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Abstract This paper combines quantum computation with classical neural network theory to produce a
guantum computational learning algorithm. Quantum computation uses microscopic quantum level effects
to perform computational tasks and has produced results that in some cases are exponentially faster than
their classical counterparts. The unique characteristics of quantum theory may also be used to create a
guantum associative memory with a capacity exponential in the number of neurons. This paper combines
two quantum computational algorithms to produce such a quantum associative memory. The result is an
exponential increase in the capacity of the memory when compared to traditional associative memories such
as the Hopfield network. The paper covers necessary high-level quantum mechanical and quantum
computational ideas and introduces a quantum associative memory. Theoretical analysis proves the utility

of the memory, and it is noted that a small version should be physically realizable in the near future.

1. Introduction

The field of neural networks seeks, among other things, to develop algorithms for imitating
in some sense the functionality of the brain. One particular area of interest is that of associativ
pattern recall. The field of quantum computation (QC) investigates the power of the unique
characteristics of quantum systems used as computational machines. This paper combines rest

from both of these fields to produce a new quantum computational learning algorithm. This



contributes significantly to both the field of quantum computation and to the field of neural
networks. The field of neural networks benefits by the introduction of a quantum associative
memory with a storage capacity exponential in the number of neurons. The contribution to QC is
in the form of a new quantum algorithm capable of results that appear to be impossible using
classical computational methods.

Assume a se¥’ of m binary patterns of length We consider the problem of associative
pattern completion -- learning to produce one of the full patterns when presented with only a partia
pattern. The trivial solution is simply to store the set of patterns as a lookup table or RAM. There
are two reasons why this is not always the best solution. First, it requires that a unique address |
associated with and remembered for each pattern. Second, the lookup table nagbitesn
order to store all the patterns. It is often desirable to be able to recall the patterns in an associati
fashion, thus eliminating the need for explicit addressing. That is, given a partial pattern one
would like to be able to “fill in” a reasonable guess as to the rest of the pattern. This may also bt
considered a form of generalization as the partial pattern may never have been seen during tt
learning of the pattern sgt Further, it would of course be beneficial if a smaller representation
was possible.

To this end, various classical associative memory schemes have been proposed, perha
the most well known being the Hopfield network [Hop82] and the bidirectional associative
memory (BAM) [Kos88]. These neural approaches to the pattern completion problem allow for
associative pattern recall, but suffer severe storage restrictions. Storing patterns of length
requires a network af neurons, and the number of pattemsis then limited bym < kn, where
typically .15< k< .5. This paper offers improvement by proposing a quantum associative
memory that maintains the ability to recall patterns associatively while offering a storage capacity of
O(2" using onlyn neurons.

The field of quantum computation, which applies ideas from quantum mechanics to the
study of computation, was introduced in the mid 1980's [Ben82] [Deu85] [Fey86]. For a readable

introduction to quantum computation see [Bar96]. The field is still in its infancy and very



theoretical but offers exciting possibilities for the field of computer science -- perhaps the most
notable to date being the discovery of quantum computational algorithms for computing discrete
logarithms and prime factorization in polynomial time, two problems for which no known classical

polynomial time solutions exist [Sho97]. These algorithms provide theoretical proof not only that
interesting computation can be performed at the quantum level but also that it may in some case
have distinct advantages over its classical cousin. Very recently several groups have produce
exciting experimental results by successfully implementing quantum algorithms on small-scale
nuclear magnetic resonance (NMR) quantum computers (see for example [Jon98] and [Chu98]).

Artificial neural networks (ANNSs) seek to provide ways for classical computers to learn
rather than to be programmed. As quantum computer technology continues to develop, artificia
neural network methods that are amenable to and take advantage of quantum mechanical propert
will become possible. In particular, can quantum mechanical properties be applied to ANNSs for
problems such as associative memory? Recently, work has been done in the area of combinir
classical artificial associative memory with ideas from the field of quantum mechanics. Perus
details several interesting mathematical analogies between quantum theory and neural netwol
theory [Per96] [Beh96]. [Ven98a] goes a step further by proposing an actual model for a quantun
associative memory and [Ven98c] further develops this model by exhibiting a physically realizable
guantum system for acting as an associative memory. The work here extends the work introduce
in [Ven98c], by further developing the ideas, presenting examples and providing rigorous
theoretical analysis.

This paper presents a unique reformulation of the pattern completion problem into the
language of wave functions and operators. This reformulation may be generalized to a large clas
of computational learning problems, opening up the possibility of employing the capabilities of
guantum computational systems for the solution of computational learning problems. Section Z
presents some basic ideas from quantum mechanics and introduces quantum computation and so
of its early successes. Since neither of these subjects can be properly covered here, references

further study are provided. Section 3 discusses in some detail two quantum algorithms, one fo



storing a set of patterns in a quantum system and one for quantum search. The quantui
associative memory that is the main result of this paper is presented in section 4 along witt
theoretical analysis of the model, and the paper concludes with final remarks and directions fo

further research in section 5.

