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EFFICIENT ALGORITHMS FOR MULTICHROMOSOMAL
GENOME REARRANGEMENTS

GLENN TESLER

ABSTRACT. Hannenhalli and Pevzner [5] gave a polynomial time algorithm
for computing the minimum number of reversals, translocations, fissions, and
fusions, that would transform one multichromosomal genome to another when
both have the same set of genes without repeats. We fixed some problems with
the construction: (1) They claim it can exhibit such a sequence of steps, but
there was a gap in the construction. (2) Their construction had an asymmetry
in the number of chromosomes in the two genomes, whereby forwards scenarios
could have fissions but not fusions.

We also improved the speed by combining the algorithm with the algorithm
of Bader, Moret, and Yan [2] that produces reversal scenarios for permutations
in linear time.

1. INTRODUCTION

Hannenhalli and Pevzner [5] give a polynomial time algorithm genomic_sort
for computing the distance between two multichromosomal genomes, where the
distance is the minimum number of reversals, translocations, fissions, and fusions
required to transform one genome to the other. An abridged version of that paper
appears in [10, Ch. 10, pp. 214-226]. We have implemented this algorithm in full
in a program GRIMM [12] available on the web [11], and are reporting additional
details that are necessary to complete the algorithm:

(1) They say that their algorithm can exhibit an optimal sequence of trans-
formation steps, but they do not actually do this: there is a gap in their
reduction of the multichromosomal problem to the unichromosomal prob-
lem of “sorting by reversals” (where algorithms for efficient generation of
such scenarios are known). It is sometimes necessary to reorder and flip
certain chromosomes of both multichromosomal genomes to form the per-
mutations used in the unichromosomal problem, but they do not reorder
either one. They acknowledge flips are required in one genome [5, Lemma
2], but do not say when to do them, and they do not indicate that flips may
be required in the other genome. Fixing all of this considerably complicates
step 19 of their algorithm genomic_sort.

Due to this gap, the example of a rearrangement scenario that they
provide ([5, p. 588], part (f)) was produced in an ad hoc fashion, and is
not consistent with the “capping” produced by their algorithm (part (e)),
as we will show in Section 7.2.
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We will close the gap and prove the following improvement to their
algorithm (see Sections 3-5):
Theorem 1. Let d = d(I,T") denote the distance between two multichro-
mosomal genomes, Il and I'. There is a constructive algorithm to pro-
duce two permutations w*,v* whose reversal distance is dyev(7*,7*) = d
or d + 1, such that optimal reversal scenarios between these permutations
directly mimic optimal rearrangement scenarios between genomes I1 and T.
All of this takes polynomial time. When dyey(7*,7*) = d + 1, one reversal
step mimics flipping a block of consecutive whole chromosomes, which does
not count as an operation in a multichromosomal rearrangement scenario;
there are examples when such a step is required.

(2) Although the distance is symmetric (d(II,T") = d(T",II)), when the genomes
have different numbers of chromosomes their algorithm requires that it be
computed as d(II,T') where IT has fewer chromosomes than I'. Thus, it may
be necessary to swap the genomes to achieve this, and a rearrangement
scenario derived from the resulting breakpoint graph would be backwards.

We determined and added the necessary steps to the procedure to com-
pute the rearrangement distance regardless of which genome has more chro-
mosomes, and adjusted their distance formula accordingly; see Section 2.4
for the formula and Section 4 for the proof.

(3) We combined this algorithm with the Bader, Moret, Yan [2] linear-time al-
gorithm for computing reversal distance in unichromosomal genomes, thus
reducing the time to compute distance to O(n) and the time to compute a
rearrangement scenario to O(n?) (where n is the total number of “markers”
in the reduction: the number of genes plus twice the number of chromo-
somes in the genome with more chromosomes); see Section 3.2.

(4) We prove a heuristic for selecting good reversals based on breakpoints,
in Section 6.2. The heuristic is not theoretically optimal for producing
pairwise rearrangement scenarios, but is fast in practice, and generalizes to
phylogenetic trees involving more than two genomes. It is used by MGR,
a program for constructing phylogenetic trees (Bourque and Pevzner [3]).

2. REVIEW OF NOTATION AND TERMINOLOGY

Hannenhalli and Pevzner published algorithms for computing reversal distance
and optimal reversal scenarios in unichromosomal genomes [6], and reversal distance
in multichromosomal genomes [5]. These were later merged together into a unified
treatment, and published in [10, Ch. 10]. We review the necessary terminology
from these sources.

2.1. Genes, chromosomes, genomes. We represent genes by numbers 1, ..., Ny,
and indicate the orientation (strand) of each gene by a + sign. A chromosome
a = {ay,...,ax) is a sequence of signed numbers, and the flip of a chromosome is
—ad = (—ag,...,—a1). In studies of rearrangements on unichromosomal genomes,
several types of chromosomes have been considered ([2], [6], [7], [9, p- 208]) but
only the first type below is biologically relevant for multichromosomal genomes:

(1) Undirected linear chromosomes: @ and —& are regarded as equivalent.
(2) Directed linear chromosomes: @ and —a are regarded as different.
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(3) Clircular chromosomes are equivalent under a dihedral action; all k circu-
lar shifts (a;,...,ax,a1,...,a;—1) of @, and all k circular shifts of —a, are
regarded as equivalent.

In the remainder of this paper, we only consider multichromosomal genomes with

undirected linear chromosomes. We regard a genome as a set IT = {w(1),...,7(N,.)}
of N, chromosomes partitioning genes 1, ..., Ny, where 7(i) = (w(i)1,...,7(i)n,) is
the sequence of signed genes in the ith chromosome. Each gene j =1, ..., N, occurs

exactly once in the genome, either as j or as —j. All genomes in any problem will
be defined on a common set of genes, since we do not consider insertions, deletions,
or duplications.

We introduce additional markers called caps: Cp = Ny +k for k =1,2,...,2N..
These will serve as chromosome delimeters when we convert the genome into a
single permutation. This gives a total of n = Ny + 2N, markers. A capping of a
chromosome () is

ﬁ(l) = <7T(i)07 ﬂ(i)lv ce- >7T<i)ni>77<i)ni+1>

where 7(2)g, 7(4)n,+1 are signed caps, where the signs will be given in Lemma 2.
m(1)o is called an lcap and 7(i),,+1 is called an rcap. A capping of a genome II is

I = {#(1),...,7(N.)},

where each cap C,...,Cay, appears (with a suitable sign) exactly once. There are
(2N,)! possible cappings. One capping is 7 (i) = (Cai—1, (1)1, - . ., 7()n;, Cai).

A concatenate of 11 is a signed permutation 7 of 1,2,...,n, formed by choosing
one of the N,! orderings and one of the 2™ flippings of the chromosomes, and
concatenating them together; if we relabel the chromosomes after these choices,
such a concatenation can be written

o= A1)+ +#(N)
= <7T(1)0,7T(1)1, e 57(1)n1+17 e ,W(NC)O,T('(NC)l, N 77T(NC)W:NC+1>'

Such a signed permutation may also be regarded as a directed linear chromosome.
For an example, see Fig. 1(a). Clearly, II can be recovered from # by scanning for
caps from left to right, breaking after every other cap.

2.2. Mimicking multichromosomal rearrangement operations by rever-
sals on a single permutation. The reversal p(i,j) on a signed permutation
= {(m1,...,m) (where 1 <i<j<k)is

<7Tla-~-77ri71, Ty ey TG 7Ti+17"'aﬂ-k> .

We may also represent this as m = (A, B, C) and the reversal as (A, —B, C), where
A, B,C are sequences and B is nonnull.

