AN INTERACTIVE ENVIRONMENT FOR TOOL
SELECTION, SPECIFICATION AND COMPOSITION

by

James D. Arthur

TR-86-2
January 1986

An Interactive Environment for Tool
Selection, Specification And Composition*

James D. Arthur

Department of Computer Sciences
Virginia Polytechnic Institute
Blacksburg, VA 24061
(703) 961-7538

ABSTRACT

This paper describes a high-level, screen oriented programming environment that sup-
ports problem solving by tool selection and tool composition. Each tool is a powerful
parameterized program that periorms a single high-level operation (e.g., sort a file}. To
solve a given problem, the user first interacts with the system to compose a task overview
consisting of a sequence of generic operations. Such sequences are called compositions.
Once an overview is established, a second part of the environment interacts with the user
to help expand the generic operations into a corresponding sequence of parameterized tool
calls. When a composition is expanded to include details such as parameterization and
punctuation it is called a script. This script, when executed by the underlying runtime
system, computes a solution to the specified user task.

The current environment runs under the Unix operating system on a VAX 11/785, and
uses a Bitgraph terminal with a 640x720 bitmap display and standard keyboard as the
principal interface device.

* This work was supported in part by R.R. Donnelley & Sons, Chicago, IL

An Interactive Environment for Tool

Selection, Specification, and Composition

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications
- methodologies, tools; D.2.2 [Software Engineering]: Tools and Techniques - user interfaces,
modules and interfaces, software librarses, top-down programming; D.2.6 [Software Engineering]:

Programming Environments; D.2.9 [Software Engineering]: Management - productivity

General Terms: Menu-Driven Systems, Man/Machine Interaction, User Interfaces, Tools-based

Programming

Additional Keywords: Frames, Item selection, User response reversal, History, Tools

1. Introduction

Over the past decade, software tools have evolved from rudimentary, single function programs
like loaders, assemblers, and device drivers, to more sophisticated collections of complementary
tools that define self-contained, computational environments, e.g., Toolpack!. In tandem with this
trend, the basic framework for specifying a task solution has changed from line-at-a-time coding
to collecting and interfacing ezssting software modules. This approach is particularly attractive

because it reduces coding errors and implementation time.

A powerful variation of the above approach is found in environments that support the runtime
composition of independent software tools, e.g., Unix! with its composition mechanism — the
“pipe”. To “program” a given task in this environment, one decomposes the task into a sequence of
conceptually simple, high-level operations, and then combines (composes) a corresponding sequence

of software modules (tools) that implements these operations. Although the sequential nature of

}' Unix is a trademark of AT&T Bell Laboratorics

tool composition tends to restrict the applicable problem domain, with the proper set of software

tools one can significantly minimize this restriction.

In general, this “toolkit” approach to task specification is particularly effective for an expe-
rienced user, but is often difficult for an intermediate user and usually more so for a novice user.
As pointed out by Branstad?, tools are usually designed for experts; many are poorly human engi-
neered for the novice or even the journeyman programmer. The inherent truth of this observation,
coupled with the author’s opinion that programming via tools and tool composition can signif-
icantly increase productivity, provides the basic motivation for this research. The fundamental
assumption is that to “program” effectively using tools and tool composition, the user must a)
know what tools are available and how to use them, or b) have access to a software system that
knows these details and can guide the user through an acceptable task specification. Because many
such tools are needed to adequately support “tools based” programming, alternative (a) may be
impractical for many users (e.g., the intermediate and novice users). Hence, a real need exists for
an interactive environment that knows which tools are available, their capabilities, their invocation

details, and how to compose them.

This paper describes Omni, an interactive environment for tool selection, specification, and
composition. Omni embraces the “tools based” approach to problem solving and provides a user-
friendly interface that guides the user through each task specification. Its novel features include

the following.

