Partitioned Frame Networks for Multi-Level,
Menu-Based Interaction

James D, Arthu;'

TR 87-24

Partitioned Frame Networks for Multi-level, Menu-based Interaction

Jomes D. Arthur

Vifgin‘ia Tech

Abstract

Menu-based systems have continued to {lourish. because they present a simple interac-
tion format that is adaptable to many diverse applications. The continued integration
of menu-hased interaction with increasingly sophisticated software systems, however, is
resulting in complex, monolithic frame networks with several undesirable characteristics.
This paper presents a novel approach to frame network construction and menu-based
interaction for application systems that support user task specifications. The approach
is based on partatzomng the conventional, monolithic frame network into a set of hierar-
~ chically structured, disjoint networks that preserves the original network topology W-hﬂe
reducing its overall complexity and size, Moreover, by providing a menu-based interaction
scheme that exploits this hierarchical structure, one can realize a system that supports a
“top-down’.’ apprq_ach to user task specification and user interaction at varying levels of
sophistica,tioﬁ.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: User Interfaces;

E.2 [Data Storage Representations]: Composite Structures, Linked Representatlons
H.1.2 [User/Machine Systems]: Human Information Processmg

General Terms: Menu-based Intera,ctmn Partitioned Frame Networks Top-down Task
Specification

Additional Keywords: Menus, Frames, Interfaces

Partitioned Frame Networks for Multi-level, Menu-based Interaction

James D. Arthur

Virginia Tech

Index Terms: Menu-Based Interaction, User Task Specification, Partitioned Frame Networks,

Human/Machine Interaction.

1.0 Introduction

There are many techniques commonly us.ed for communication between humans and computer
systems. Among the more prevalent ones are questi;m/answer, command-driven, and menu-based
interaction; representative systems include Mycin [5], the Unix* shell {2, 8], and Smalltalk [6, 7],
respectively. These techniques vary widely in their ease of use and their applicability to various
problgm domains. Menu-based systems are primarily used to present information and to control
the actions of computer systems. They are designed to guide the user through a sequence of
frames that provides imformation and/or results in a task specification acceptable to the user and
consistent with the capabilities of the underlying support system. Because menu-based systems
assume controi of the dialogue process and solicit simple responses, they are ideal for the novice
user, as well as the user who is .fa.mih'ar with an approach to solving a given problem, but needs
a.ss_is_ta:nce in selecting or initiating the appropria,te. sequence of operations tha_ut implements a

corresponding solution [4].

The adaptability of menu-based systems to many diverse applications and their simplistic ap- .
proach to user interaction has contributed significantly to the widespread acceptance of menu-driven

_systems. The continued intergration of menu-based interaction with iﬁcreasingly sophisticated

* Unix is & trademark of Bell Laboratories

software systems, however, is resulting in complex, monolithic networks [3, 10] 1.avith undesirable
characteristics. For example, a simple extension of a problem domain defined by one of these net-
works often causes an exponential growth in the size and cbmplexity of that network. This paper
presents an alternative approach to fra.me‘network definition and menu-based interaction that can
significantly reduce the complexity of frame networks and provide capabihties not found in con-
ventional menu-driven systems, e.g., interactive dialogue for varying degrees of user sophistication
and true “top-down” task specification. In the next section we present an intuitive description of
menu-based interaction and discuss the relationship among frames, frame items, and frame network
topologies. Section 3 discusses network partitioning as a method for achieving reduced network
complexity. It also describes a menu-driven interface that exploits the hierarchical structure of
partitioned networks, and as a result, can easily provide the above mentioned non-conventional,
menu-based capabilities. Finally, we discuss Omni, an interactive, menu-based environment that

uses. partitioned frame networks and a two-level user interface to support user task specification.

2.0 Menu-Driven Systems

Intuitively, a system is menu-driven if each user response is predicated on a set of choices
provide&-by the system. The system presents the user with a sequence of frames (often called
menus}, each containing some descriptive text and a list of items. The text provides a description
of the frame, and the items present a set of choices to the user. The user responds by selecting
one of the items, causing the system to perform an action associated with that item selection.
Usually, this action includes displaying frames. The system may also perform opera,tiqns that are
transparent to the user. These operations consist of validating the user’s response, recording it, and
in general, 'prbviding the continuity among frames. A typical selection process cycle is illustrated
in Figure 1. By successively selecting a sequence of items, the user traverses a network of frames.