On multichromosomal genomes, we consider four operations: reversal, transloca-
tion, fission, fusion. When we represent a genome by a concatenate, these operations
can be mimicked by reversals, but there are also trivial, non-optimal, and nonsen-
sical operations mimicked by reversals. Let 7 = (m1,...,m) and 0 = (01,...,0m)
be two chromosomes (without caps).

A reversal p(i,j) on 7 is the same as for a signed permutation.

A translocation transforms m = (A, B) and o = (C, D) into (A, D) and (C, B).
Certain translocations are given other names, however.
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(a) Genomes I ={(1,2),(3,4),(5,8,7,6)} ' ={(1,2,3,4),(5,6,7,8)}
Cappings I1=1{(9,1,2,10), (11,3,4,12), I= {(9,1,2,3,4,10),(11,5,6,7,8,12),
(13,5,8,7,6,14) } (13,14)}
Concatenates # = (9,1,2,10,11,3,4,12, ¥4 =(9,1,2,3,4,10,11,5,
13,5,8,7,6,14) 6,7,8,12,13,14)
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)

7* = (—10,-2,—1,-9,11,3,4,12,13,5,8,7,6,14
% =(-10,-11,9,1,2,3,4,12,13,5,6,7,8,14)

Concatenates

(h) Scenario

0. (=10 -2 —1 —9)(11 3 4 12) (13 58 7 6 14)
1. Fusion (-10 —11) (9 1 234 12)(13 58 7 6 14)
2. Reversal (=10 —11) (9 1 23 4 12)(13 5 8 —6 —7 14)
3. Reversal (=10 —11) (9 1 2 3 4 12)(13 5 6 —8 —7 14)
4. Reversal: v* (=10 —11) (9 1 2 3 4 12){(183 5 6 7 8 14)

FIGURE 1. An overview of the whole procedure on two genomes,
with Ny = 8 genes, N, = 3 chromosomes, n = 14 markers. Caps
are in bold. Exposed vertices are marked T (tails), IT (II-caps),
I’ (T-tails). Graph parameters: b = 9, ¢ = 6, pnin = 1, prr = 0,
s=1,rr = gr = fr=0. Distance: d = 9—6+0+0+[1=310] = 4.
Key differences from Hannenhalli-Pevzner algorithm: (a—d) I’ has
v =1null, (13,14). (f) Step B19: Flip chromosome 1 to properly
orient chromosomes 1, 2. All bonds are proper. (g) Step B19: Add
tails to obtain G(7*,~v*).
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8 1 2 3 4 9){(10 5 6 7 11)(12 13)
Reversal
. 8 1 -4 -3 -2 9){(10 5 6 7 11)(12 13)
Translocation
Fissi 8 1 -6 -5 -—-10) (-9 2 3 47 11)(12 13)
ission
. 8 1 —6 —12) (=11 -7 —4 -3 =2 9)(10 13)
Fusion
. (8 11) (12 6 -1 -7 —4 -3 =2 9)(10 13)
Block flip
(8 11) (<13 -5 -—10) (-9 2 3 47 1 -6 —-12)
Cap exchange —_—
(8 13) (-11 -5 -10) (-9 2 3 47 1 -6 —12)
Cap exchange
(8 13) (—11 6 -1 -7 -4 -3 =2 9)(10 5 —12)
Nonsense
(8 13) 1 -6 11) -7 —4 -3 =2 9)(10 5 —12)

FIGURE 2. Mimicking multichromosomal rearrangements by re-
versals. The segment to reverse is underlined. Genes are 1,...,7
and caps are 8,...,13. For clarity, chromosome delimiters ()
are shown. Null chromosomes are just a pair of caps, such as
(12 13). Note the fission illustrated is between nonadjacent chro-
mosomes, which has the side effect of flipping intermediate chro-
mosomes. The other interchromosomal operations are shown on
adjacent chromosomes, but would also flip intermediate chromo-
somes if done on nonadjacent ones.

The fusion of m and o is (my,...,Tk,01,...,0m). It may be viewed as the
translocation between (m,() and (f),¢) resulting in (7, o) and a null chromosome
(0,0).

A fission on 7 results in A = (m,...,m—1) and B = (m,...,7); there is
one fission for each 1 < ¢ < k. It may also be regarded as the translocation
(4,B), (0,0) — (A,0),(0, B).

As shown in [5], all of these may be mimicked by reversals in a suitable capped
concatenate of the chromosomes; see Fig. 2.

Let (m1,...,m,) be a capped concatenate of genome II, and (71,..., 7)) be the
result of a reversal p(i, j), with ¢ < j.

If 7; is an lcap but 7; is not an rcap, or if 7; is an rcap but ; is not an Icap, the
reversal is nonsensical; it leaves two left halves or two right halves of chromosomes,
as shown in Fig. 2.

If 7; is an lcap in chromosome r and 7; is an rcap in chromosome s (1 <r < s <
N.), the reversal mimics flipping a block of chromosomes, to change the concatenate
from (1) +--- + 7(N,) to

FA) 47— 1) —(s) — (s — 1) — o — 7() +A(s+ 1)+ - + 7(N).

Although this does not count as an operation in computing d(II,T), it is some-
times necessary to perform this operation when mimicking a multichromosomal
rearrangement scenario by a permutation reversal scenario. This is because for any
two nonnull chromosomes in a given concatenate, only two of the four fusions and
only half of the translocations between them can be mimicked by a reversal. Flip-
ping either chromosome allows the other half of these type of events to be mimicked.
If nonoptimal concatenates are chosen for the mimicking procedure, this step will
be required often, but with optimal concatenates, it will be required at most once.
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If m;_1 is an lcap and 7;4; is an rcap, or m; is an rcap and 7; is an lcap, the
reversal changes the assignments of two caps. Call this a cap exchange. These
operations are only necessary when nonoptimal cappings are chosen. We will find
optimal cappings such that these operations are never used.

Reversals not covered by the above mimic valid rearrangement operations: if m;
and 7; are in the same chromosome, it is a reversal, and if they are in different
chromosomes, it is a fission, fusion, or translocation.

Then, given any capped concatenates 7,4 of genomes I, I', the number of steps
in a scenario sorting 7 into 4 by permitted reversals is

(1) d(II,T) + # of block flips + # of cap exchanges.

In all cases except the nonsensical ones, a reversal encompasses an even number of
caps, of alternating types (lcap or rcap). The reversal turns each lcap it encompasses
into an rcap and vice-versa, and also inverts the sign of each cap. This leads to the
following conventions for the signs of lcaps and rcaps.

Lemma 2. Let 7 be a concatenate of I given by # = w(1)+- - -+7(N.) with capping
(i) = (Coi1, (i) 1, - .., W(0)n,;, C2s). Apply a sequence of permitted reversals to 7.
Then the caps at every step have the following signs:
(a) FEach lcap has the form +C; with j odd or —C; with j even, i.e., (—1)IT1C;.
(b) Each rcap has the form —C; with j odd or +C; with j even, i.e., (—1)C;.

2.3. Breakpoint graph. We review a series of graphs defined in [5]. See Fig. 1(a)-
(d).

Let 7 be a signed permutation of 1,...,n. It may be transformed to an unsigned
permutation u(#) = (g, ..., F2n41) of 0,1,...,2n,2n 4+ 1, by replacing each pos-
itive entry +x with 2x — 1,2z, each negative entry —z with 2z,2x — 1, and then
prepending 7y = 0 and appending 7o, +1 = 2n + 1.

Let IT and I' be two genomes on the same N, genes. They may have different
numbers of chromosomes; add null chromosomes to the genome with fewer chro-
mosomes so that they both have N, chromosomes. (We can also accommodate null
chromosomes in both genomes simultaneously.) Choose any cappings II,T, and
any concatenates 7,7, and transform them to unsigned permutations as described
above.

