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Abstract

We consider the problem of counting the number of contingency tables with given row and column sums.
This problem is known to be #P-complete, even when there are only two rows (Random Structures
Algorithms 10(4) (1997) 487). In this paper we present the first fully polynomial randomized approximation
scheme for counting contingency tables when the number of rows is constant. A novel feature of our
algorithm is that it is a hybrid of an exact counting technique with an approximation algorithm, giving two
distinct phases. In the first, the columns are partitioned into ‘‘small’’ and ‘‘large’’. We show that the number
of contingency tables can be expressed as the weighted sum of a polynomial number of new instances of the
problem, where each instance consists of some new row sums and the original large column sums. In the
second phase, we show how to approximately count contingency tables when all the column sums are large.
In this case, we show that the solution lies in approximating the volume of a single convex body, a problem
which is known to be solvable in polynomial time (J. ACM 38 (1) (1991) 1).
r 2003 Elsevier Inc. All rights reserved.

Keywords: Contingency tables; Approximate counting; Randomized algorithms

1. Introduction

Suppose we are given two vectors of positive integers, r ¼ ðr1;y; rmÞ and c ¼ ðc1;y; cnÞ; such
that

Pm
i¼1 ri ¼

Pn
j¼1 cj: We say that an m � n matrix ½Xi;j� of non-negative integers is a

contingency table with row sums r and column sums c if
Pn

j¼1 Xi;j ¼ ri for every row i andPm
i¼1 Xi;j ¼ cj for every column j: We denote the set of all contingency tables by Sr;c:

ARTICLE IN PRESS

$Supported by the EPSRC grant ‘‘Sharper Analysis of Randomised Algorithms: a Computational Approach’’ and

by the EC IST project RAND-APX.
�Corresponding author.

E-mail addresses: maryc@comp.leeds.ac.uk (M. Cryan), dyer@comp.leeds.ac.uk (M. Dyer).

0022-0000/03/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0022-0000(03)00014-X



It is well-known that for any input satisfying
Pm

i¼1 ri ¼
Pn

j¼1 cj; there exists at least

one contingency table with row sums r and column sums c (see, for example, [5]). It is easy to
construct one element of Sr;c using the ‘‘North-West corner’’ rule (see, for example, chapter 9

of [12]).
In this paper we consider the problem of approximately counting the set of all contingency

tables with specified row and column sums. We present the first fully polynomial randomized
approximation scheme (fpras) [17] for counting such tables when the number of rows is constant.
The definition of an fpras has been given elsewhere but we include it here to be precise. An fpras

for contingency tables is an algorithm that takes a list of row sums r and a list of column sums c as
input, together with an error parameter eAð0; 1Þ: The algorithm must satisfy two conditions to be
an fpras. Firstly, it must output an approximate value that lies within ð17eÞjSr;cj; with high
probability. Second, its running time must be polynomial in the size of the input and also in e	1:
Here we present an fpras for the case when m is constant.
Our algorithm also implies a polynomial time procedure for the closely related problem of

sampling such a table almost uniformly at random. See the surveys of Jerrum and Sinclair [14], or
Dyer and Greenhill [8], for more definitions and background about approximate counting and
sampling.
The counting problem is of considerable interest, both from the theoretical and practical

viewpoints. The thesis of Mount provides much useful information on this problem and its
relatives [20]. Dyer et al. [11] have shown that the problem of counting contingency tables is #P-
complete even if there are only two rows; therefore, we do not expect to be able to exactly count
the number of contingency tables in polynomial time, even for two-rowed tables. The existence of
an fpras for counting contingency tables has been an open question for several years. For
example, the 1997 survey by Jerrum and Sinclair [14] listed it as an important open problem in the
complexity of approximate counting.
Practically, contingency tables play an important role in statistics, where they are used to

tabulate the results of surveys. The analysis of such tables provides strong motivation for the
problem of efficiently sampling contingency tables with given row and column sums almost
uniformly at random. Diaconis and Efron [4] provide many details on the practical motivation for
the sampling problem.
Before presenting our algorithm, we summarize previous work on the problem of counting

contingency tables. The first polynomial-time algorithm for counting contingency tables was due
to Barvinok [1], who proved that the number of contingency tables can be counted exactly in
polynomial time, when the number of rows and columns is constant (see also [10]).
Most other early papers on the subject addressed the sampling problem. The paper of Diaconis

and Gangolli [5] seems to be the first to describe a Markov chain on the space of contingency
tables which converges to the uniform distribution. The convergence rate of this chain was
subsequently analyzed by Diaconis and Saloff-Coste [6] for the case when the number of rows and
columns is fixed and by Hernek [13] for the case when there are two rows. The analyses for both
cases showed that the chain mixed in pseudopolynomial time (the running time is polynomial in
the table sum). Chung et al. [2] gave a Markov chain for contingency tables that converges in
pseudopolynomial time for any row and column sums which are sufficiently large.
The first polynomial-time algorithm for approximately counting contingency tables with

unbounded dimension was the algorithm of Dyer et al. [11]. They (i) gave a sampling algorithm