2. Quantum Computation

Quantum computation is based upon physical principles from the theory of quantum
mechanics (QM), which in many ways is counterintuitive. Yet it has provided us with perhaps the
most accurate physical theory (in terms of predicting experimental results) ever devised by scienct
The theory is well-established and is covered in its basic form by many textbooks (see for exampl:
[Fey65]). Several necessary ideas that form the basis for the study of quantum computation ai
briefly reviewed here.
2.1. Linear Superposition

Linear superposition is closely related to the familiar mathematical principle of linear
combination of vectors. Quantum systems are described by a wave fufichan exists in a

Hilbert space [You88]. The Hilbert space has a set of sthﬁés,that form a basis, and the

system is described by a quantum state,

W)=3¢la). (1)
|) is said to be in a linear superposition of the basis smﬁsand in the general case, the
coefficientsci may be complex. Use is made here of the Dirac bracket notation, where |thésket
analogous to a column vector, and the {iirés analogous to the complex conjugate transpose of
the ket. In guantum mechanics the Hilbert space and its basis have a physical interpretation, ar
this leads directly to perhaps the most counterintuitive aspect of the theory. The counter intuition i
this -- at the microscopic or quantum level, the state of the system is described by the wavi

function ¢, that is, as a linear superposition of all basis states (i.e. in some sense the system is |

all basis states at once). However, at the macroscopic or classical level the system can be in only



single basis state. For example, at the quantum level an electron can be in a superposition of ma
different energies; however, in the classical realm this obviously cannot be.
2.2. Coherence and Decoherence
Coherence anddecoherence are closely related to the idea of linear superposition. A

guantum system is said to be coherent if it is in a linear superposition of its basis states. A result ¢
guantum mechanics is that if a system that is in a linear superposition of states interacts in any we
with its environment, the superposition is destroyed. This loss of coherence is called decoherenc
and is governed by the wave functiggn The coefficients; are called probability amplitudes, and
|q|2 gives the probability ofy) collapsing into statég) if it decoheres. Note that the wave
function ¢ describes a real physical system that must collapse to exactly one basis state
Therefore, the probabilities governed by the amplitugiesust sum to unity. This necessary
constraint is expressed as the unitarity condition

3o =1 2
In the Dirac notation, the probability that a quantum dtgtewill collapse into an eigenstatq)
is written K(g |l,U>‘2 and is analogous to the dot product (projection) of two vectors. Consider, for

example, a discrete physical variable called spin. The simplest spin system is a two-state syster

called a spin-1/2 system, whose basis states are usually represefmt)edspisn up) andl> (spin

down). In this simple system the wave functiprs a distribution over two values (up and down)

and a coherent statg/) is a linear superposition tj)f> and‘ 1>. One such state might be

W)= %))+ S (3)

A5

As long as the system maintains its quantum coherence it cannot be said to be either spin up or sy

down. Itis in some sense both at once. Classically, of course, it must be one or the other, ar

when this system decoheres the result is, for exampl@, )hﬁate with probability

(1w =(2) =2 @
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A simple two-state quantum system, such as the spin-1/2 system just introduced, is used &
the basic unit of quantum computation. Such a system is referred to as a quantuqubitit and
renaming the two staté8) and|1) it is easy to see why this is so.

2.3. Operators
Operators on a Hilbert space describe how one wave function is changed into another.

Here they will be denoted by a capital letter with a hat, suck, @d they may be represented as

matrices acting on vectors. Using operators, an eigenvalue equation can beAwjttena| ¢ ),

whereg; is the eigenvalue. The solutiohq) to such an equation are called eigenstates and can be

used to construct the basis of a Hilbert space as discussed in section 2.1. In the quantu
formalism, all properties are represented as operators whose eigenstates are the basis for t
Hilbert space associated with that property and whose eigenvalues are the quantum allowed valu
for that property. It is important to note that operators in quantum mechanics must be lineai
operators and further that they must be unitary so Mat= AAT =T, wherd is the identity
operator, andA' is the complex conjugate transpose, or adjoint@of
2.4. Interference

Interference is a familiar wave phenomenon. Wave peaks that are in phase interfere
constructively (magnify each other’'s amplitude) while those that are out of phase interfere
destructively (decrease or eliminate each other’s amplitude). This is a phenomenon common to a
kinds of wave mechanics from water waves to optics. The well-known double slit experiment
demonstrates empirically that at the quantum level interference also applies to the probability wave
of quantum mechanics. As a simple example, suppose that the wave function described i

eqguation (3) is represented in vector form as

1 [PC
= 5
)= EHF (5)
and suppose that it is operated upon by an opeéatdnscribed by the following matrix,
~_10d 1C
O=— . 6
NP1 s ©)



The result is

~ 10 1lg1 g 1 8
)= 55H FERA VioHF @)
and therefore now
@)= 25|+ L)) 8)

Notice that the amplitude of tﬂe> state has increased while the amplitude of‘ tf)estate has

decreased. This is due to the wave function interfering with itself through the action of the
operator -- the different parts of the wave function interfere constructively or destructively
according to their relative phases just like any other kind of wave.
2.5. Entanglement

Entanglement is the potential for quantum states to exhibit correlations that cannot be
accounted for classically. From a computational standpoint, entanglement seems intuitive enoug
-- it is simply the fact that correlations can exist between different qubits -- for example if one qubit
is in the |1) state, another will be in thl) state. However, from a physical standpoint,
entanglement is little understood. The questions of what exactly it is and how it works are still not
resolved. What makes it so powerful (and so little understood) is the fact that since quantum state
exist as superpositions, these correlations somehow exist in superposition as well. When th
superposition is destroyed, the proper correlation is somehow communicated between the qubit

and it is this “communication” that is the crux of entanglement. Mathematically, entanglement may

be described using the density matrix formalism. The density nmgtok a quantum statiep) is

defined as
Py =|W) Y. (9)
For example, the quantum state
1
€)= 100)+ |01 (10)
appears in vector form as
AC
1 Gt
&) =—0L (11)
=



and it may also be represented as the density matrix

M 1 0 Q
|EXE 151 Lo % (12)
Pe = 2@ 00 %
00
while the state
@) =100+ |10 (13)
is represented as
M 0 0 I
~ 1o 0 0 O
00
and the staté() = T13|OO> +\T13|01> +%|1J> as
M 1 0 I
_ 1t 1 0 L
-|z><Z|—§§E 0 0 ¢ )
10

where the matrices and vectors are indexed by the state labels 00, ..., 11. Now, ngijceathat

be factorized as
10t 0g
b= "R 1F 16y

wherel] is the normal tensor product. On the other hagaan not be factorized. States that can
not be factorized are said to be entangled, while those that can be factorized are not. Nptice that

can be partially factorized two different ways, one of which is
Mm 1

R sl
] E

(17)