The breakpoint graph G(7,%) on 2n + 2 vertices 0,1,...,2n + 1, is defined as
follows. Arrange the vertices from left to right in the order g, 71,. .., Ton, Tont1-
Form a black edge {#2;, 2:+1} and a gray edge {92:,92i+1}, for i =0,...,n.

Next we define a graph G(f[, f) that depends only on the cappings II, T, not on
the concatenates 7,4. It is formed from G(7,%) by deleting the edges arising from
the rcap of one chromosome and the lcap of the next, in either 7 or 4. Specifically,
delete the vertices 0,2Ng +1,2Ng +4,2Ng +5,2Ng + 8,2Ng +9,...,2n — 4,2n —
3,2n,2n + 1 and the black and gray edges incident on them. These vertices are
called tails.

Finally, we define a graph G(II,T") that does not depend on the capping of T, by
deleting from G(f[, f‘) the gray edges incident on vertices 2N, + 2,2N, + 3,2N, +
6,2Ny +7,...,2n —2,2n — 1. These vertices are called II-caps. The vertex on the
other end of the deleted gray edge is called a I'-tail, unless the gray edge arises from
a null chromosome of T', in which case both its ends are II-caps and deletion does
not introduce a I'-tail. Note that the construction [5, p. 586] does not consider the
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possibility of null chromosomes in T'; see Section 4 for further details. (Also note
that while the vertex labeling depends on the capping 11, the graph does not.)

Let v(T") be the number of null chromosomes in I'. Then G(IL, I") has 2(N,+ N.)
vertices, including 2N, II-caps and 2(N, — v) I-tails, and has b(IL,T') = Ny + N,
black edges and Ny — N, + v gray edges.

Each of the (2N,)!/(2"1!) possible cappings I corresponds to adding 2N, — v
gray edges to G(IL,T"), 2(N. — v) of which join a II-cap and a I'-tail, and the
remaining v of which join two Il-caps.

Every vertex in G(II, T') has degree 1 or 2, so the graph consists of vertex-disjoint
cycles and paths. Let ¢(II,T') be the total number of cycles and paths. Each path is
classified as a IIll-path, I'T-path, or III'-path, according as its endpoints are both
II-caps; both I'-tails; or one of each. Let prr(IL,T") be the number of I'T" paths,
and similarly for pr, prr. In [5, p. 587], prr = prm and this parameter is simply
called p; however, we have extended the algorithm to handle the case when II has
more chromosomes than T', and this extension may cause prr < prm (specifically,

prr = pun — V)-

2.4. Hurdles and relatives. We now review the definition of the interleaving
graph of G = G(IL,T"). See Fig. 3.

Gray edges {;,7;} and {7, ¢} are interleaving when the intervals [¢, j] and
[k, €] overlap, but neither interval contains the other. Cycles or paths CPy, CP,
interleave when there are interleaving edges g1 € C Py, go € CPs.

The interleaving graph I(G) is a new graph, with one vertex for each path or
cycle in G, excluding adjacencies (2-cycles of the breakpoint graph) and bare edges
(paths consisting of a single black edge and no gray edges). I(G) has an edge
between each pair of vertices that correspond to interleaving elements (paths or
cycles) of the breakpoint graph.

A gray edge {42, %2i+1} = {#j, 7k} in the breakpoint graph is oriented when
|k — 7| is even and unoriented when |k — j| is odd. It is intrachromosomal when 7,
7, arise from the same chromosome of f[, and interchromosomal otherwise.

A connected component of the interleaving graph is oriented when any of its
vertices corresponds to a path or cycle with an oriented edge in the breakpoint
graph, and is unoriented otherwise. Similarly, it is interchromosomal if any of the
corresponding edges of the breakpoint graph are interchromosomal, and is intra-
chromosomal otherwise.

The extent of a connected component K of the interleaving graph is [i, j], where
m; and 7r; are the leftmost and rightmost vertices of any paths or cycles of K in
G. The component K is real when it is intrachromosomal and none of the vertices
iy Tit1, ..., 7; in G are Il-caps or I'-tails.

The set of unoriented components is denoted U(G). A hurdle, greatest hurdle,
and superhurdle, are unoriented components satisfying additional conditions, and
an interleaving graph is a fortress when the set of hurdles satisfies still more condi-
tions; see [6]. On restricting the interleaving graph to the set of intrachromosomal
unoriented components (ZU(G)) or to real unoriented components (RU(G)), we ob-
tain the generalizations of these terms shown in Table 1. Note that the number and
orientation of interchromosomal components may depend on the concatenates used
to construct the graph, but this is not so for the intrachromosomal components;
thus ZU(G) and RU(G) do not depend on the original choice of concatenates.
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FIGURE 3. A graph G(II,T"). A,J are IIl-paths, B is a IIII-
path, H is a I'T-path, and C,D, E,F are cycles. Gray edge
{7?(21,7%24} = {15, 14} interleaves with both {7%19,7%22} = {17, 16}
and {718,723} = {12,13}, but no others. Thus, cycle F' and path
H interleave. Also, cycles D and E interleave. The interleav-
ing graph has components K; = {A}, Ky = {B}, K3 = {D, E},
K, ={F, H}. Since C is an adjacency and J is a bare edge, they
are not included in the interleaving graph. Gray edge {4,5} in B is
interchromosomal unoriented and {2,3} in A is intrachromosomal
oriented. All other gray edges are intrachromosomal unoriented.
Component K; is intrachromosomal oriented, K5 is interchromo-
somal unoriented, and K3, K, are intrachromosomal unoriented,
so U = {Ks3,K,}. None of the intrachromosomal components
K, K3, Ky are real (so RU = )); note that even though K3 itself
does not have I'-caps, the I'-caps 959 = 18, 25 = 19 are within
its extent [14,29]. Adjacency {C?} is real but is not regarded as a
component.

Properties of U(G):
hurdle greatest hurdle super-hurdle fortress

Analogous properties of ZU(G):
knot greatest knot super-knot fortress-of-knots

Analogous properties of RU(G):
real-knot greatest real-knot super-real-knot fortress-of-real-knots

TABLE 1. Hurdlemania

In addition, a semi-knot is a knot that isn’t a real-knot, and whose extent does
not encompass any IIII- or I'T-path. Since it’s not real, it has at least one III-path.
The number of semi-knots in G(II,T') is denoted s(II,T').

The construction of the interleaving graph of G(II,T'), and the classification of
its components, may be applied to other variations of the breakpoint graph.

A component is simple when it contains a III'-path but is not a semi-knot. The
graph G = G(I,T) is formed by closing all III-paths in simple components of
G(II,T). Parameters fr, gr, rr are defined in [5, p. 589] in terms of the real-knots
of G. We need to elaborate on gr only: it is 1 if G has the greatest real-knot and
s(II,T) > 0, and is 0 otherwise.

The distance formula given in [5, Thm. 4] only applies when the number of
chromosomes in II is less or equal to the number in I". By changing their p to
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genomic_sort B(II,T")

B1. Construct the graph G = G(IL,T), and compute parameters b(II,T),
¢(ILT), prr(II,T), and s = s(II,T") (Section 3.2).

B2. Close all III'-paths in simple components, and compute parameters
rr(ILT), fr(IL,T), gr(IL,T).

B3. Compute the distance from these parameters (Equation (2)).

B4. Close all but one III'-path in components with more than one IIT"-path.

B5. while G contains a I'T'-path

B6. find an interchromosomal or an oriented edge g joining this I'T-path
with a IIII-path;
B7. add edge g to the graph and close the resulting path (Section 3.1)

B8. Close all remaining ITIT-paths (Section 4).
B9. while s > 2

B10. join two IIl'-paths from different semi-knots into one cycle,
by adding the two IIT'-edges; (Section 3.1)

B11. s=s5—2.