A Two-Level User Interface. The primary interface is menu based and supports two levels of inter-
action. At the highest level, the system provides information about generic, high-level operations
and guides the user through a task specification overview. Once a high-level overview has been
established, the lower level interface assumes control of the dialogue and provides assistance with
tool invocation and argument specification details. In effect, a composition is specified through the
upper-level interface and transformed into a meaningful program through the lower-level interface.

Advantages of the two-level approach include:

o Novice and Expert levels. A separate lower-level interface makes it possible for experts to access
detailed information about specific tools directly, without going through the upper-levels of

the menu system that are designed for a novice.

¢ Top-Down Design. The envircnment encourages top-down design by starting with the selec-
tion of abstract operations, moving toward composition, and ending with detailed parameter

gpecification.

o Reduction of Menu Network Complexity. Because operation selection is distinct from tool
invocation, we partition the menu network into disjoint sets, making its combined size smaller

than that of a single monolithic network,

Abslity to Edit Compositions. The system produces as output, a readable {textual) representation

of a program that the user can edit, either with the built-in editor or one of his choosing.

Tool Database, Tool selection is an integral part of the composition process. As new tools are
devised, the environment must know their capabilities. To make it easy to add new tools, Omni
keeps all tool information in a database. This information includes a complete description of each

tool’s capability as well as the dialogue sequence necessary to refine its functional operation.

The Omni environment includes both menu-driven and command-driven interaction. This
permits the user to follow menus until sufficient information has been found, and then to switch to
text mode to fill in details. The system supports tncremental script generation whereby the user
receives immediate feedback from menu item selections, and an tn-fine, screen-oriented edstor that
enables the generated script to be modified at any time. The environment is also designed from
and ergonomic standpoint: it provides error/crash recovery, a help subsystem, command aliasing,

and function key rebinding.

2. Background

An environment can be described loosely as those parts of a system that the user perceives.
This perception extends beyond the immediate user interface to facilities that provide ancillary user
support. It includes the psychological “feel” of the system as well as the details of its functionality.
In essence, the environment defines how one expresses computations as well as what one can
express. A user environment consists of the methods, techniques, and tools that are used during

the specification and completion of a given task.

Because people initially build tools to satisfy their own requirements, we have seen the growth
of user environments that support software development. Among the earlier and more prominent
environments are Unix, Interlisp!?, and Smalltalk!2. More recently, environments like Gandalf’
and The Cornell Program Synthesizer* have been introduced. In addition to basic software support
such as compilers, loaders, and editors, these environments provide user facilities aimed at reducing
task complexity and increasing productivity. Unix, for example, provides a user interface called a
shell®. The shell is a command interpreter that accepts commands from the terminal and interprets

them as requests to run a program.

Unlike Unix, which hosts several language compilers and interpreters, the Interlisp and
Smalltalk environments focus on a single programming language. Interlisp is an environment
that supports interactive Lisp programming, and provides an extensive set of user facilities. The
more popular facilities inciude Masterscope and Dwim. Masterscope is an interactive facility for
analyzing and cross-referencing user programs. It provides a global view of existing programs,
calling sequences, and so forth. Dwim (Do What I Mean) is invoked when a system error is
detected. It makes an intelligent guess as to what the user might have intended and then makes
the correction. The Smalltalk environment is similar to Interlisp in that it provides many of the
same basic programming functions, but is based on its own programming language bearing the

same name, Smalltalk is largely written in its own language and supports what is called “modeless

4

operation”. That is, Smalltalk allows the user to invoke many of its functions at any time. Except
for Unix and Smalltalk, each of the above environments provides access to “smart” (or structured)
editors, tailored for their respective language base. Each editor is aware of its associated language
primitives and the rules that govern their usage. They provide a skeletal program, and the user
provides the details. Additionally, Gandalf provides an extensive software (module) information
facility. The user can determine the nature of a module or subsystem through an associated de-
scriptor. These descriptors contain information such as the function provided by each module, its

parameter requirements, and dependency modules.