IS ma(n )

0
0
0
(the other involves equation (12) and a different remainder); however, in both cases the
factorization is not complete. Therefo®,is also entangled, but not to the same degreg,as

(becausep; can be partially factorized buty, cannot). Thus there are different degrees of

entanglement and much work has been done on better understanding and quantifying it [Joz9’



[Ved97]. It is interesting to note from a computational standpoint that quantum states that are
superpositions obnly basis states that are maximally far apart in terms of Hamming distance are
those states with the greatest entanglement. For examgpkea superposition of only the states

|00) and|11), which have a maximum Hamming spread, and thergipie maximally entangled.
Finally, it should be mentioned that while interference is a quantum property that has a classics
cousin, entanglement is a completely quantum phenomenon for which there is no classical analog
2.6. Quantum Networks

Quantum networks [Deu89] are one of several theoretical models of quantum computation.
Others include quantum Turing machines [Ben82], and quantum cellular automata [Gr688]. In the
guantum network model, each unitary operator is modeled as a quantum logic gate that affects on
two or more qubits. Schematically, this is represented as a set of quantum “wires” entering ani
leaving the quantum gates, reminiscent of classical logic networks. For example, figure 1 shows
network that operates on three qubits, which are represented as lines.

By convention the logic flows from left to right. The gates are represented as boxes and
labeled with the name of the operator that they represent. A dot on a quantum “wire” represents
conditional upon that qubit. Therefore, in the quantum network shown in figuﬁreépresents a
single qubit quantum gateé and C represent 2-qubit quantum gates, aﬁdrepresents a
conditional 3-qubit gate. Suppose thatis an operator that flips the state of a quétjs an
operator that exchanges the states of two quﬁiﬁs, an operator that flips the states of two qubits
if they are equal, an® is an operator that exchanges the states of two qubits if a third qubit is in
the |1) state. When three qubits “enter” the quantum logic network, the one lahdied has its
state flipped; the; andg, exchange stateg; andgs have their states flipped if they are equal,
and finallyg, andgs exchange statesdf is in the statél). Of course, if the qubits “entering” the
logic array did not exist in a superposition of states, this would be no different than a classical logic
sequence. However, the qubits exist in a superposition of states; therefore, these gates or
operations are applied to all the states in the superposition simultaneously, resulting in what ha

been calledjuantum parallelism. Recall that the quantum logic gate arrays are simply a schematic



way to represent the time evolution of a quantum system. They are not meant to imply tha
guantum computation can be physically realized in a manner similar to classical logic networks.
Alternatively, the network could be represented as a product of quantum operators. Since
operators are applied right to left, the network of figure 1 would be represented as the operatc
productf)ééA. In what follows, both the network and the product of operators representations
will be used.
2.7. Quantum Algorithms

The field of quantum computation is just beginning to develop and offers exciting
possibilities for the field of computer science -- the most important quantum algorithms discovered
to date all perform tasks for which there are no classical equivalents. For example, Deutsch’:
algorithm [Deu92] is designed to solve the problem of identifying whether a binary function is
constant (function values are either all 1 or all 0) or balanced (the function takes an equal number ¢
0 and 1 values). Deutsch’s algorithm accomplishes the task in©@¢detime, while classical
methods requir®(2") time. Simon’s algorithm [Sim97] is constructed for finding the periodicity
in a 2-1 binary function that is guaranteed to possess a periodic element. Here again an exponent
speedup is achieved. Admittedly, both these algorithms have been designed for artificial,
somewhat contrived problems. Grover’s algorithm [Gro96], on the other hand, provides a methoc
for searching an unordered quantum database inQ{me ), compared to the classical bound of
O(n). Here is a real-world problem for which quantum computation provides performance that is
classically impossible (though the speedup is less dramatic than exponential). Finally, the mos
well-known and perhaps the most important quantum algorithm discovered so far is Shor’s
algorithm for prime factorization [Sho97]. This algorithm finds the prime factors of very large
numbers in polynomial time, whereas the best known classical algorithms require exponential time
Obviously, the implications for the field of cryptography are profound. These quantum algorithms
take advantage of the unique features of quantum systems to provide impressive speedup ov

classical approaches.
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3. Storing and Recalling Patterns in a Quantum System

Implementation of an associative memory requires the ability to store patterns in the
medium that is to act as a memory and the ability to recall those patterns at a later time. Thi
section discusses two quantum algorithms for performing these tasks.
3.1. Grover’'s Algorithm

Lov Grover has developed an algorithm for finding one item in an unsorted database,
similar to finding the name that matches a telephone number in a telephone book. Classically, i
there areN items in the database, this would require on ave@(®¥) queries to the database.
However, Grover has shown how to do this using quantum computation witfO¢rii)
gueries. In the quantum computational setting, finding the item in the database means measurir
the system and having the system collapse with near certainty to the basis state which correspon
to the item in the database for which we are searching. The basic idea of Grover’s algorithm is t
invert the phase of the desired basis state and then to invert all the basis states about the aver:
amplitude of all the states [Gro96] [Gro98]. This process produces an increase in the amplitude ¢
the desired basis state to near unity followed by a corresponding decrease in the amplitude of tt

desired state back to its original magnitude. The process is cyclical with a pe@adTbI and

thus aftetO(\'N) queries, the system may be observed in the desired state with near certainty
(with probability at Ieasll—%). Interestingly this implies that the larger the database, the greater

the certainty of finding the desired state [Boy96]. Of course, if even greater certainty is required,
the system may be sampliedimes boosting the certainty of finding the desired stat‘e—t%lT.