B12. if s =2 and gr =0,

B13. join two IIl'-paths from different semi-knots into one cycle,
by adding the two IIT"-edges;

B14. s=s5—2

B15. else

B16. close all s remaining IIT'-paths;

B17. s =0.

B18. Determine optimal cappings II*, I'* implied by G.

B19. Determine optimal concatenates 7*, v* from the graph (Section 5).

B20. Sort permutation 7* into v* by reversals, but interpret each step as a
multichromosomal rearrangement transforming II into I' (Section 6.1).

FIGURE 4. Genomic sorting algorithm.

prr, we obtain a distance formula that is always valid, regardless of how many
chromosomes are in each genome, as we will prove in Section 4:

(2) d(IL,T) = bILT) — ¢(ILT) + prr (I, T) + rr(ILT)
+ ’75(1_17 F) * gr’(H, F) +fT(Ha F)—‘ )
2

3. THE NEW ALGORITHM

We refer to the steps of genomic_sort in [5] as A1-A21. Our new algorithm
genomic_sort B is shown in Fig. 4. If only the genomic distance is required, stop
at step B3. If the optimal capping is required but not the optimal concatenates,
stop at step B18.

3.1. Joining and closing paths, simplified. Several steps of genomic_sort add
an edge to the graph to join two paths into a larger path. The result is always a
IIT"-path with an oriented or interchromosomal edge, and a subsequent iteration of



10 GLENN TESLER

the main loop of their algorithm closes that path (step A17). We simplify this by
adding two edges simultaneously to join these paths into a cycle in a single loop
iteration.

The first such steps (A5-A6) join a IIII-path with a I'T-path. The resulting
paths never interact with any other path in the main loop, so we separate this out
into its own loop (B5-B7). It is also rephrased to account for the new distinction
between pr and prr.

The other path joining steps (steps A8 and A13) join two IIl-paths. They
proved that at least one of the two possible III'-edges connecting them is oriented
or interchromosomal, and they test the edges to add such an edge first. The other
edge is guaranteed to be added in a later iteration. Since the order that they are
added does not affect the final output, we remove this test and just add them both
at once (steps B10 and B13).

3.2. Adaptation of the Bader-Moret-Yan algorithm to multichromosomal
genomes. An algorithm was presented in [2] to compute the connected components
of the interleaving graph. They implemented it in the file invdist.c of GRAPPA [1].
We modified it to account for paths (instead of just cycles), deleted tails, and bare
edges. The resulting procedure form_components runs in time O(n). It identifies
the components and computes and stores certain structural information about them
(including their leftmost vertex). Say there are cc connected components.

They subsequently determine which components are unoriented (i.e., the set
U), and set flags for each component to indicate this. We adapted this to clas-
sify components by membership in U, ZU, and RU. The resulting procedure
classify_components runs in time ©(n).

Next, they classify and count the number of hurdles, superhurdles, greatest hur-
dles, and fortresses, by analyzing the stored structural information about the con-
nected components that have been marked as members of U; denote this step
classify hurdles(i/). By modifying this to instead check the new flags for mem-
bership in ZU or RU, all the analogous terms in Table 1 can be classified and
counted in time ©(cc). Combining the results of the calls on ZU and on RU gives
the remaining parameters in the distance formula and other parameters in the al-
gorithm. Thus, we may perform steps B1-B2 of our algorithm as indicated in
Fig. 5.

Although the classification of components changes as edges are added in steps
B4-B16, there is no need to call these routines again because each added edge
changes the classification of components in a known fashion (see [5, Thm. 4] and
our extension of that in Section 4, Case 5). No new semi-knots are created, and as
they are destroyed, we maintain a count, s. (Also, the number of remaining semi-
knots equals the number of remaining III'-paths in the reorganized code, steps
B5-B17.)

The test for the greatest real-knot (A10/B12) simply uses the value of gr from
step B2. This is because steps B3—-B11 neither create nor destroy components in
RU. Each edge added in these steps connects two II-caps or a Il-cap and a I'-tail.
Any component having either of these within its extent was not real to begin with,
and is either oriented or interchromosomal after the addition of the edge.

In step B19, it may be necessary to form and classify the components again,
perhaps multiple times, because the number and orientation of interchromosomal
components can change. This will be described in Section 5.
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B1. Construct the graph G = G(II, T").
Compute parameters b(IL,T'), ¢(II, T), p(II,T).
form_components(G)
classify_components(G)
classify hurdles(ZU(Q))
classify hurdles(RU(G))
Combine the results to compute parameter s(II,T') and to identify simple
components.
B2. Form G by closing all IIT'-paths in simple components.
classify_components(G)
classify hurdles(ZU(G))
classify hurdles(RU(G))
Combine the results to determine parameters rr(II,T), fr(IL,T), gr(II,T).

FIGURE 5. Adaptation of BMY algorithm for multichromosomal genomes.

4. WHEN I' HAS FEWER CHROMOSOMES THAN II

The original construction of G(II,T") [5, p. 586] assumes that IT has no more
chromosomes than I', and then says to pad II with null chromosomes so that they
both have the same number of chromosomes. However, that construction breaks
down without that assumption: if I" has fewer chromosomes and we pad it with
nulls, then when we delete a gray edge corresponding to a null in I, the construction
leaves unresolved how to classify the vertices of the edge into Il-caps and I'-tails.
We have said both vertices should be classified as II-caps in this case. This causes
the parameters prr, prm to be unequal (instead of equal, as they were in [5]), so
the distance formula was changed to (2). It also requires rephrasing steps A5-A6
(see B5-B7), and introducing a new step B8.

We have done all this to make the construction truly symmetric, regardless of
which genome has more chromosomes. We now explain how to adjust the proofs
in [5] to account for these changes.

On page 587, they observe that every cycle in G(fo‘) containing a IIII-path
contains at least one more path, so that ¢(IT,I") < ¢(IT,T') — p(II, T) (where their p
means pryp); that is false if these II-caps arose in the new way we allow. However,
it may be corrected: every cycle in G (ﬁ, f‘) containing a I'T-path contains at least
one more path, so that ¢(II,T') < ¢(IL,T) — ppp(IL,T). All further references they
make to parameter p must be changed to prr.

Theorems 34 of [5] consider how each graph parameter b, ¢, p, r, s, fr, gr
changes as gray edges ¢1,¢s,... are added to the graph Gy = G(II,T'), and give
various upper and lower bounds on the distance, culminating in a proof of the
distance formula and the capping algorithm. Let G; be Gq plus edges ¢1,...,¢;.
Let ¢; = ¢(G;), Ac = ¢; — ¢;—1, and similarly for the other parameters. Let

AP = (e=prri =i = [5]) = (o1 = prris =i = [#5])
A = (Ci —pro; —Ti — [7&79T5+ﬁ7‘b

Si—1—gr;_1 +fr_
S AR e )
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be the parameters that were considered in [5], Theorems 3 and 4. The proofs of
both theorems have four cases, depending on what kinds of paths and vertices are
being joined. In all four cases, g; connects a II-cap with a I'-tail, and it is necessary
to prove AZ@ < 0 and A§4) < 0. In both theorems, we add additional cases for
g; connecting two Il-caps. Our “case 5” describes the only new type of edge we
actually use in the construction (in step B8), but the other new cases are necessary
to prove the validity of the distance formula (2).

Case 5: Edge g; closes a Illl-path P. We will show Ac; = Aprp; = Ar; =
As; =Agr;=Afr, =0, so that AEB) =0 and AE4) =0.

Proof: Clearly Ac; = Aprr; = 0. (Note Apnm; = —1, which is why that param-
eter is not the correct one to use.)