The above mentioned environments all share a common purpose: to provide a user-friendly
environment for specifying and computing solutions to user tasks. One disadvantage to working
in these environments, however, is that they expect the user to either 1) code a task solution from
language primitives, or 2) based on a priors knowledge, construct a task solution from existing
software modules (or tools). Within the Omni environment, “tools based” programming is also
furdamental to specifying task solutions. To minimize the need for e priori tool knowledge,
however, Omni supports an interactive user interface that guides the user through tool selection,

specification and composition.

To illustrate the full capabilities of the Omni environment, this paper presents the system
from two perspectives. First, Omni is presented from a user’s point of view. This includes a detail
description of the primary user interface as well as ancillary facilities that promote a user-friendly
environment. The second presentation describes why Omni is & general-purpose, problem-solving
environment. It discusses the the basic elements that comprise Omni’s application-independent
design and illustrates how one defines an application scope for an Omni environment. Finally, a

brief overview of an Omni-based file transformation environment is presented.
3. Omni: A Interface Design

From a user’s perspective, the usefulness of a system is highly dependent on 1) the adequate use

of visual aids in presenting and soliciting information, 2) the ease with which one can communicate

5

1)
Editor Interface
) 2)
Menu Interface
) 3) C ommand I_nterface
4) Error Messages

Figure 1
The Primary Screen Format

with the system, and 8) how forgiving the system is when a mistake is made. Because each of
these issues individually presents a multi-facet design problem, they are separately addressed in

the following section.
3.1 Screen Partitions

First impressions play an important role in the acceptance or rejection of a system®. A major
portion of that impression is based on the user’s visual perception of the system. In the Qmni

environment two distinct screen formats support visual prompts and user interaction.

The primary screen format, shown in Figure 1, is the first visual object presented to the
user. It is partitioned into 4 regions called windows. Windows 1 through 3 are considered to be
interactive windows, that is, they display information as well as accept responses. Only one of
these windows, however, is active at any given time. Window 4 delineates the region where all error
messages are displayed. When the user initiates an Omni session, the primary screen is displayed
with window 2 having the active status. This window is initially active beca;use it supports the
principal communication vehicle, a menu-driven interface. Window 3 supports a command-driven

interface whereby the user gains access to support functions such as undo and history. As discussed

6

Description of Help Information

Text

Secrolling and Ezit Commands

Figure 2
The Help Screen Format

later, windows 3 and 4 also define a conversationa) region. That is, they support a question and

answer dialogue format.

Omni provides a second screen format, illustrated in Figure 2, that incorporates the full screen
length and displays help information to the user. Because the formatted information may exceed
the length of the “help window?, scrolling capabilities are provided. The user activates the help
window by initiating a help command. A simple, one key response returns the user to the primary

screen having the same configuration that preceded the user’s request for information.

Although the display formats in Omni are based on partitioned screens (e.g., the primary
screen format}), “pop-up” windows, like those found on the Apollo and Sun workstations, are equally
applicable. A primary objective of the Omni environment is to support tools-based programming
~ this can be achieved using either display format approach. We mention, however, that while

“pop-up” windows can provide additional versatility, they also reduce software portability.
3.2 The User/Machine Interface

Proper screen formats are essential for a good user interface. Nevertheless, they are at most

7

aesthetically pleasing. The complexity of user problems and varied interface requirements place
additional demands on support environments, and in particular on the dialogue facilities. As

described below, the Omni system supports multiple communication formats.

The Two-Level, Menu-Based Interfece. Omni provides an interactive problem solving environment
based on tools and tool composition. Its design is tailored for the user who has a firm understanding
of the problem to be solved, but needs assistance in selecting and composing the appropriate tools.
Menu systems are ideal for such users, especially if the user is inexperienced or unfamiliar with the

system7 .

The initial Omni prototype employed a conventional menu-driven interface. In this environ-
ment, each time a high-level operation is detected in the user task specification, a corresponding
tool 1s selected and fmmediately expanded into a tool call via successive menu-based interaction.
The primary disadvantage of such an approach is that the user must contend with tool particulars
(arguments) while maintaining a global view of the intended sequence of high-level operations that

effect a task solution.