Here we present the basic ideas of the algorithm and refer the reader to [Gro96] for details. Defin

the following operators.

f(p = identity matrix except fopyp = -1, (18)
which simply inverts the phase of the basis stgfeand
~ 1@ 1t

W=— , 19

V2 -1t )

11



which is often called the Walsh or Hadamard transform. This operator, when applied to a set o
qubits, performs a special case of the discrete fourier transform.

Now to perform the quantum search on a database dfisiZ&', wheren is the number of
qubits, begin with the system in tl\'@ state and apply the/ operator. This initializes all the

states to have the same amplitud%—. Next apply theIA, operator, wherér) is the state being

sought, to invert its phase. Finally, apply the operator
G =-W,W (20)

%RﬁN times and observe the system (see figure 2). Chmperator inverts all the states’
amplitudes around the average amplitude of all states.
3.1.1. An example of Grover’'s algorithm

Consider a simple example for the cse 16. Suppose that we are looking for the state
|0110, or in other words, we would like our quantum system to collapse to thestat®110
when observed. In order to save space, instead of writing out the entire superposition of states,
transpose vector of coefficients will be used, where the vector is indexed by the 16 basis state
|0000,---,|1112. Step 1 of the algorithm results in the state

ly)= (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).
In other words, the quantum system describefi/Byis composed entirely of the single basis state
|0000. Now applying the Walsh transform in step 2 to each qubit changes the state to
) Dﬁ’q|w> :%(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

that is a superposition of all 16 basis states, each with the same amplitude. The loop of step 3
now executedg\s’ﬂ = 3 times. The first time through the loop, step 4 inverts the phase of the

state| 1) =|0110 resulting in
@) 00T = | @) :%(1,1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1),

and step 5 then rotates all the basis states about the average, which in thi%c&mz IS

w)®-|y) = £(3,3,3,3,3,3,11,3,3,3,3,3,3,3,3,3).

The second time through the loop, step 4 again rotates the phase of the desired state giving
)0l ~|y)=1(3,3,3,3,3,3,-11,3,3,3,3,3,3,3,3,3),

12



and then step 5 again rotates all the basis states about the average, whiciﬂzzgewﬁlsat

W) Dﬁim = .;(5,5,5,5,5,5,61,5,5,5,55,5,5,5,5).

Repeating the process a third time results in
@) 00T~ @) = %(5,5,5,5,5,5,-61,5,5,5,5,5,5,5,5,5).

for step 4 and

) D§H|zp> = %6(-13,-13,-13,-13,-13,-13,251,-13,-13,-13,-13,-13,-13,-13,-13,-13)
for step 5. Squaring the coefficients gives the probability of collapsing into the corresponding
state, and in this case the chance of collapsing intrikel0110 basis state is .98 96%. The
chance of collapsing into one of the 15 basis states that is not the desired state is approximate
.05 = .25% for each state. In other words, there is only a 15%@8% probability of collapsing
into an incorrect state. This chance of success is better than the]bo%ngiven above and will
be even better dd gets larger. For comparison, note that the chance for success after only two
passes through the loop is approximately 91%, while after four passes through the loop it drops t
58%. This reveals the periodic nature of the algorithm and also demonstrates the fact that the fir:

time that the probability for success is maximal is indeed %fteﬂ steps of the algorithm.

Figure 3 represents Grover’s algorithm as a quantum network. The ellipses indicate that the thre
operators to the right of the wavy line are those repe%teﬁ times. Notice that thé operators
require an ancillary bit.
3.2. Initializing the Quantum State

[Ven98Db] presents a polynomial-time quantum algorithm for constructing a quantum state
over a set of qubits to represent the information in a training set. The algorithm is implementec
using a polynomial number (in the length and number of patterns) of elementary operations on one
two, or three qubits. Here the necessary operators are presented briefly and the reader is referr

to [Ven98b] for details.

13



m o0 o 0 r
g) 1 0 0 E

N p-1 -1

p_p o P L

S B V' p Jp E (21)
Do = ,\/p—_l[
g \p P E

where kps<m. These operators form a set of conditional transforms that will be used to
incorporate the set of patterns into a coherent quantum state. There will be a cfﬁ*?empmator
associated with each pattern to be stored. The interested reader may note that this definition of ti
sP operator is slightly different than the original. This is because in this context, we are
considering associative pattern recall rather than pattern classification and therefore have no outp

classper se. Thus the phase of the coefficients becomes unimportant in this case.

® 1 0 QO

(22)

o O O
o — O
BaQre

=
!

conditionally flips the state of the second qubit if the first qubit is inGhstate; another operator,

F, conditionally flips the second qubit if the first qubit is in thestate € is the same ag°

except that the off-diagonal elements occur in the bottom right quadrant rather than in the top left)
These operators are referred to elsewhere as Control-NOT because a logical NOT (state flip) i
performed on the second qubit depending upon (or controlled by) the state of the first qubit. A
complex combination of several of these operators is used to change basis states to correspond

patterns and will be termé€LIP in what follows (for details see [Ven98b]).
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conditionally flips the state of the third qubit if and only if the first two are in the |§€@te Note
that this operator is really just a Fredkin gate [Fre82] and can be thought of as performing a logice
AND of the negation of the first two bits, writing a 1 in the third if and only if the first two are both
0. Three other operatoré®, A and A™, are variations ofA% in which the off diagonal
elements occur in the other three possible locations along the main diaéBﬁa:lan be thought
of as performing a logical AND of the first bit and the negation of the second, and so forth. A
combination of these operators is used to identify specific states in a superposition and along wit
one F? operator combine to form complex operator that will be c&R¢ here (again for details
see [Ven98h]).