A simplified frame network is illustrated in Figure 2.

Although Figure 2 illustrates a very simple frame network, it is easy to envision a topology
- consisting of many frames, non-planar edges, and cyclic subnetworks [3] As the complexity of

2

(0) Display initial frame

(1) Get item selection indicator

(2) If not valid, go to (1)

(3) Execute selected item action, if any
(4) Display next frame, if any

(5) Execute frame action, if frame changed
(6) Goto (1)

Figure 1
Menu Selection Process Cycle

such networks increase, understanding or modifying them becomes virtually impossible. In the
next section, we address this problem by presenting an alternative method for constructing and

traversing “would-be” complex networks.
3.0 A Multi-Level, Menu-based System

For clarity, we choose to restrict the discussion of partitioned networks and the multi-level user
interface to a menu-based interaction format that supports user task specification. Nonetheless,
the concepts presented in the remainder of this paper are applicable to most general menu-driven

systems and their corresponding application domains.

We define a task to be a sequence of high-level operations that, when executed, provides a
solution to & given problem. The user specifies a task by selecting the appropriate sequence of frame
items that defines each operation and associated refinements. For example, suppose that a user
has access to a menu-driven, file transformation system and wants to select certain records from a
speciﬁéd file, sort them, and then save them for later processing. First, the user selects the sequence
of frame items that defines the file to be retrieved and reflects its associated physical attributes.
Next the user chooses a sequence of frame items that defines the record-select oﬁeration and the
criteria for selecting the appropriate records. The user then selects a sequence of items that leads
to a description of the sort opefation and all refinements that specify the desired: éort sequence.
Finally, frame items are selected that denote the file-save operation and define all characteristics
relating to the destiné,tion'.ﬁle. The_ task 6perations, retrieve, seleét,'sort, and save, can be initiated

at the time each has been fully specified, or when the complete task has been specified.

3

Root

[y

\

Figure 2
Frame Network Accessible From: Root

Because there exists transformation operations that are file-, record-, field-, and character-
oriented, all with their own set of refinement possibilities, the supporting frame network will most
likely be very large and considerably complex. Moreover, the user usually initiates the specification
of each dperation from the same frame; there is no way to bypass the predefined network traversal
scheme. Not only do such monolithic frame networks form complex structures and impose rigid
constraints on user movement, they also require that the user completely specify each operation
before continuing to the next one. This requirement can have an adverse, if not devastating, effect

on the user who has to specify a lengthy sequence of operations, each with several refinement

attributes.

In the next two subsections, we address these problems within the framework of a multi-level,

user interface based on partitioned networks.
3.1 Partitioned Frame Networks

_ Tor the example above, a simplified version of a single frame network is illustrated in Figure

3. The root frame defines the operation classes, and frames B and C define generic operations on

4

Root
Operation Classes

character operations

. field operations
record operations

|~ file operations

D .
File Characteristics Sort Details File Characteristics Selection Criteria
menu menn menu ment
7 TN 7 1N 7 1N\ 7 N

. » . - . . . » L] » - -

Figure 3
A Simplified Frame Network for File Trapsformations

two classes; the remaining frames define refinement possibilities. We note that the file-retrieve and
file-create operations have similar subnetworks (starting at frames D and F, respectively); these can

be combined to reduce the overall size of the network, but at the expense of network complexity.

In partitioning frame networks, and particularly those networks that define task specification
sequerices (e.g., the network showrg in ‘Figure 3), the criteria for determining the hierarchical
st.ructure of the resu_ltixig disjoint networks are based on the successive grouping (or partitioning)
of similar specification proberties. Each group induces an interface layer that delimits entry .points
for user interaction. (This concept is discussed in detail in the. next section:) Partitioning the frame
network serves two purposes: 1) it reduces the complexity of the original network topology, and 2) it
provides a hierarchical network structure tailored for “top-down™ task specification and interaction

levels for varying degrees of user sophistication. Using the generic operations and.refihement

5

Hierchical Level 1

-1-
Operation Classes

character gperations
field operations
record operations s

e file operations

Hierarchical Level 2

29 D
File Characteristics Sort Details Selection Criteria
menua menu . menu
/0N /7 TN 7 N

.
. - .