The current prototype takes a two-level approach to task specification (see Figure 3). In effect
the user specifies all generic task operations before addressing their individual details. Interaction
at the upper level defines a sequence of high-level operations that outlines a task solution. In
turn, interaction at the lower level provides the necessary details for constructing the appropriate
sequence of tool calls. An additional advantage of the two-level approach is that it provides both
novice and expert levels of interaction. The novice user can enter at the first level, select operations,
and then explore the details through the second level. A more experienced user can enter directly at
the lower level to determine details about a specific tool. This capability 1s particularly attractive
because dependence on Omni decreases as the user becomes more proficient in the use of tools and

tool composition.

As one might conclude from Figure 3, both interface levels share common software; in fact,

they are the same mechanism. Their differing functions are precisely defined by the underlying

8

--
.

Composition
Database

i

...........

Upper Level Interface
: Command
User : Selecticn
Interface And
Composition
............ = b
Editor Interpreter

USER

: Generated
@f Command

Lower Level Interface

U Tool
Int S?r Invocation
Rteriace Details

B ,b
I t
Rditor nterpreter

Database

Figure 3 -
A Logical View of the Two-Level Interface

9

......

menu networks. When the user initiates an Omni session, an instance of the upper-level interface
is created. A composition database supplies the menu network that defines the generic (high-
level) operations supported by the Omni environment. Once a task overview is established by
the upper-level interface, the lower-level interface assumes control, and sequentially processes the
list of generic operations. For each generic operation, an instance of the lower-level interface is
created and driven by the appropriate menu network obtained from a tools database. Figure 4
illustrates the logical relationship between the composition database and the tools database for a
file transformation environment. Note that the composition database has only one menu network;
it defines the generic operations. For each generic operation therein, a corresponding menu network
is included in the tools database. These distinct networks define all available operations and their

underlying tool invocation details.

From an implementation perspective, an added advantage of the two-level interface approach
is that the “partitioned” menu networks are considerably smaller and more easily maintained than
the monolithic counterpart. Moreover, the semantic actions that construct the tool calls can be

logically partitioned; this promotes modular software construction.

Question and Answer Interface. Menu systems are very effective in guiding the user through decision
processes. Effective interaction, however, often requires alternate forms of dialogue. Rather than
base a user interface on one particular interaction format, Carlson” suggests a mixture. In addition
to menu interaction, Omni supports a conversation region (windows 3 and 4) for system questions
and user answers. In general, information that is not known a priori or cannot be deduced through
menu interaction is requested through a question and answer dialogue®. Typical information
solicited through the conversation region includes file names, record attributes, and numerical

data.

The two interaction formats described above share a common trait: the system initiates the
dialogue and the user responds. The third communication format, described next, allows the user
to initiate the dialogue.

10

The Composition Daiabase

.1-

Operation Classes

character operations
field operations
record operations
/ Ele operations

delete -\ T delete
~

I retrieve / - modify
]—— create \ ;7| select—
1 sort 3l /

\/
The Tools Delabase

1
\

¥. Y

File Characteristics Sort Details Selection Criteria
Menu Menu Menu

%4-—:—.

Figure 4
Logical Relationship Between the Composition and Tools Databases

Command-Driven Interface. In general, Omni guides the user through a task specification. Situa-
tions arige, however, where the user needs to control the dialogue process. For example, the user
may require information about a specific frame item. Omni provides a command-driven interface,
supported through window 3, that allows the user to gain control of and initiate an interactive
dialogue, Instead of selecting a menu item or responding to a question, the user can request com-
mand mode, at which point the system relinquishes control of the dialogue process. The command

facility provides access to support functions such as history, undo, and help, as well as function key
L

rebinding and aliasing capabilities.