Now given a sel? of m binary patterns of length to be memorized, the quantum
algorithm for storing the patterns requires a setmafl2qubits, the firsh of which actually store
the patterns and can be thought of analogoustyrasurons in a quantum associative memory.
For convenience, the qubits are arranged in three quantum registers lalgelaadc, and the
quantum state of all three registers together is represented in the Dirac notatigncas The
algorithm proceeds as follows (see figure 4).

Thex register will hold a superposition of the patterns. There is one qubit in the register
for each bit in the patterns to be stored, and therefore any possible pattern can be represented. 1

g register is a garbage register used only in identifying a particular state. It is restored to the stat

@ after every iteration. Theregister contains two control qubits that indicate the status of each
state at any given time and may also be restored I{@)hﬂate at the end of the algorithm. A high-
level intuitive description of the algorithm is as follows. The system is initialized to the single
basis stat¢6>. The qubits in th& register are selectively flipped so that their states correspond to
the inputs of the first pattern. Then, the state in the superposition representing the pattern i
“broken” into two “pieces” -- one “larger” and one “smaller” and the status of the smaller one is
made permanent in tleeregister. Next, the register of the larger piece is selectively flipped again

to match the input of the second pattern, and the process is repeated for each pattern. When all 1

patterns have been “broken” off of the large “piece”, then all that is left is a collection of small
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pieces, all the same size, that represent the patterns to be stored; in other words, a cohere
superposition of states is created that corresponds to the patterns, where the amplitudes of tl
states in the superposition are all equal. The algorithm redq(nay steps to encode the patterns

as a quantum superposition omgguantum neurons. Note that this is optimal in the sense that just
reading each instance once cannot be done any fastéd(tinahn

3.2.1. An example of storing patterns in a quantum system

A concrete example for a set of binary patterns of length 2 will help clarify much of the
preceding discussion. Suppose that we are given the pattgrrr461t,10,11}. Recall that the
register is the important one that corresponds to the various patterns, thegdtster is used as a
temporary workspace to mark certain states and thatréggster is a control register that is used to
determine which states are affected by a particular operator. Now the initidOSt&€00 is
generated and the algorithm evolves the quantum state through the series of unitary operatiot
described in figure 4.

First, for any state whose, qubit is in the state0), the qubits in thex register
corresponding to non-zero bits in the first pattern have their states flipped (in this case only the
secondk qubit’s state is flipped) and then thequbit’s state is flipped if the, qubit’s state i$0).

This flipping of thec; qubit's state marks this state for being operated upon tﬁpalperator in
the next step. So far, there is only one state, the initial one, in the superposition, so things ar
pretty simple. This flipping is accomplished with #dP operator of line 3 in figure 4.
100,0,00 O T - 01,0,10
Next, any state in the superposition with thegister in the statd0) (and there will always be
only one such state at this step) is operated upon by the apprcfﬁ?riatmrator (withp equal to
the number of patterns including the current one yet to be processed, in this case 3). Thi
essentially “carves off” a small piece and creates a new state in the superposition. This operatic

corresponds to line 4 of figure 4.
S 1 2
08 - %/01,0.13+ 1201,0,10
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Next, the two states affected by {58 operator are processed by ®8VE operator of line 5 of
the algorithm. This makes the state with the smaller coefficient a permanent representation of th
pattern being processed and resets the other to generate a new state for the next pattern. At t

point one pass through the loop of line 2 of the algorithm has been performed.

1 2
0B~ /01,0,04+201,0,00

Now, the entire process is repeated for the second pattern. Againetiister of the appropriate
state (that state whosg qubit is in the|0) state) is selectively flipped to match the new pattern.
Notice that this time the generator state hasiiegister in a state corresponding to the pattern that
was just processed. Therefore, the selective qubit state flipping occurs for those qubits tha

correspond to bits in which the first and second patterns differ -- both in this case.

F 1 2
00~ 5/01,0,04+ 2]10,0,10

Next, anotherSP operator is applied to generate a representative state for the new pattern.
08 - 2101,0,03+ %, 410,0,14+ 2 #10,0,10
Again, the two states just affected by B operator are operated on by ®®VE operator, the
one being made permanent and the other being reset to generate a new state for the next pattern.
O AF - Tls|01,o,01+\Tlg|1o,o,01+\%|1o,o,oo
Finally, the third pattern is considered and the process is repeated a third timeregiséer of
the generator state is again selectively flipped. This time, only those qubits corresponding to bit:
that differ in the second and third patterns are flipped, in this case juskgubit

07~ %101,0,03+ 710,003+, 311,010

Again a new state is generated to represent this third pattern.
S 1 1 11 01
08 - T§|01’0'01+ﬁ|10’0’01+W\/§|11’0’11+\31\0/§|11’0’1Q

Finally, proceed once again with t8&VE operation.
1 1 1
OB~ 301,0,03+ 7[10,0,03+ [11,0,03

At this point, notice that the states of thandc registers for all the states in the superposition are

the same. This means that these registers are in no way entangled wittgikter, and therefore
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since they are no longer needed they may be ignored without affecting the outcome of furthe
operations on theregister. Thus, the simplified representation of the quantum state of the system
is

- 10D+ 5[10) - 11,
and it may be seen that the set of pattgrmsnow represented as a quantum superposition i the
register.