Closing P does not create or destroy components, does not affect whether any
component is interchromosomal or intrachromosomal, and does not affect whether
any component is oriented or unoriented. Thus, no components are added to, or
removed from, ZU.

However, closing P may reclassify a non-real component as real, so we must
consider the possibility that a component K ¢ RU(G;_1) is moved to K € RU(G;).
We will show that this cannot happen, which implies ZU and RU are unchanged
and Ar; = As; = Agr, =Afr, =0.

Suppose a component is reclassified on addition of edge g;: K & RU(G;_1) but
K € RU(G;). This requires that K be intrachromosomal unoriented, and P is
wholly within the extent of K. Then P connects two Il-caps at the ends of the
same chromosome, K is the component containing P, and there are no I'-tails in this
chromosome in GG;. Further, there were no I'-tails in this chromosome in Gy: if there
had been, the previously added edges that removed them were interchromosomal.

Say that in u(7), this chromosome is

721'21‘4_1,7%21'_;,_2, e ,7?('2j_177A1'2j = T,a1,...,0,Y
where x,y are II-caps and the rest are not. Since there are no interchromosomal
edges among these, u(9) has the form ... ,v,a;,,...,a; ,w,..., where v,w are II-
caps and the a’s are permuted from how they appear in 7.

If k£ > 0, the edge (v,a;,) was deleted to leave a I'-tail at a;, in Gp. However,
there are no I'-tails in this chromosome, so k£ = 0 and this chromosome of II is null.
In capped form it is just (z,y), and P and K are just the bare edge (x,y). It is not
in RU(G;_1). Closing it turns it into an adjacency, which is still not in RU(G;),
contradicting the assumption that it is. (Bare edges and adjacencies are specifically
excluded from the interleaving graph.)

Case 6: Edge g; connects two IlI-caps in different ITII-paths. Then A¢; = —1
and Aprr; = Ar, = As; = Agr, = Afr, = 0, so that Agg) = -1 <0 and
AW = _1<o.

Case 7: Edge g; connects two Il-caps, one in a IIII-path P;, the other in a
IT-path Ps.

The two paths are merged into one III'-path Ps, so Ac¢; = —1 and Aprr; = 0.
No real components were created, destroyed, or affected, so Ar; = A fr, = 0.

Each chromosome has two II-caps but P; and P> have three, so the resulting
component with Ps is interchromosomal (hence not real). If P, was in a semi-

knot, that semi-knot is now destroyed, so As = —1 and A gr = 0 or —1; otherwise
As=Agr=0.
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proper_flip_left(G)

1. form_components(G)
2. classify_components(G)

3. Determine all distinct chromosomes i1, 19,...,4; that contain the leftmost
vertex of one or more interchromosomal unoriented components.
4. Flip chromosomes i1, 9, ..., ik.

FIGURE 6. Algorithm to find a proper flipping of a graph.

Then A® =0 or —1 and AY) =0 or —1.

Case 8: Edge g; connects two Il-caps in different II['-paths, P; and Ps.

The two paths are merged into one I'I-path, so Ac; = —1 and Aprr; = +1. No
real components were created, destroyed, or affected, so Ar; = A fr, = 0.

If P, or P, were in semi-knots, edge g; destroyed them, giving As = —1 or —2
and A gr = 0 or —1. If neither path was in a semi-knot, then As = A gr = 0.

Then A® = —1 or =2 and A" = —1 or —2.

5. FROM OPTIMAL CAPPINGS TO OPTIMAL CONCATENATES

The procedure genomic_sort, steps A1-A19, produced a new capping of I" to
prove the distance formula [5, Thm. 4]. However, to compute the distance without
building a proof certificate (i.e., capping), it is only necessary to perform steps Al—
A2. Tt is possible to extend that procedure to algorithmically produce an optimal
rearrangement scenario between two genomes, but they do not actually give the
connection between the capping and the scenario; our added step B19 does this,
and we explain it now.

5.1. Proper flipping. Hannenhalli and Pevzner’s reduction of the multichromo-
somal rearrangement problem to the unichromosomal rearrangement problem in [5]
assumes all interchromosomal components can be made oriented.

A chromosome 7(i) of II is properly flipped in a graph G = G(7,%) if every
interchromosomal edge originating from it belongs to an oriented component of
G [5, p. 585]. The graph G is properly flipped if all chromosomes are properly
flipped. We extend these definitions to apply as well to the graphs G(ﬂ,f) in
which cycles among the tails have been removed.

In [5, Lemma 1], they prove the following;:

Lemma 3. If a chromosome w(i) is not properly flipped in G, then it is properly
flipped in the graph G’ obtained by flipping that chromosome. Moreover, every
properly flipped chromosome in G remains properly flipped in G'.

We require an extension of this, whose proof is the same as the original proof.
Lemma 4. Lemma 3 also applies to graphs G(f[,f) i which cycles among the
tails have been removed.

This leads to a procedure proper_flip_left for obtaining a proper flipping
(Fig. 6).

Theorem 5. Algorithm proper_flip_left results in a properly flipped graph, and
takes time O(n).

Proof: Let i1 < i < ... < ik be the indices of the chromosomes that contain

the leftmost vertex of one or more interchromosomal unoriented components of G.
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For convenience, set i1 = N. + 1. Let G; be the result of flipping chromosomes
il, A ,ij.

Let 0 < j < k. We claim that in G, chromosomes 1,2, ...,7;41 — 1 are properly
flipped and (when j < k) chromosome ¢4 is not. This is true for Go. Assume it is
true for G;_1; then chromosomes 1,2,...,i; —1 of G;_1 are properly flipped but i;
is not. By Lemma 4, flipping chromosome 7; will properly orient chromosome 7; and
will keep chromosomes 1,...,7; — 1 properly oriented. Now consider chromosome
r in G, with ¢; < r < i;41. None of the chromosome flips i1,...,7; affected inter-
chromosomal components with leftmost vertex in chromosome 7, because all these
flips occurred to the left of the chromosome. So any interchromosomal component
incident with chromosome 7 has its leftmost vertex in a smaller numbered chro-
mosome, and hence is oriented. So chromosome r is properly oriented. Similarly
(when j < k), chromosome ;41 still has the leftmost vertex of an interchromosomal
unoriented component, and so is not properly flipped.

The final result, Gy, is properly oriented.

Steps 1 and 2 take time O(n) each. Step 3 takes time O(cc). Step 4 takes time
O((niy +2) + -+ (ni, +2)). The total is O(n).

5.2. Proper bonding. In Section 2.2, we noted that in any concatenate, only half
the possible fusions and translocations between a given pair of chromosomes can
be mimicked by a reversal; flipping one of the chromosomes permits mimicking the
other half. Mimicking a sequence of multichromosomal rearrangement operations by
reversals potentially requires numerous chromosome flips; recall Equation (1). We
will show that the capping produced at step B18 can be used to form concatenates
(7*,~*) in which an optimal reversal scenario from 7* to v* or vice-versa includes
at most one such flip.
The set of (internal) bonds of concatenate 7 is defined as

{(77(1)7114-17 7T(2)0)’ teey (7T(Nc - l)nchl-‘rlv 7T(]VC)O)} .

The external bonds are (0, 7(1)o) and (7(Ne¢)ny, +1,7+1). For example, in Fig. 1(a),
the internal bonds of 7 are {(10,11), (12,13)}, and the external bonds are (0,9) and
(14,15). (Note that we work with signed entries of 7, not unsigned entries of u(7).)
A bond (a,b) in 4 is a proper bond when either (a,b) or (—b, —a) is a bond in
7. We will show it is possible to form concatenates 7*,~* with the cappings from
step B18, such that these conditions are satisfied:
P1l. G(=*,~*) is properly oriented.
P2. Either
(a) All internal bonds in v* are proper relative to 7*, and 7*,v* both start
with the same cap and both end with the same cap (i.e., both external
bonds are proper); or,
(b) there is one improper internal bond, and one improper external bond.

