its e�ciency will be high, but no

matter what the load circumstances are, both speedup and e�ciency can not be low.

In some cases, however, it is possible for the scheduler to have lots of information about

the parallel application, which is gathered by the compiler and communicated to the run-time

system or the operating system. This information usually has the form of a graph. The

nodes of the graph are the processes. The edges of the graph represent precedence constraints

and/or communication requirements. Processes mapped on the same processor communicate

for free, while processes mapped on di�erent processors pay a communication penalty that

depends on the distance of the processors, the size of the messages transferred, etc. The

task of the scheduler is to map the graph onto the available processors in such a way as to

minimize total completion time. There is a non-trivial tradeo� that has to be solved by the

scheduler: Placing di�erent processes on the same processor decreases communication cost

but increases load imbalance - placing di�erent processes on di�erent processors may reduce

imbalance but increases communication cost. Although the tradeo�s of the problem sound

simple, the problem has been shown to be NP-complete. Thus, most research has focused

on �nding suboptimal solutions [126, 72, 81] on placement of tasks on processors. Although
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interesting from a theoretical point of view, such solutions are not robust in a real-world

environment where not all the information needed is known, and where unpredictable factors

(like the existence of other applications) may upset the carefully calculated schedule.

Zhou and Brecht use application performance characteristics to decide not only how many

processors an application is going to get, but which of the available processors the application

should get. They proposed a pool-based scheduling policy for large-scale NUMA multiproces-

sors in which all processors of the system are partitioned into processor pools [165, 20]. An

application is given a set of processors that usually reside in the same pool, unless there are

signi�cant performance advantages for an application to span multiple pools. Their work is

particularly important given the fact that most recent multiprocessors are based on hierarchies

of smaller systems [36, 82, 155]. The problem becomes more complicated if the applications

demand processors that are not only close to each other, but are also in a speci�c topology.

For example, in hypercube systems, applications are written as if they run on a dedicated hy-

percube. If an application is given a set of processors that are not connected in a sub-cube, the

application will experience severe performance degradation. To remedy this situation, a signif-

icant body of the literature deals with subcube allocation [37], [45], [75] and mesh allocation

[86] in multiprocessor systems.

4.5 Dynamic Reassignment of Processes

To alleviate the problems related to a poor initial allocation of processors to applications, some

systems employ dynamic reassignment of processors to applications.

4.5.1 Checkpoint-Restart Systems

The simplest mechanism of reclaiming processors from applications involves process check-

point and restarting: all processes are periodically checkpointed; that is, their memory image

is dumped on the disk. When a process must be migrated, itis killed and restarted from its

previous checkpoint on the new processor [89]. Checkpoint-restart systems su�er from addi-

tional overhead as they have to save the state of a running processes at regular intervals. This

overhead can be reduced by increasing the time interval between checkpoints. However, in the

case a process needs to be migrated, it will be restarted from its last checkpoint which could

have been taken a long time ago; all the work the process has done since its last checkpoint will

be wasted. Condor is an example of a checkpoint/restart system that has been implemented

on a network of workstations running Berkeley UNIX, and was developed at the University of

Wisconsin-Madison [90, 112, 111, 110]. Its main objective is to take advantage of idle work-

stations by scheduling new processes to run on them. Each workstation is assumed to have an

owner. Processes are allowed to run on workstations when their owners are not using them.

When the owners start using their workstations, processes running on them are stopped and

restarted on other workstations. To achieve process suspension and restart, Condor check-

points processes periodically; when a process must be migrated, it is restarted from the last
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checkpoint. The system is most e�ective for coarse-grain CPU-intensive parallel applications

like simulations. Condor is currently being used by several universities and organizations.

4.5.2 Process Migration

To alleviate the overhead associated with checkpoint/restart methods, several systems provide

a full-
edged process migration mechanism that saves and restores the state of a process only

if the process is migrated. Sprite [35, 31, 33, 34, 32], Charlotte [9, 8, 7], LOCUS [121], the V

system [150, 149], Accent [164, 163], DEMOS/MP [122], and AMOEBA [142] are among the

operating systems that implement full-
edged process migration. There are several di�culties

in implementing process migration: these include virtual memory copy, migration of open �les,

and migration of communication channels.

The most expensive part in process migration is usually the transfer of the virtual memory

of the migrating process [35]. Charlotte and LOCUS transfer the process's entire memory

image to the destination machine at migration time. Although simple, this method introduces

unnecessary overhead if the process will not need its entire image in the rest of its execution.

Moreover, since the transfer of an entire image (several Mbytes) may take several seconds (over

a slow Ethernet channel), the process will be idle for that long period of time. To avoid the

process being idle for that long, the V-system allows a process to continue execution on the

workstations it was executing, while its image is being transferred to the new workstation.

After the whole image is transferred, the process is suspended, the pages that have been

modi�ed since the image transfer started are transferred (again) as well, and the process is

restarted at the new workstation. To avoid the overhead of copying the entire memory image of

the migrated process, Accent uses a copy-on-reference approach. When a process is migrated,

its pages are not copied; only the necessary information to create a new process control block

on the destination workstation is transferred. When the process starts running on the new

workstation and accessing its memory, it will page fault, and copy only the pages it needs.

Sprite uses a similar method: when a process is migrated, its dirty pages are 
ushed to the

disk where its swap space is stored. When the process is restarted on the new workstation it

will cause a page-fault and bring from the swap �le all the pages it needs.

The limited bene�ts of process migration: Even when implemented carefully, process

migration is an expensive mechanism for load balancing. Eager et. al. [38] present the

results of several simulation experiments that quantify the bene�ts of using process migration

as a load sharing mechanism. They show \no conditions where migration could yield major

performance improvements". The main reason is that load balancing can be achieved much

easier by making good initial placement of new processes. When process migration is used only

as a mechanism for process eviction, then its cost is low, and its bene�ts are high. For example,

remote execution combined with process migration in the Sprite distributed operating system,

has resulted in performance improvements of up to an order of magnitude for long running

applications [35].
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5 Summary

In this paper we present the problem of load balancing in parallel systems and its interactions

with communication, synchronization and locality, and precedence constraints. We review load

balancing methods at the application, compile/run time system and operating system levels.

Recent architecture trends suggest that computation gets faster at a higher pace than

either synchronization or communication. Thus, load imbalance due to synchronization and

communication constrains increases with time, which in turns magni�es the importance of load

balancing in parallel and distributed systems, more than ever before.

We conclude that a careful balance between synchronization, communication and compu-

tation has to be done at all four levels of the system in order to improve the performance of

parallel applications.
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