The quantum network representation of the algorithm for a single pattern is shown in figure
5. TheFLIP operator is composed of thed operators left of theSP and the guestion marks
signify that the operator is applied only if the qubit's state differs from the value of the
corresponding bit in the pattern being processed. SR\E operator is composed of thee
operators and thé&? to the right ofSP. The network shown is simply repeated for additional
patterns.

3.3. Grover’s Algorithm Revisited

Grover’s original algorithm only applies to the case where all basis states are represented i
the superposition equally to start with and one and only one basis state is to be recovered. In oth
words, strictly speaking, the original algorithm would only apply to the case when thoset
patterns to be memorized includes all possible patterns of leragith when we know atl bits of
the pattern to be recalled -- not a very useful associative memory. However, several other pape
have since generalized Grover’s original algorithm and improved on his analysis to include case
where not all possible patterns are represented and where more than one target state is to be fot
[Boy96] [Bir98] [Gro98]. Strictly speaking it is these more general results which allow us to
create a useful QUAM that will associatively recall patterns.

In particular, [Bir98] is useful as it provides bounds for the case of using Grover's
algorithm for the case of arbitrary initial amplitude distributions (whereas Grover originally
assumed a uniform distribution). It turns out that a high probability for success using Grover’s
original algorithm depends upon this assumption of initial uniformity as the following modified

version of example 3.1.1 will show.

18



3.3.1. Grover example revisited
Recall that we are looking for the stéd10, and assume that we do not perform the first
two steps of the algorithm shown in figure 2 (which initialize the system to the uniform
distribution) but that instead we have the initial state described by
|w>=%(1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1),
that is a superposition of only 6 of the possible 16 basis states. The loop of step 3 is nov

executed. The first time through the loop, step 4 inverts the phase of th¢rstat@l110

resulting in
@) 00 -|¢) = 7(1,0,0,1,0,0,-1,0,0,1,0,0,1,0,0,1),
A6

and step 5 then rotates all the basis states about the average, \Ajﬂ’%chsis
vV

@) D§_>|(,U> =2716(-1,1,1,-1,1,1,3,1,1,-1,1,1,-1,1,1,-1).

The second time through the loop step 4 again rotates the phase of the desired state giving

|w> Dli_f _’|Lp> =?]}6(-1,1’1’-1’1,1,-3’1’1’-1’1’1’-1,1’1'-1)’

and then step 5 again rotates all the basis state about the average, Whicllqé\a%wdsthat

W) D§q|w> = &%(5"3*'3’5"3"3’13"3"3’5"3"3’5"3"3’5)-

Now squaring the coefficients gives the probability of collapsing into the corresponding state. In
this case, the chance of collapsing into|the=|0110 basis state is .66 44%. The chance of
collapsing into one of the 15 basis states that is not the desired state is approximately 56%. Th
chance of success is much worse than that seen in example 3.1.1, and the reason for this is tl
there are now two types of undesirable states: those that existed in the superposition to start wi
but that are not the state we are looking for and those that were not in the original superposition bt
were introduced into the superposition by ée)perator. The problem comes from the fact that
these two types of undesirable states acquire opposite phases and thus to some extent cancel €
other out. Therefore, during the rotation about average performed @/mlperator the average is
smaller than it should be if it were to just represent the states in the original superposition. As :

result, the desired state is rotated about a suboptimal average and never gets as large a probabi
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associated with it as it should. In [Bir98], Biron, et. al. give an analytic expression for the

maximum possible probability using Grover’s algorithm on an arbitrary starting distribution.

pmale-E \lj—l'f, (24)

j=r+1
whereN is the total number of basis statess the number of desired states (looking for more than
one state is another extension to the original algorithms)the initial amplitude of stajgand they
assume without loss of generality that the desired states are numbreairidtthe other states are
numberedr+1 toN. [ is the average amplitude of all the undesired states, and therefore the
second term of equation (24) is proportional to the variance in the amplitudes. Obviously, in the
uniform case that the original algorithm assumed, the variance will be 0 and th&gforel;

and in example 3.1.1 we do get 96% probability of success. The reason we do not reach th
theoretical maximum is that equation (24) is a tight bound only in the case of non-integer time
steps. Since this is not realistic, it becomes in practice an upper bound. Now consider the case
the initial distribution of example 3.3.1. The variance is proportional to 1¥#5t28%= .56 and
thusPax = .44.

In order to rectify this problem, we modify Grover’'s algorithm as in figure 6. The
difference between this and Grover’s original algorithm is first, we do not begin with th@tate
and transform it into the uniform distribution. Instead we assume some other initial distribution
(such as would be the result of the pattern storage algorithm described in section 3.2). Thi
modification is actually suggested in [Bir98]. The second modification, which has not been
suggested before, is that of step 3 in figure 6. That is, the second state rotation operator not on
rotates the phase of the desired states, but also rotates the phases of all the stored pattern state
well. The reason for this is to force the two different kinds of nondesired states to have the sam
phase, rather than opposite phases as in the original algorithm. After step 4 in figure 6, then, w
can consider the state of the system as the input into the normal loop of Grover’s algorithm.

With this modification of the algorithm, we can once again rework the example of 3.1.1,

again starting with the state
@) = \,%(l,0,0,l,0,0,1,0,0,1,0,0,1,0,0,1).
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The first two steps are identical to those above:
@) 00~ @) = %(1,0,0,1,0,0,-1,0,0,1,0,0,1,0,0,1)

and
@) OF-[g)= 7 (-1,1,1,-1,1,1,3,1,1,-1,1,1,-1,1,1,-1).
V
Now, all the states present in the original superposition are phase rotated and then all states &
again rotated about average:

w)obr-jg)=(1,1,1,1,1,1,-3,1,1,1,1,1,1,1,1,1)

and
e 1
@) OF - | ) =,5%(1111119111111111).