Take a capping IT*, T from step B18. Hannenhalli and Pevzner [5, Thm. 2]
prove that there is a reversal scenario between suitable concatenates 7* and ~*
that mimics an optimal rearrangement scenario between Il and I'. In terms of
Equation (1), it involves d(IL,I") reversals, translocations, fissions, and fusions; a
number of block chromosome flips; and no cap exchanges or nonsensical reversals.
Their proof is not fully constructive, however. We will give a fully constructive way
to do this using bonds.
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They say to form concatenates with G(7*,~v*) properly flipped and biai — ctan
minimal, without saying what values are possible or indicating how this might be
done. Their parameters are b,y = N, — 1 black edges among tails, and ¢,y cycles
among tails; these don’t account for the leftmost and rightmost tails, so we define
biail = N.+1 and adjust caj. We will give a construction that guarantees byai — Ciail
is either 0 (giving case P2a above) or 1 (giving case P2b). In the former case, a
reversal scenario mimicking an optimal rearrangement scenario will not have any
block chromosome flips; in the latter, it will have exactly one flip. We will also
prove that this latter case is sometimes unavoidable.

First, we give the most general procedure to produce concatenates whose bonds
are all proper bonds, without regard to whether they are properly flipped. Then
we adapt it to the additional requirements given above.

The input is a list of the pairs of caps bounding the chromosomes of IT*, and a
similar list for I'*. There are N, pairs in each list.

At each stage, we take two chromosome blocks A, B in IT* and replace them
by the single block A + B. A, B, or both, may be flipped from how they were
considered at an earlier step. We do a related operation in I'*.

When we form a concatenation A + B in II*, where the rcap of A is a and the
lcap of B is b, we must simultaneously form a concatenation A’ + B’ in I'*, where
the rcap of A’ is a and the lcap of B’ is b. If a and b are in different chromosome
blocks of I'*, this is possible (and may require flipping chromosome blocks in IT'*),
and we say the concatenation A 4+ B is legal. However, if a single block of I'* has b
and a (or —a and —b) as its caps, this is not possible, and we say the concatenation
A+ B is illegal.

Example 6. Suppose II and I" have 100 genes and 4 chromosomes each, and the
capping at step B18 is this (genes are not shown):

#(1) = 101---102
#(2) = 103---104
#(3) = 105---106
#(4) = 107---108
3(1) = —108---—107
4(2) = 103---—105
4(3) = 101---106
4(4) = —102---104

(1) The concatenation #(1) — #(2) is illegal because it would form a bond
(102, —104), and the block 4(4) has these (negated) as caps. All five other
concatenates (1) +7(j) are legal. Let’s form 7 (1) +#(2). This creates the
bond (102,103) in 7, so we must create the same bond in v* by forming

—(4) +4(2):
#(1)+#(2) = 101---102,103---104 = 101---104
#(3) = 105---106
#(4) = 107---108
—3(4) +4(2) = —104---102,103---—105 = —104---—105
(1) = —108---—107
4(3) = 101---106
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(2) The concatenation (7(1) 4+ 7(2)) + #(3) is illegal because it forms the bond
(104,105), but these (negated) are the caps of a block in I'*. The other
three concatenates (7 (1) +#(2)) £ #(j) are legal; we choose (7(1) +7(2)) —
#(3). This creates a bond (104, —106), inducing the concatenate —(—%(4)+
3(2)) - 4(3) in T*,

#(1) +#7(2) —#(3) = 101---—105
#(4) = 107---108

—A(2) +45(4) —43) = 105---—101
4(1) = —108-.-—107

(3) Both concatenations (7(1) + #(2) — @(3)) & 7(4) are legal. (Whenever a
block in IT* and a block in I'* have the same caps (up to sign), all single step
concatenations involving that block will be legal.) If we do (#(1) + #(2) —
#(3))+7(4), we form the bond (—105,107) which induces the concatenation

(3(3) = A4(4) +4(2)) —4(1).
#(1) + 7(2) — #(3) + #(4) = 101---108
4(3) —4(4) +4(2) —4(1) = 101---108

Note that it is sometimes necessary to flip this final concatenation to get
7, 7" to start and end with the same caps.

Theorem 7. Step B19: Algorithm form_optimal _concatenate (Fig. 7) forms con-
catenates ™, v* of the cappings II*,T'* so that conditions P1-P2 are satisfied. The
time is O(n - N.), and the average time is O(n - In(N,)).

Proof: Condition P2: At the start of iteration i, we have the concatenate 7 () +
-+- 4+ @(N.). Steps 6 and 8 do not alter any interchromosomal components whose
leftmost vertex is in chromosomes 7, + 1,..., N.; thus, step 9 does not flip any of
these chromosomes, so this concatenate and the bonds in it are unaltered.

When i > 2, all bonds formed are legal: there is at most one illegal bond that
can be prepended to 7 (i), and when it would be formed, step 6 moves a different
chromosome before 7 (7). Both its caps can form a legal bond with 7 (i), so after
flipping it if necessary in step 9, the bond formed in step 10 is legal.

When i = 2, we try to form a legal bond, but we will fail if doing so results in
an improper orientation.

Condition P1: Steps 2 and 9 guarantee that G(IT*,T**) is properly flipped. How-
ever, G(m*,~*) also includes cycles among the tails. If all the bonds are proper, the
tail cycles are all adjacencies, so they do not introduce new unoriented interchro-
mosomal components. (The internal bonds give adjacencies for the tails between
chromosomes; since 7* and ~* start with the same gene, the leading tails form an
adjacency, and since they end with the same gene, the trailing tail is an adjacency.)

Otherwise, there is one improper bond, and 7* = {(a,--- ,b, ¢, --d), where (b, c)
is the improper bond between the first two chromosomes. I has two fragments. The
two ways of concatenating them so they start with a are v* = {a,--- ,d, —=b--- —¢)
and v* = {(a, -+ ,d,c---b). All the tail cycles are adjacencies, except for one cycle
C involving the tails between the first two chromosomes, and the tails following
the last chromosome; see Fig. 8. There must be interchromosomal gray edges g
originating in chromosome 1; otherwise, at this stage, the first chromosomes of 7*
and v* would be the same genes in permuted order, and with the same caps, so
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form_optimal_concatenate(G, 7, %)

1. Initialize the list of block caps of I' to be the pairs of caps on the chromo-
somes of T'.

2. G = proper_flip_left(G)

3. for (i=Ny;i>2i=i—1)]

4. if the bond from 7 (i — 1) to 7(¢) + - - - + 7(N,) is illegal {

5. if (i > 2)

6. (f(i—2),7(i — 1)) = (—7(i — 1), =7 (i — 2))
(and make corresponding changes to G)

. else

8. #i—1) = —#@i—1)
(and make corresponding changes to G)

9. G = proper_flip_left(G)

}
10. Form the bond #(i — 1) 4+ (7 (3) + - - - + 7(N..)).

Update the list of bonds and block caps in I'*
(if step 8 occurred this iteration, and this is not
possible, skip it).

}
1. 7 =#(1) + - + #(N.)

12. if there are no improper bonds
13. form the concatenate v* starting with the same cap as 7*
and with the same internal bonds
14. else // 1 improper bond. Other bonds concatenate I'* into 2 fragments.
15. Concatenate the two blocks of I'* together so that
~* and 7* start with the same cap.