Editor Interaction. As the user specifies a task, a corresponding script is incrementally constructed
in window 1. This script, when executed by the underlying runtime system, computes a solution
to the specified task. Although Omni supports user response reversal, script editing may still
be necessary. For example the user may want to insert an operation not yet known to Omni
but supported by the runtime system. Editing facilities, supported through window 1, permit

modification of this script.

The Omni editor is screen-oriented and provides a wide variety of editing operations. They
include character and line operations as well as of those operations that permit script viewing and
user movement, e.g., scrolling, tabbing, and 4-way cursor movement. Additionally, in an effort to
minimize user errors, the Omni editor requires the user to select line mode before initiating any
line operation. This approach is recommended by both Engel® and Good? . Because users are
fallible, however, the Omni editor also provides a cancel operation that restores the data to the

pre-edit configuration, and then terminates the edit session.

3.3 Help Facilities

By matching each type of dialogue requirement with the proper interface format, Omni achieves
a highly flexible, user-oriented interface. To further promote a “user-friendly” environment, Omni
also supports a kelp facility that provides information about the user support functions as well as
the current menu and menu items. In Omui, the help command is initiated through the command

window and provides access to the following information.

Help for User Support Functions. For simplicity, the unadorned help command (or “7”) displays a
brief description of each user support function. If a more detailed explanation is required, the user

invokes help with a function name as an argument.

Help for Menus. Because a menu heading alone may not be sufficient in describing its purpose,

Omni provides access to detail information for each menu and each item within a menu. Both

12

types of information are accessed through the help menu command; the current position of the

cursor determines which type of information is displayed.
3.4 Error Prevention and Recovery

The Omni environment is designed to minimize user errors as well as assist in correcting
them when they occur. Considerations for error prevention include keystroke confirmation and
immediate user feedback, while error recovery relies heavily on the undo and the editor cancel

operations.

Error Prevention. To aid in reducing user errors, Omni adopts the “Simplicity and Consistency”
approach!?, The simplicity of user interaction refers to how many concepts the user must learn
to function in a given environment. The menu-driven interface requires only item selections.
Moreover, Omni allows the user to rebind function keys and define aliases during an interactive
session or at start-up time via a reconfiguration file. In recognizing the fact that each user has
individual preferences, Omnij provides a set of support functions to encourage the user to redefine a
more “natural” set of function keys. Aliasing commands provide additional flexibility by allowing

the user to define syronyms for any given key sequence.

Consistency refers to similarity among command formats. In Omni, any user command can
be invoked by simply typing its name. In general, if a command requires additional information,

the user is prompted through the standard conversation region.

Error Recovery. 1t is generally accepted that even with good error prevention facilities, users still
make mistakes. In Omni, such situations primarily occur during an item selection process or during

an edit session. The undo and cancel operations, respectively, address these types of errors.

The principal function of the undo operation is to provide a method for reversing the effects of
an item selection. The existence of an undo operation also encourages learning and experimentation.

The user knows that if an item is selected out of curiosity the selection can be undone. In Omni,

i3

the user is permitted to undo an arbitrary sequence of immediately preceding item selections that
can be reviewed via the history command. The user executes the history command, determines

the number of item selections to negate, and then issues the corresponding number of undoa.

The cancel operation is a second error recovery mechanism and is accessible from the editor.
Most errors introduced during an editing session are minor and relatively easy to corre.ct; never-
theless, major errors can occur. For example, the user may inadvertently delete some necessary
text or lines of data. During any given edit session, if a mistake occurs and simple recovery is not
possible, the user can caneel the edit session. The cancel operation terminates the edit session and
restores the script to its pre-edit configuration. The user can then reinvoke the editor and supply

the correct sequence of modifications.
3.5 Immediate Visual Feedback

The features described above can be found in various systems that support a “user-friendly”
interface. Because Omni is intended to be highly interactive, several design decisions have favored
immediate visual feedback to user responses. For example, during a user task specification Omni
detects each subtask as early as possible and tmmediately displays the corresponding generic
function name. After all subtasks are detected and displayed, additional user interaction results
i similar visual feedback during the expansion phase for each generic function. This {ncremental
approach to script generation has two major advantages. First, it expands the feedback mechanism
provided during normal interface activities. Second, incremental script generation serves as a
learning device. As tool calls are developed, the user acquires familiarity with the available tools

and their invocation criteria. This reduces later dependence on the Omni environment.
4. Omni: A General Purpose Problem Solving Environment