Finally, we enter the loop of line 5 and have
} _ 1
@) 00T = | ) =,6(111111-91111111,1,)

for step 6 and
5 _ 1
|w) E]ﬁ—»|l/.l>—m(-1,-1,-1,-1,-1,-1,39,-1,-1,-1,-1,-1,-1,-1,-1,-1)
for step 7. Squaring the coefficients gives the probability of collapsing into the desired

|7) =|0110 basis state as 99% -- a significant improvement that is critical for the QUAM proposed

in the next section.

4. Quantum Associative Memory

A quantum associative memory (QUAM) can now be constructed from the two algorithms
of section 3. DefineP as an operator that implements the algorithm of figure 4 for memorizing
patterns described in section 3.2. Then the operation of the QUAM can be described as follows
Memorizing a set of patterns is simply

|y) = P[0), (25)

with | () being a quantum superposition of basis states, one for each pattern. Now, suppose w
know n-1 bits of a pattern and wish to recall the entire pattern. We can use the modified Grover’s

algorithm to recall the pattern as
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|w)=Gl,Gi|y) (26)

followed by
@) =Gi\|w) (27)
repeatedr times (how to calculat€ is covered in section 4.2), where= b1byb3? with b; being
the value of théth known bit. Since there are 2 states whose first three bits would match those of
7, there will be 2 states that have their phases rotated, or marked, Ibydperator. Thus, with
2n+1 neurons (qubits) the QUAM can store upg\te2" patterns inO(mn) steps and requires
O(\/'N) time to recall a pattern (see figure 7). This last bound is somewhat slower than desirable
and may perhaps be improved with an alternative pattern recall mechanism.
4.1. A QUAM Example
Suppose that we have a set of patt¢fns{0000, 0011, 0110, 1001, 1100, 1111}. Then

using the notation of example 3.1.1 and equation (25) a quantum state that stores the pattern se:

created as

0)f - |¢) :\%(1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1).

Now suppose that we want to recall the pattern whose first three bits are 011z =Th&h?, and

applying equation (26) gives
@) 007 ~|¢) = £(1,0,0,1,0,0,-1,0,0,1,0,0,1,0,0,1),
@) 08~ gy =, (-1,1,1,-1,1,1,3,1,1,-1,1,1,-1,1,1,-1),
@)D ﬁq|w>:2#,{)(1,1,1,1,1,1,-3,-1,1,1,1,1,1,1,1,1),
and
) OF - | ) :W?G(L1,1,1,1,1,17,9,1,1,1,1,1,1,1,1).
At this point, there is a 96.3% probability of observing the system and finding theddthte Of
course there are two states that match and |§tb1€) has a 78% chance while sta@d11 has a

22% chance. This may be resolved by a standard voting scheme and thus we have achieved ¢

goal -- we can observe the system to see that the completion of the pattern 011 is 0110. Notice th
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the loop of line 10 in figure 7 is repeat€dimes but that in this case it was never entered because
T happens to be zero for this example.

Figure 8 shows a high-level quantum network for the QUAM. To the left of the longer
wavy line, a high-level version of the storage algorithm described in section 3.2 is represented
The ellipses indicate that this sequence is repeated for each pattern to be stored. Notice that most
the ancillary qubit lines used in the storage algorithm do not extend to the second part because thi
are not needed. In other words the QUAM exists only ix tiegister. The operators to the right
of the longer wavy line show a high-level implementation of the modified Grover’s algorithm
described in section 3.3. The second pair of ellipses represent the fact that the final two operato
will be repeated a number of times (as determined by equation (38) below).

Using some concrete numbers, assumertia2* andm = 2 (we letm be less than the
maximum possible!® to allow for some generalization and to avoid the contradictory patterns that
would otherwise result). Then the QUAM requi@¥snn) = O(2'8) < 1P operations to memorize
the patterns an@(/N) = O(+2*¢) < 10° operators to recall a pattern. For comparison, in [Bar96]
Barenco gives estimates of how many operations might be performed before decoherence fc
various possible physical implementation technologies for the qubit. These estimates range fror
as low as 19(electrons in GaAs and electron quantum dots) to as hightagtEpped ions), so
our estimates fall comfortably into this range, even near the low end of it. Further, the algorithm
would require only & +1= 2*16+1 = 33 qubits! For comparison, a classical Hopfield type
network used as an associative memory has a saturation point araunth.bther words, about
.15n patterns can be stored and recalled witheurons. Therefore, with=16 neurons, a
Hopfield network can store only .15*£62 patterns. Conversely, to stor& patterns would
require that the patterns be close to 110,000 bits long and that the network have that same numk
of neurons. So the QUAM provides significant advantages over a classical associative memory.

The QUAM also compares favorably with other quantum computational algorithms because
it requires far fewer qubits to perform significant computation that appears to be impossible

classically. For example, Shor’s algorithm requires hundreds or thousands of qubits to perform i
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factorization that can not be done classically. Vedral, et. al. give estimates for number of qubits
needed for modular exponentiation, which dominates Shor’s algorithm, anywhererftdm 7
down to 4+3 [Ved96]. For a 512 bit number (which RSA actually claims may not be large
enough to be safe anymore, even classically), this translates into anywhere from 3585 down t
2051 qubits. As for elementary operations, they cla{m?), which in this case would l@(10%).
Therefore, the algorithm presented here requires orders of magnitude fewer operations and qubi
than Shor’s in order to perform significant computational tasks. This is an important result since
guantum computational technology is still immature -- and maintaining and manipulating the
coherent superposition of a quantum system of 30 or so qubits should be attainable sooner ths
doing so for a system of 2000 qubits.