FIGURE 7. Algorithm to form optimal concatenates of genomes.

a proper bonding would be possible. All such g belong to oriented components
of G(IT*,I'*) (since it is properly flipped), and C is merged with these into an
interchromosomal oriented component in G(7*,v*).

Running time: Steps 1, 2, 11-15 take time O(n). The worst case for the main

loop is the low-probability event that we do steps 5-9 on all N, —1 iterations, giving
a time bound O((N, — 1) - n). However, at most one cap out of the 2(i — 1) caps
on 7(1),...,7(i — 1) is illegal to prepend to 7 (%), so there is only a 1/(2(: — 1))
chance of having to do steps 5-9, giving average time O((3 ++---+ m)n) =
O(n -1n(N,)).
We are hopeful that the time may be improved to O(n) by making versions of the
BMY algorithms and of proper_flip left that work just one chromosome at a
time instead of examining all chromosomes: after step 6, one of the four ways to
separately flip or not flip chromosomes i — 2 and 7 — 1, makes it properly flipped.

6. OPTIMAL SCENARIOS

6.1. Mimicking a rearrangement scenario by a reversal scenario. There
are several algorithms for producing optimal reversal scenarios between a pair of
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FIGURE 8. The two ways to add tail cycle C' for an improper bond
between chromosomes 1 and 2. The other bonds are proper, and
their tail cycles are adjacencies. All tail cycles are shown dotted.

permutations. This includes the original O(n%) and O(n*) algorithms of Hannen-
halli and Pevzner [6], the O(n?a(n)) algorithm of Berman and Hannenhalli, and
an O(n?) algorithm of Kaplan, Shamir, and Tarjan [7]. These are easily adapted to
produce a multichromosomal rearrangement scenario by interpreting the reversals
as described in Section 2.2. Some of these algorithms use the breakpoint graph
G(#,%); rather than create it from scratch, they can use the graph from the end of
step B19.

In adapting a reversal scenario algorithm to produce a multichromosomal re-
arrangement scenario, there is a restriction that must be obeyed: a reversal starts
at an lcap if, and only if, it ends at an rcap. The O(n*), O(n?a(n)), and O(n?)
algorithms named above do this without any additional modifications, because they
select reversals based on the orientations of edges and components. Cycles among
tails are all interchromosomal, hence are adjacencies (which they will not reverse)
or oriented (in which case they choose edges connecting two tails or two nontails).

This concludes the proof of Theorem 1, except for the existence of genomes in
which all optimal scenarios require one block chromosome flip, which will be done
in Section 7.1.

6.2. Breakpoint heuristics for optimal scenarios and trees. Although the
algorithms just named can quickly select good reversals for pairwise genomic re-
arrangement scenarios, selection of good reversals is NP-hard for even the simplest
phylogenetic trees [4]. We have integrated the algorithms in this paper into Guil-
laume Bourque’s program MGR for constructing phylogenetic trees. Here we prove
the validity of a heuristic for selecting good rearrangements in these types of prob-
lems (Bourque and Pevzner [3, p. 29]). This generalizes a result of Kececioglu and
Sankoff [8, Thm. 3] for sorting a signed permutation by reversals.

Let G = {IIy, ..., I1,,} be a set of genomes, either multichromosomal, or unichro-
mosomal with circular, directed linear, or undirected linear chromosomes. A phy-
logenetic tree T on G is a tree whose vertices are genomes on a common set of



MULTICHROMOSOMAL GENOME REARRANGEMENTS 19

genes, and whose leaves are the genomes in G. The score of T is the sum of the
appropriate distance d(II,T'), taken over all edges (II,T) of T. The optimal score
of a phylogenetic tree on G is the minimum score among all phylogenetic trees.

A conserved adjacency (x,y) of G is a pair of genes such that every genome in
G contains either (z,y) or (—y, —z) consecutively. In multichromosomal genomes,
these must be consecutive within the same chromosome; no caps or concatenates

are being considered. Let A(Ily,...,II,,) denote the set of all conserved adjacen-
cies. A conserved strip (x1,...,x) is a sequence of genes such that every genome
contains either it or (—x, ..., —x1) consecutively. It is comprised of k—1 conserved
adjacencies.

Theorem 8. (a) Between any two genomes (IL,T"), there is an optimal reversal or
rearrangement scenario in which the pairs in A(IL T) are adjacent at every step.

(b) For a set of genomes G = {Ily,...,I1,,}, there is an optimal phylogenetic
tree in which the pairs in A(Iy,...,I,,) are adjacencies in every node, and an
optimal rearrangement scenario of form (a) exists on each edge.

Proof: Part (a) is a special case of part (b), so we prove the latter.

Let A = A(Ily,...,II,;,). Let (z,y) € A. Let II} be II; with +y deleted, and
G' = {11},...,II/,}. Any phylogenetic tree T on G can be turned into a tree
a(T) on G’ by discarding +y from every genome. We have score(a(T)) < score(T)
because reversals only on +y no longer count, but all other rearrangements do.

Conversely, take any tree T’ on G’. In every genome in 1", replace = by z,y and
—x by —y, —z, to form a tree S(T"). Form a rearrangement scenario on an edge of
B(T") by taking a scenario on the corresponding edge of T”; keep the same starting
and ending genes for each, except rearrangements ending at x should be extended
to end at y, and those starting at —a should be extended to start at —y. Thus,
score(B(T")) < score(T”) (because this does not preclude the possibility of alternate
scenarios with smaller scores).

Combining these, all genomes in S(a(T)) preserve the adjacency (z,y), and
score(3(a(T))) < score(T).

Let a(z,y), B(x,y) denote the above constructions for a specific (z,y). Let S =
(z1,...,2k) be a conserved strip of G, and

¢S(T) = ﬂ(zk_hwk)a(Ik—hwk) U 6(11,Z2)a($1,w2)(T)'

All genomes in ¢g(T') preserve the strip S.

Let £51, ..., £S5, be all maximal conserved strips of G, and ¢(T') = ¢g, - - - ¢s,, (T).
Each leaf II; of T is unchanged in ¢(T'), and score(¢p(T)) < score(T). If T is an
optimal tree, then score(T) < score(¢(T)), so these are equal. Then ¢(T) is an
optimal tree of form (b).

7. EXAMPLES

7.1. Scenario with mandatory flip. We will prove that all optimal reversal
scenarios mimicking a rearrangement scenario from IT = {(—5,1,3),(2,4)} to I =
{(1), (2, 3,4,5)} include a step mimicking flipping a chromosome. We have d(II,T") =
3; see Figs. 9-10.

Since our construction allows for the possibility of null chromosomes, we assume
both genomes have been padded with null chromosomes to a total of N, > 2
chromosomes. Once IT has been capped, there are (2N,)! ways to cap I'. There are
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(a) Genomes  II={(~5,1,3),(2,4)} = {(1),(2,3,4,5)}
Cappings II={(6,-5,1,3,7),(8,2,4,9)} I'={(6,1,7),(8,2,3,4,5,9)}
Concatenates & = (6,—5,1,3,7,8,2,4,9) 4 =1(6,1,7,8,2,3,4,5,9)

b)Gear

/// \\\
7 PSS Y
/ s NN N\
T AT T NN T T
|6 5 1 3 7|8 2 4 9|
chromosome 1 chromosome 2
(c) Steps B2-B18 I
A =" R
s === N N
s s BT SN N N

(e) G(7,7") R

-7 -3 -1 5 6|/ 8 2 4 |
Concatenates: 7* = (-7,-3,—-1,5,—6,8,2,4,9)
’Y* = <_7a 179a67 57 45 _37 _25 _8>
(f) G(m*,v*) e
oo ///’—N_\“\'\\\ :::
Y v NN ON T
s s NN
oo d é 4 €3 o6 N oo
-7 -3 -1 5 -6|| 8 2 4 9