7 Figure 4
A Partitioned Frame Network for File Transformation
characteristics as grouping criteria for the network shown in F igure‘S, the resulting partitioned
network, shown in Figure 4, contains four disjoint subnetworks networks and two hierarchical levels.
Note that the overall size of the netﬁork has been reduced by the number of frames in subnetwork 2
because it now serves as the attribute specification network for bofh the file-create and file-retrieve
operations, Combining these subnetworks in Figure 3 was not &esira,ble- becauiserof the added
nétwork complexity. Now, howe‘}er, we have four disjoint networks, each with less complexity
than the parent network, and a hierarchical structure that preserves the original network topdlogy.
In essence, the initial frame network has been partitioned into a set of hierarchically structured,

disjoint networks, where each “new leaf” frame corrésponds to a root frame at the next lower level.

6

How does the user specify a task using the partitioned network — in a trﬁely “top-down”
fashion. The user enters the network at level 1 and first specifies all generic operations in a
task sequence. This task overview is constructed (and saved) without the user being encumbered
with refinement details that could obscure the overall solution sequence. In turn, for each generic
operation specified in the task overview, the corresponding frame network from the next lower level
is presented to the user for defining refinements to the respective generic operation. If additional
hierarchical levels existed, intermediate taék specification overviews, each more refined that its

predecessor, would serve as gateways to the lower-level networks.
3.2 The Multi-Level, Menu-Driven Interface

The primary function of any menu-driven interface is to guide the user through a sequence of
frames that imparts information and/or assists in specifying and solving a given task. In addition
to this basic operation, the multi-level, menu-driven interface exploits the hierarchical structure of

partitioned networks to provide a truely “top-down”, task spéciﬁca,tion dialogue sequence and a

mechanism for allowing the user to enter the partitioned network structure at any level.

As previously mentioned, the successive grouping of similar specification properties induces
interactive layers that define levels of user interaction. Because each layer is comprised of a set
~of dlstmct, yet complete, frame networks, it is not only possible, but often advantageous for the

experienced user to initiate an interactive session and request direct access to a lower-level frame

network. For example, in Menunix [9] 2 user is guided through a sequence of frame item selections
that constructs a parameterized, tool invocation command which is executed by the Unix shell.
By assuming an appropriately partitioned frame network, if the user already knows the general
syntax for a tool invocation command, but needs assistance in constructing a particular refinement
parameter, the user can request direct access to the hierarchical level that corresponds parameter
specifications, traverse the a,ppropnate subnetwork and collect the desn‘ed mnformation. Granting
direct access to lower-level networks without first going through the higher level ones is & functlon

of the multi-level user mterface. It assumes, however, that the user POSsess funda,menta,l_knowledge

7

Driver
User T Frames Database

Menu-Based Interface

Figure 5
The Multi-Level, Menu-Driven User Interface

of the information defined by the upper-level networks. Hence, a novice user would initiate an
interactive session that begins task specification at level 1; a more experienced user can enter at a

level commensurate with his expertise.

Figure 5 illustrates a simplified design for the multi-level, menu-driven interface. The menu-
based interface provides the standard functions' of a basic menn system, but executes under the
auspices of the driver, It is the driver that ﬁrst interacts with the user and requests the desired level
of interaction. This function can be performed by a question /answer dialogue format or via a frame
network designed specifically for this purpose. All frame networks reside in a frames database and
are accessible to both the driver and the menu-based interface. It is the responsibility of the driver
to maintain all intermediate task specification sequences and to insure that each specified operation
therein, be completely refined with respect to the current hierarchical level before directing the
menu-based interface to start retrieving frame networks from the next lower level. Because each
task operation is refined as much as possible at each level of interaction, a truely ‘top-down” task

specification is guaranteed.
4.0 Omni: An Environment Based on Partitioned Networks

Partitioned networks and a multi-level, menu-based interface are reflected in the design and
implementation of the Omni environment [1]. Omni is an interactive, menu-based environment

that supports problem solving via too] selection and tool composition. Each tool is a powerful

8

parameterized program that performs a single high-leve] operation (e.g., sort a file). To solve a
given problem, the user interacts with the system to select an appropriate set of tools, and then
composes them into a sequence. Such sequences are called compositions; when a composition has
been fully expanded to include punctuation and parameterization details it is called a script. The
script is then passed to the underlying operating system, Unix, and is executed. Omni is a general
purpose, menu-based environment whose application domain is defined by the partitioned frame

network.
4.1 The Two-Level Interface

The initial prototype for Omni consisted of a single, menu-driven interface. The supporting
frame network was structured in the conventional manner. In this environment, each time a
high-level operétion is detected in the problem specification, a corresponding tool is selected and
immediately expanded into a tool call The primary disadvantage of such an approach is that
the user must contend with tool particulars (arguments) while maintaining a global view of the

sequence of high-Jevel operations that effects 2 problem solution.