In the previous sections we have discussed several aspects of Omni that present it as a user-
friendly problem solving environment. We have concentrated on characteristics that are common

to all Omni environments. This section discusses those elements that make each environment

14

unique, that is, the elements that define the application scope of an Omni environment. We begin
by discussing Omni from a general, application-independent perspective, and then enumerate those
elements that define an application scope. The last section presents an overview of one particular

problem solving environment supported by the Omni system.
4.1 Defining an Application for Omni

Each Omni environment is constructed from a basic, application-independent framework. This
framework is an integrated set of software modules that supports the fundamental operations of
tool selection, tool specification, and tool composition. Three elements are required to transform

this general purpose framework into a specific problem solving environment:
® a set of frames (menus),
® a set of operations (actions) associated with each frame item, and
e a set of software tools.

In the primary user interface, the user specifies a given task by selecting items from successively
displayed frames. In essence, frames describe a network that defines a class of problems solvable
i an Omni environment, i.e., the application scope of the environment. The composition database
contains the set of frames that outlines all generic (high-level) operations supported by underlying
tools. The tools database contains an additional set of frames that defines logical processes for

expanding each high-level operation into a tool call,

Associated with each frame item is an operation (action) that assists in the synthesis of a
corresponding tool call. These operations can be grouped according to the functions they perform.
First, they can deduce information and store it for later reference. Second, item operations can
prompt the user for details that cannot be inferred from an item selection, e.g., a file name. The

third group of operations addresses the incremental construction of the tool script. For example, if

15

an item selection completes a subtask specification, the corresponding operation modifies the tool

script accordingly.

Frames, items, and item operations define a procedure for task specification and script gener-
ation, In essence, they provide a complete description of the problem set addressed by an Omni
environment. In addition to providing a method for spectfying a task and smplementing a solution,
the Omni environment contains the necessary tools for computing the solution. That is, it containg

the set of tools that perform the selected operations,

4.2 A File Transformation Environment

The current prototype application environment addresses fle transformation tasks. The frame
networks, item operations, and software tools define and support character, string, record, and file
oriented operations. The following paragraphs provide a brief overview of this environment by first

describing the “tools approach” to file transformation and then providing a simple example.

4.2.1 The Tools Approach to File Transformations.

Suppose we are given a file F and want to construct file ' by applying transformations
t1, t2 , and 3. One approach is to successively apply all three transformations to each record
r€ F, 1 <1< |F|. Such an approach requires one pass through the file #, but many invocations
of the transformation routines, An alternate approach is to apply transformation ¢, to afl records
in F, apply ¢, to the results of the first transformation, and then apply ts to the results of the t2
transformation. This approach requires three passes through the records but only one invocation

of each transformation routine,

The second approach is consistent with the underlying principles of tools and tool composition.
If tools Ty, T2, and T3 implement the transformations t1, t2, and f3 respectively, and “©®” denotes
composition, then the script “T) filename o T2 © T3 describes the complete transformation
process. From an Omni perspective, the transformations are high-level operations supported by
the tools T, The script is a sequence of tool calls that specifies a solution to the user’s task. The

following paragraphs illustrate this approach using the Omni prototype environment.