As mentioned in the introduction, very recently Jones and Mosca have succeeded ir
physically implementing Deutsch’s algorithm on a nuclear magnetic resonance (NMR) quantum
computer based on the pyrimidine base cytosine [Jon98]. Even more pertinent to this work
Chuang et. al. have succeeded in physically implementing Grover’s algorithm for the=2ase
using NMR technology on a solution of chloroform molecules [Chu98]. It is therefore not
unreasonable to assume that a quantum associative memory may be implemented in the not t
distant future.

4.2. Probability of Success

Let N be the total number of basis statedye the number of marked states that correspond
to stored patternsg be the number of marked states that do not correspond to stored patterns, an:
p be the number of patterns stored in the QUAM. We would like to find the average amilitude
of the marked states and the average amplitudéthe unmarked states after applying equation

(26). It can be shown that

ko =4a-ab, (28)
ki =4a—-ab+1, (29)
lp =2a-ab, (30)

and
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l, =4a-ab-1. (32)
Herekg is the amplitude of the spurious marked stdteis, the amplitude of the marked states that
correspond to stored patterrlg,is the amplitude of the spurious unmarked stdtess the

amplitude of the unmarked states that correspond to stored patterns after applying equation (2€

and
a= M (32)
N
and
N

A little more algebra gives the averages as

k=4a-ab+ (34)
r0+r1
and
f:—ab+2a(N+p_r°_2r1)— (p-r,) | (35)
N-rg—rq N-rg—1q

Now we can consider this new state described by equations (28-31) as the arbitrary initia
distribution to which the results of [Bir98] can be applied. These can be used to calculate the uppe
bound on the accuracy of the QUAM as well as the appropriate number of times to apply equatiol
(27) in order to be as close to that upper bound as possible. The upper bound on accuracy is giv
by

Pmax=1=(N=p-r)lg —I_‘Z —(p—rl)‘ll—l_‘z, (36)
whereas the actual probability at a given tirse

P(t) = Prax — (N =10 = 1) (0. (37)

The first integer time step for which the actual probability will be closest to this upper bound is

given by rounding the function

o t i
arcarg\ N—ro—rlﬁ

arcco% 1 2r°:|rlg

T= (38)
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to the nearest integer.
4.3. Extension to Non-binary Patterns

The algorithm described in section 4.1 can handle only binary patterns. Nominal data with
more than two values can be handled one of two ways: convert the multiple values into a binan
representation or extend the algorithm to handle data of more than two values. In [Ven98b] ¢
generalization of the pattern storage algorithm to more that two values is presented; if Grover’s
algorithm can likewise be generalized then a straightforward generalization of the QUAM to the cast
of nonbinary patterns can easily be conceived. This may be preferable to converting to a binar
format since doing so would introduce a number of new qubits, requiring larger quantum registers

which could result in degradation of pattern completion accuracy.

5. Concluding Comments

A unique view of the associative pattern completion problem is presented that allows the
proposal of a quantum associative memory with exponential storage capacity. It employs simple
spin-1/2 (two-state) quantum systems and represents patterns as quantum operators. TF
approach introduces a promising new field to which quantum computation may be applied to
advantage -- that of neural networks. In fact, it is the authors’ opinion that this application of
guantum computation will, in general, demonstrate greater returns than its application to more
traditional computational tasks (though Shor’s algorithm is an obvious exception). We make this
conjecture because results in both quantum computation and neural networks are by natut
probabilistic and inexact, whereas most traditional computational tasks require precise anc
deterministic outcomes.

This paper presents a quantum computational learning algorithm that takes advantage of th
unique capabilities of quantum computation to produce an important advance in the field of neura
networks. In other words, the paper makes an important contribution to both the field of neural
computation and to the field of quantum computation -- producing both a new neural network

result and a new quantum algorithm that accomplishes something that no classical algorithm he
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been able to do -- creating a reliable associative memory with a capacity exponential in the length ¢
the patterns to be stored.

The most urgently appealing future work suggested by the result of this paper is, of course
the physical implementation of the algorithm in a real quantum system. As mentioned in sections :
and 4, the fact that very few qubits are required for non-trivial problems together with the recent
physical realization of Grover’s algorithm helps expedite the realization of quantum computers
performing useful computation. In the mean time, as discussed in section 4, the time bound fo
recall of patterns is slower than desirable, and alternatives to Grover’s algorithm for recalling the
patterns are being investigated. Also, a simulation of the quantum associative memory may b
developed to run on a classical computer at the cost of an exponential slowdown in the length ¢
the patterns. Thus, association problems that are non-trivial and yet small in size will provide
interesting study in simulation. We are also investigating associative recall of nonbinary patterns
using spin systems higher than 1/2 (systems with more than two states). Another important are
for future research is investigating further the application of quantum computational ideas to the
field of neural networks -- the discovery of other quantum computational learning algorithms.
Further, techniques and ideas that result from developing quantum algorithms may be useful in th
development of new classical algorithms. Finally, the process of understanding and developing
theory of quantum computation provides insight and contributes to a furthering of our

understanding and development of a general theory of computation.
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Figure 1. A network of quantum logic gates

Figure 2. Grover’s algorithm

Figure 3. A quantum network for Grover’s algorithm
Figure 4. Quantum algorithm for storing patterns
Figure 5. Quantum network for storing a pattern
Figure 6. Modified Grover’s algorithm

Figure 7. Algorithm for QUAM

Figure 8. High-level quantum network for the QUAM
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