FIGURE 9. (a) Input. (b) Grap I'). Parameters b = 7,

G(II,
fr = 0 give distance d =
Up

c:4,ppp:s:r7’: =
T—44+0+0+ [040] = ( ) to Step B18 The graph
is properly bonded (with 'y* (6,—5,—4,-3,-2,-8,-7,—-1,9))

but not properly flipped: interchromosomal component A is ori-
ented but B is not. (d) Step B19: Flip chromosome 1 to properly
orient graph. The potential bond (—6,8) is illegal. (e) Step B19:
Form a concatenation v* of the two fragments of I'*, and add the
corresponding tail cycles (shown dotted); note there is a 4 vertex,
oriented cycle, not just adjacencies. (f) Alternate concatenation
~** and its corresponding tail cycles. This includes a 4 vertex,
unoriented cycle, but it intersects an oriented one, so it’s part of
an interchromosomal oriented component.
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(a) Step 0: 7*

PRSP S Sl R
~ // //// \\\\\\
_L. 7 s NONN N
o Ed 2 L 2 o €3 0 v e
71 _3_ -1__5 _-6||8__214 9|
chromosome 1 chromosome 2
Step 1: Translocation el
=TS
o N NTN
o £ d €260 €3 o €2 v e
|77 -2 78” 6 —51_1__3 4109
chromosome 1 chromosome 2
Step 2: Reversal e —— —
7 N .
Vs R NN
o L d 2 o0 €2 £ £ 2N £ 0
|—7 -2 —8|||_6__:§_:4__:5i_:1___9_|
chromosome 1 chromosome 2
Step 3: Flip chromosome 2 o
////’ \\\\\\
s RN
o L4 % 60 Fo9 o £ o o0
-7 -2 8|l -9 113 4 5 -6
chromosome 1 chromosome 2

Step 4: Translocation; ~**
QQQQ'-'-OQQQQQQQ

|-7 -1 9| 8 2 3 5 6]
chromosome 1 chromosome 2
(byStep 1|7 -2 8| T@TZFIOCTHICGIC 30
chromosome 1 chromosome 2

Step 2’: Flip chromosome 2 _

—_——— ~
T -~~~
7/ // - e //é—‘\-\r-\\\\\ ~
o L 6 o0 éd 2% o €2 o0
|—7 -2 —s||—9 -4 =3 —-11 5 -6
chromosome 1 chromosome 2

Step 3’: Reversal

FIGURE 10. Continuation of example in Fig. 9(f). Breakpoint
graphs of two optimal scenarios transforming 7* into v**. At each
step, the markers reversed in the transformation to the next step
are boxed. (a) In step 2, interchromosomal cycle A is unoriented
and interchromosomal tail cycle B is oriented. The component
{A, B} is only oriented because of the tail cycle B; without con-
sidering tail cycles, the graph would have unoriented component
{A} and would not be properly flipped. (b) Alternate scenario,
performing chromosome flip earlier. One graph changes, as does
annotation of its neighbors.
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droy (m,7y) | v:12345 15432 12345 15432 23451 23451 54321 54321
m: 51324 5 5 5 5 5 4 4 4
51342 5 4 5 4 5 5 4 4
31524 5 5 4 4 5 4 5 4
31542 5 4 4 4 4 5 5 5
24513 5 5 5 4 4 4 4 5
24315 4 5 4 5 4 4 5 5
42513 4 4 5 5 4 5 4 5
42315 4 4 4 5 5 5 5 5
TABLE 2. All possible concatenates require a flip. —x is abbrevi-
ated .

N,!-2Ne concatenates of II and N,! - 2N¢ concatenates of I'. Let 7,7 be any such
capped concatenates. We will show that dye, (7,%) > 4.

Delete the caps from 7, 4 to form uncapped concatenates 7, v. Clearly dyey (7,%) >
dyev(m,7) since any optimal reversal scenario transforming 7 to 4 can be turned
into a (possibly nonoptimal) reversal scenario turning 7 into 7, by deleting the
caps. Table 2 shows dyey(m,7) > 4 in all cases.

7.2. Hannenhalli and Pevzner’s example, revisited. The example [5, p. 588]
gives two genomes II, T" with d(II,I') = 7. It produces cappings f[, oIt gives a
concatenation 7 on input with no indication that it should be changed on output,
and it outputs a capping I" without indicating what concatenation to use. We focus
on their steps (e) and (f). Forming the implied concatenation, we have

(13,-3,-2,14,15,—1,4,5,6,7,12,16,17,10,9, 11,8, 18)
(13,1,2,3,4,-15,-14,5.6,7,8,18,17,9,10, 11, 12, 16)

>
Il

2>

(where caps are shown in bold). We may compute dyey(7,5) = 9 # 7. Note that
there are improper bonds: (16,17) # (18,17). If we flip the third chromosome of
both concatenates, the reversal distance becomes 7, and the bonds become proper.
(They do indicate that some chromosomes of II may have to be flipped, but never
say when to do that, and they do not discuss what operations must be done to I'.)

The second error in the example is that the scenario (f) is not optimal for the
capping (e). To see this, we place the caps of (e) into the steps of the scenario (f).
There is only one way to do this. The chromosome order and orientation shown is
arbitrary; this is not a concatenation.
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0. 1I {(13,-3,-2,14),(15,-1,4,5,6,7,12,16),
(17,10,9,11,8,18) }

1. Translocation {(13,-3,-2,14),(15,-1,4,5,6,7,8,18),
(17,10,9,11,12,16) }

2. Fusion {(13,-3,-2,-1,4,5,6,7,8,18), (15,14),
(17,10,9,11,12,16) }

3. Fission {(183,-3,-2,-1,4,-15),(—14,5,6,7,8,18),
(17,10,9,11,12,16) }

4. Reversal {(13,1,2,3,4,-15),(—14,5,6,7,8,18),
(17,10,9,11,12,16) }

5. Reversal {(13,1,2,3,4,-15),(—14,5,6,7,8,18),
(17,-9,-10,11,12,16) }

6. Reversal {(13,1,2,3,4,-15),(—14,5,6,7,8,18),

(17,-9,10,11,12,16) }
7. Reversal — I’ {(13, 1,2,3,4,—-15),(—14,5,6,7,8,18),
(17,9,10,11,12,16) }

Assume there are concatenates 7, 4 that are consistent with this sequence of
steps, with no additional chromosome flips or other operations. We will show that
this cannot occur. Let #(9, ... #(7 denote the concatenates at each step.

The chromosomes of step 1 are A = (13, -3, —2,14), B = (15,—1,4,5,6,7,8,18),
C = (17,10,9,11,12,16). In order to mimic the fusion in step 2, #(!) must have
one of the forms — A+ B+ C, —A+(C+ B, +C — A+ B, or the reverse of one of
those. This is 12 possible concatenations in all. With #(Y) = —A + B+ C, we have

1 = (-14,2,3,-13,15,-1,4,5,6,7,8,18,17,10,9,11,12,16)
7@ = (-14,-15,13,-3,-2,-1,4,5,6,7,8,18,17,10,9,11,12,16)
73 = (-14,-4,1,2,3,-13,15,5,6,7,8,18,17,10,9,11,12,16)

but the caps on the first two chromosomes of #(3) are incorrect (interchange +14 «
F15). Propagating this through to step 7 gives a capping

I ={(13,1,2,3,4,14), (15,5,6,7,8,18), (17,9,10,11,12,16)} .

Note that in step (e) there were two ways to join the IITI- and I'T-paths; the other
choice would have given exactly the capping I,

The analysis of the other 11 possible concatenations #(!) is similar, and they are
all consistent only with the capping I
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