16

4.2.2 A File Transformation Example

The prototype file transformation environment provides tool-based, generic operations that
address data sets from three basic perspectives. Data can be viewed and mavipulated as (1) a single
entity, or file, (2) a collection of character sequences terminated by a special delimiter, i.e. records,
or (3) simply as a stream of characters without any inherent structure. Transformation operations
included in category (1) are file oriented, that is, the smallest manipulative element is the fle itself.
Elements of this category include retrieving a file for subsequent operations, sorting a file, and
displaying a file on some output device. Transformation operations found in category (2} view files
a8 a sequence of records, i.e., records are considered as the atomic unit. Such operations include
selecting specified records for further processing, deleting specified records, and record modification.
Although these operations may seem rather simple, they possess extensive capabilities. They must
understand the distinction between variable and fized length record formats, and be able to
choose records based on contents therein. This implies an additional understanding of fielda, field
delimiters, and comparison operators. Finally, the third category of transformation operations
addresses character and string manipulation. These operations consider each file as simple text
without any perceived structure. They include, deleting and replacing specified strings as well as
tnserting text according to given specifications, By considering a character as a string of length
one, these operations generalize to simple character manipulation. Although there exist several
other refinement levels, the ones mentioned above provide a basic set of operations sufficient for

our experimental purposes.

Figures 5-12 illustrate 3 selected subset of screen displays for a simple task specification. The
task is to retrieve a file of student records, select all records that have a graduation date of “1983”
(it is assumed that each record contains only one date), and sort the records by the student’s last

name (starting in position 10).

Because the prototype environment Supports a two-level interface, the user first specifies a task

overview in terms of generic operations. Conceptually, one appropriate sequence is: (1) retrieve the

17

student file, (2} select the appropriate records, and (3) sort the resulting file. Figure 5 illustrates
the category of file system operations available to the user. Because the first operation is to retrieve
a file, the user selects frame item 1, “File Operations.” Figure 6 illustrates the resulting frame
which details all available fle operations. By selecting the Retrieve item, the user specifies the
first generic operation of the task overview. This selection is immediately placed in window 1
(as shown in Figure 7), and the user returns to the basic “File System Operation” frame. By
selecting “Record Operations” next (and traversing the ensuing frame subnetwork), following with
a selection of “File Operations”, the user completes the task overview that is shown in window
I of Figure 8. It is noted that the constructed sequence corresponds precisely to the conceptual

sequence stated above.

The user signifies that the task overview is complete by providing a null response to the “File
System Operations” frame, that is, the user presses the Newline (or Return) key. Subsequently,
the second-level interface assumes control and initiates an expansion of the first generic operation
(Retrieve_file) into its effective tool counterpart (shown in Figure 9). Note that Retrieve.file, the
generic operation originally displayed in window i, has been replaced by. “cat”, the corresponding
Unix tool name. Additionally, the screen heading now displays the generic operation being ex-
panded. The user selects frame item 1, “Retrieve 1 (One) File”, and is immediately prempted for
the file name (Figure 10). After entering the appropriate file name, window 1 is updated and the
next generic operation is selected for expansion (illustrated in Figure 11}. Note that the entries in
window [are assuming the form of tools composed by the “pipe” operation. Continued interaction

at the second level results in the final script:
cat student_file | grep »1983” | sort +0.9

shown in Figure 12. This script, when executed by the Unix shell, computes a solution to the
specified task.

18

Environment For Tool Corposition

R e I T 4.

File System Operations
* 1: File Operations

2: Record Operationg
3: Field Operations

A I T T LI

Figura 5
The Set of File System Operations

Environment For Tool Composition

Retrieve file

L T T T R T

File Systert Operations

1: File Operations
2: Record Operations
3: Field Operaticns

Figere 7
The Screen Display After Selecting Retrieve file

19

Environment For Tool Composition

..... Y LRI R

File Operations

* 1: Retrieve A File For Some Operation
2: Sort A File
3: Display A File On The Terminal
4: Format A File For Printing

Pigare &
The Set of File Operations

Environment For Tool Composition

Retrieve_file

Select records

File System Operations
1: File Operations

2: Record Operations
3: Field Operations

Figure &
A Cornpleted Task Overview

Expanding Generic Function: Retrieve file

cat
Select file
Sort fle

L T I B ke e te e

Record Operations

* 1: Retrieve 1 (One} File
2: Retrieve 2 {Two)} Or More Files

Figure 0
Expanding Generic Function: Retrieve. file

Expanding Gereric Function: Select. records

tat student file |

Select records

Select Specified Record (s)