The current prototype takes a two-level approach to problem specification and exploits the
properties of partitioned frame networks. It allows the user to first specify all of the ‘necessary
operations for solving a given problem, and then concentrate on their individual details. Figure
6 illustrates the logical design of the two-level interface. The responsibility of the upper-level
interface is to acquire a sequence of high-level operations that outlines a problem solution, and
select a corresponding sequencé of generic functions. In turn, the Jower-level interface solicits the

necessary details for constructing a corresponding sequence of tool calls.

As one might conclude from Figure 6, both interface levels share common software; in fact,

they are the same mechanism. Their differing functions are respectively defined by the hierarchical

levels of the partitioned frame network. When the user initiates an Omuni session, the menu-

based interface assumes the upper-level configuration. The composition database supplies the menu

network that defines the primitive operations supported by the Omni environment. Once 3. problem

9

USER

1
1
]
1
]
¥
1
i
1
!
i
1
H
1
1
¥
1
1
1
L]
1
1
]
1

M MR M o me e e e o e m e e W e o

Database
Upper Level Intérface
Command
User Selection
Interface and
Composition
........ Ny R v
Interpreter
Editor P
Lower Level Interface
Tool
User Invocation
Interface Details
ECCCTEERRR Do v
Editor interpreter
Tools
Database
Figure 6

Composition

The Logical Structure of the Two-Level Interface

10

overview is established by the upper-level interface, the menu-based system assumes the posture
of a lower-level interface and sequentially processes the list of generic functions. For each generic
function, the menu-driven system is dynamically reconfigured according to the structure of the
corresponding frame network obtained from the fools database. Interaction at this level enables the
user to describe details peculiar of each generic operation. For example, the upper-level interface
may generate the generic operation sort-file. The lower-level interface may expand this operation

into the tool call sort 5-10, i.e., sort on columns 5 through 10.

From a user’s perspective, one advantage of the two-level approach is that a problem overview
can be specified before problem details, i.e., “top-down” specification. The user initiates an Omni
session, describes the given problem as a natural sequence of simple, high-level operations, and then
supplies the details for each operation. From an implementation perspective, the menu networks are
considerably smaller and more easily constructed. Moreover, the semantic actions that construct

the tool calls can be logically partitioned; this promotes modular software construction.

As the user becomes more proficient in the use of tools and tools composition, the need to
describe an entire problem specification to Omunj decreases. In an effort to provide services to both
the novice user as well as the experienced user, Omni supports two distinct levels of interaction.
In the two-level system, the first level concentrates on tool selection and composition; the second
level provides tool details. This multi-level approach allows the novice user to enter the first level,
seiect tools, and then explore the details through the second level. A more experienced user can

enter directly at the lower level to determine details about a spec1ﬁc tool.

4.2 A File Transformation Example

Omui is a general purpose énvironment whose application domain is defined by partitioned
frame networks_. One current Omni environment addresses file transformation problems and sup-
ports character, string, record, and file oriented operations. The following paragraphs provide z
brief overview of such an environment by descrlbzng a “tools approach” to file transformation and

dlSCuSSng the related 0perat1ons

11

The Tools Approach to File Transformations. Suppose we are given a file F and want to construct
file F' by applying transformations ¢y, s , and #3. One approach is to successively apply all three
transformations to each record r € F, 1 < i < |F|. Such an approach requires one pass through
the ﬁie F, but many invocations of the transformation routines. An alternate approach is to apply
transformation t; to all records in F, apply t, to the results of the first transformation, and then
apply i3 to the results of the ¢, tranéformation. This approach requires three passes through the

records but only one invocation of each transformation routine.

The second approach is consistent with the underlying principles of tools and tool composition.
If tools T3, T3, and T% implement the transformations i1, 2, and 13 respectively, and “®” aenotes
composition, then the script “Ty filename © T ® T3” describes the complete transformation
process. From an Omni perspective, the transformations are high-level operations supported by

the tools T;. The script is a sequence of tool calls that specifies a solution to the user’s problem.