1: Select A Record By Specifying A Record
Field Or Position Condition

2: Select A Record By Matching A Pattern
Within The Record

Figare 2
Expanding Generie Function: Select.records

20

Expanding Generic Function: Retrieve file

cat
Select.records
Sort fle

Retrieve File

1: Retrieve 1 (One} File
2: Retrieve 2 (Two) Or More Files

Enter file name: student_file

Figere 10
Soliciting a File Name

Expanding Generic Function: Sort_Ele

cat student fle |
grep "1983" |

1: Sort A File With Varizble Length Records
2: Sort A File With Fixed Length Records

Figare 13
A Completed Task Specification

5. Cencluding Remarks

This paper characterizes Omni as a user-friendly environment that supports task specification
through a host of interactive formats. A primary motivation for developing Omnj is to provide
a highly flexible, uger support environment that reduces the time and effort required to solve
computational problems, Iy general the user response to using Omni has been highly favorable.
Suggestions do indicate, however, that at times the repetitiveness of teztually oriented meny
interaction can be boring. To address this problem, our current research assumes the the use jconjc
structures and graphical networks for specifying a task. In developing Omni the approach has been
practical: 1) the two-level interface encourages a truly top-down approach to task specification
and, 2) the underlying concepts of tools-based programming encourages task specification through
the use of more natural, high-level operations. From an implementation perspective, Omni consists
of several software modules that perform specific functions. The nterface between modaules is
designed to operate efficiently and succinctly. The result is 5 synergistic snteractive environment

for tool selection, specification and composition.

21

19.

11

12.

LIST OF REFERENCES

L. Osterweil, “Toolpack - An Experimental Software Development Environment Research
Project,” IEEE Transactions on Software Engsneering, Vol 9, No. 6, November, 1983, pp.
673-685,

M. Branstad and R. Adrion, “NBS Programming Environment Workshop Report,” 4.C.M.
SIGSOFT, Software Engineering Notes, Vol. 6, No. 4, August, 1981, pp. 3-15.

A. Habermann and D. Notkin, “The Gandalf Software Development Environment,” Technical
Report, Carnegie-Mellon University, Computer Science Department, J anuary 1982.

T. Teitelbaum and T, Reps, “CPS - The Cornell Program Synthesizer,” Communications of
the A.C.M., Vol. 24, No. 9, September, 1981, pp. 563-573.

S. Bourne, “The UNIX Shell,” Bell System Technical Journal, No. 6 (Part 2), July- August,
1978, pp. 1971-1990,

T. Carey, “User Differences in Interface Designs,” IEEE Computer, Vol. 15, No. 11, Novem-
ber, 1982, pp. 14-20.

E. Carlson, “Developing The User Interface For Decision Support Systems,” IBM Research
Report RJ3112, IBM Research. Laboratory, San Jose, CA, April, 1981.

S. Engel, R. Granda, “Guidelines For Man/Display Interfaces,” IBM Technical Report TR-
00.2720, Poughkeepsie Laboratory, Poughkeepsie, NY, December, 1975.

M. Good, “Etude and the Folklore of User Interface Design,” Proceedings of the ACM SIG-
PLAN SIGOA Symposium on Tezt Manipulation, Vol. 16, No. 6, June, 1581, Portland, OR,
Pp. 34-43.

G. Perlman, “The Design Of An Interface To A Programming System,” University Of Cali-
fornia, San Diego Technical Report 8105, November, 1981.

W. Teitelman et al, The Interlisp Reference Manual, XEROX Palo Alto Research Center,
Palo Alto, CA, October, 1978.

A. Goldberg, Smalitalk-80 . The Interactive Programming Ernvironment, Addison Wesley,
1984,

22