File transformations involve several classes of operations. The following paragraphs describe

these classes and discuss their respective elements.

File Primitives. File primitives are transformation operations that view files as a single entity.

That is, the smallest manipulative element is the file itself. These operations include:

retrieve: retrieve a file for subsequent operations,

move: move a file from its current location to a specified destination,
copy: €Opy a ﬁie to a specified location,

Qmate: create an empt'y file,

delete: delete a'ﬁlé, and

sort: sort a file.

12

As these operations are expanded into actual tool calls, file names and other pertinent data are

obtained from the user via prompts.

Record Primitives. Record primitives are transformation operations that consider records as the

atomic unit. Such operations include:

select: select a record for further processing,
delete: eliminate specified records from further consideration, and

change: change the contents of a record.

Although these operations may seem rather simple, they possess extensive capabilities. They
understand both the distinction between variable a,nd fixed length record formats, and can choose
records based on their contents. This implies an additiona} understanding of fields, field delimiters,

and comparison operators.

Character and String Primitives. The third class of transformation operations addresses character
and string manipulation. These primitives consider each file as simple text without any perceived

structure. Operatlons in this class include:

delete_text: delete all occurrences of & specified string,
replace-text: replace all oceurrences of a specified string with another string, and

inseri.text: insert a specified string according to given specifications.

By considering a character as a string of length one, the above operations generalize to character

manipulation.

Hence, a top-level (generic) écript that selects all student records with = graduation date of

1983 (record positions 52-55) and sorts them by last name (record.positions 10-19) might appear

13

retrieve studentfile @ select O sort.

The corresponding low-level (expanded) script is

retrieve studentfile ® select p52-55=1983" & sort p10-19.

5.0 Conclusions

As ﬁaenu-based systems continue to proliferate and are applied to larger probiem domains,
the complexity of the supporting frame networks and ensuing user interaction will increase pro-
portionally. This paper presents one method for reducing conventional frame network corﬁplexity
and improving user interaction. This method employs a multi-level, menu-based interface driven
by partitioned frame networks. Advantages of a multi-level, user interface are threefold. First,
conventional, monolithic frame networks can be partitioned into a set of hierarchically structured,
disjoint networks that preserves the original network topology while i'educing its overall complexity
and size. Second, because the networks are hierarchically structured, we can support user sophis-
tication levels that range from that of the novice to that of the expert. Finally, the multi-level
interface promotes a true “top-down” approach to task specification because the hierarchical nature

of the supporting frame network can be constructed to reflect layers of successive task refinement.

14

10,

LIST OF REFERENCES

J. Arthur and D. Comer, “Omni: An Inieractive Programming Environment Based on Tool
Composition,” to appear in Proceedings of the IEEE Computer Software and Applications
Conference, Chicago, IL, November, 1984.

S. Bourne, “The UNIX Shell,” Bell System Technical Journal, No. 6 (Part 2), July-August,
1978, pp. 1971-1990. :

J. Brown, “Controlling the Complexity of Menu Networks,” Communications of the ACM,
Vol. 25, No. 7, July, 1982, pp. 412-418.

E. Carlson, “Developing The User Interface For Decision Support Systems,” IBM Research
Report RJ3112, IBM Research Laboratory, San Jose, CA, April, 1981.

R. Davis, “A DDS for Diagnosis and Therapy,” Data Base, Vol. 8, No. 3, 1977, pp. 58-72.

A. Goldberg and D. Robson, “A Metaphor for the User Interface Design,” Proceedings of the
12th Hawaii International Conference on Systems Sciences, Vol.1, 1979, pp. 148-157.

D. Ingals, “The SMALLTALK-76 Programming System Design And Implementation,” The
Fifth Annual Symposium On The Principles Of Programming Languages, A.C.M., January,
1978.

W. Joy, “An Introduction to the C Shell,” The Uniz Programmers Manual, Vol. 2, Fourth
Berkeley Distribution, 1978.

G. Perlman, “The Design Of An Interface To A Programming System,” University Of Cali-
fornia, San Diego Technical Report 8105, November, 1981.

G. Robertson, D. McCracken, and A. Newell, “The ZOG approach to man-machine commu-
nication,” International Journal on Man-Machine Studies, Vol. 14, 1981, pp. 461-488.

i5