ARTICLE IN PRESS

M. Cryan, M. Dyer / Journal of Computer and System Sciences 67 (2003) 291–310292



that converges in polynomial time for any input with row sums of size Oðn2mÞ and column sums
of size Oðnm2Þ; (ii) showed how to use the sampling algorithm to approximately count the number
of contingency tables for inputs satisfying the same constraints. This result was later refined by
Morris [19], who showed that the result also holds when the row sums are Oðn3=2m log mÞ and the
column sums are Oðm3=2n log nÞ: Dyer and Greenhill [9] gave a polynomial time algorithm for
counting contingency tables when the table has two rows. They first defined a Markov chain for
sampling from the set of contingency tables with the given row and column sums, and showed that
this chain converges in polynomial-time when the input has two rows. Then they showed how to
use their sampling algorithm to obtain an fpras for the corresponding counting problem. The
result we prove here is a generalization of Dyer and Greenhill’s (from two rows to m rows), but we
use an entirely different approach.
A novel feature of our algorithm, which is described in Section 2, is that it is a hybrid of an

exact counting algorithm and an approximation algorithm. It can be viewed as having two
phases. The input is a list containing a constant number of row sums, a list of column sums, and
an error parameter e40: In the first phase of the algorithm (Step 1 below) we partition the
columns of the table into ‘‘small columns’’ and ‘‘large columns’’. Every contingency table for the
given row and column sums can be split into two smaller tables—a table on the small columns
(with some list of partial row sums), and a table on the large columns (whose list of row sums is
the original list of row sums less the list of partial row sums). We show that the number of
different lists of partial row sums that may occur on the table of small columns is polynomial in
the number of columns and e	1: By dynamic programming, we can count the number of
contingency tables on the small columns for any given list of partial row sums in polynomial time.
We then write the number of contingency tables for the original input as the weighted sum (each
weight is the count computed for some list of partial row sums) of a polynomial number of terms,
where each term is the number of contingency tables for some list of row sums and the large
columns.
In the second phase of the algorithm (Step 2), we approximately count contingency tables for

each of the new instances of the problem generated in the first phase. Consider any specific
instance. We know the number of rows is constant and all the columns are large. We partition the
rows using a different method to that used for the columns. We define a ‘‘gap factor’’ which is
sufficiently large. Then we partition the rows into small rows and substantially larger rows—each
of the large rows must be larger than the product of any small row and the gap factor. Note
that the number of contingency tables for our given row and column sums can be written as
the sum, over all possible partial column sums for the small rows, of the number of contingency
tables for the given row and column sums which have these partial column sums. Our partition-
ing of the rows ensures that any partial column sums will be small in comparison to the
large column sums. In Sections 3 and 4 we show that in this case the number of contingency tables
with given partial column sums does not depend much on the specific partial column sums that
are considered. Therefore we can estimate the number of contingency tables by choosing a fixed
list of partial column sums, and calculating the product of the total number of tables for the
small rows (with any partial column sums) and the number of contingency tables for our
instance which have the fixed partial column sums. The total number of tables for the small rows
can be calculated using binomial coefficients. The second quantity we need to compute is a
single instance of the problem of counting contingency tables, where all the columns are large
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and all the rows are large. In Section 3 we show that, in this case, the number of contingency
tables is very close to the volume of a convex polytope. It is well-known that the volume of a
convex body can be estimated in polynomial-time (Dyer et al. [7]). We use the polynomial-time
algorithm of Kannan et al. [16], for approximating the volume of convex bodies, to estimate the
volume of this polytope.
For many combinatorial problems, the problem of approximately counting the number of

discrete structures satisfying a given property is closely related to the problem of sampling one
discrete structure with this property almost uniformly at random. In random sampling, we usually
want to construct a (fully) polynomial almost-uniform sampler (see, for example, [15,21]). It is well-
known that for a special class of problems known as self-reducible problems, the existence of a
polynomial-time algorithm for approximate counting implies the existence of a fully polynomial
almost-uniform sampler [15,21]. The contingency tables problem is unusual because it is not
known to satisfy the condition of self-reducibility (or a more general condition discussed by Dyer
and Greenhill [8]). However, in Section 5 we will show that our fpras can be used to obtain a
polynomial almost-uniform sampler for sampling almost uniformly at random from the space of
contingency tables with given row and column sums, when the number of rows is constant.

2. The algorithm

Before presenting the algorithm, we introduce some notation. First, for any lists r ¼ ðr1;y; rmÞ
and c ¼ ðc1;y; cnÞ of positive integers, we say that a m � n integer matrix X is a contingency table
with row sums r and column sums c iff

Xi;jX 0 for all i; j;Xn

j¼1

Xi;j ¼ ri for all i;

Xm

i¼1

Xi;j ¼ cj for all j:

We let Sr;c denote the set of all contingency tables with row sums r and column sums c: The
cardinality of this set, denoted jSr;cj; is the number of contingency tables with the given row and

column sums. We always assume that
Pm

i¼1 ri is equal to
Pn

j¼1 cj (otherwise Sr;c is empty) and

denote this total (also called the table sum) by N:
Throughout this paper we will assume that mX2 is a constant. We assume without loss of

generality that nXm:
Our algorithm takes a list r ¼ ðr1;y; rmÞ of row sums and a list c ¼ ðc1;y; cnÞ of column sums,

an error parameter e satisfying 0oeo1 and a confidence parameter Z satisfying 0oZo1: The

algorithm runs in time polynomial in n; log N; e	1 and log Z	1 and returns an estimate Sr;c: In
Sections 3 and 4, we will prove that jSr;c 	 jSr;cjjpejSr;cj with probability at least 1	 Z:
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The following quantities will be useful in describing the algorithm:

pe ¼ lognð20nm=eÞ;
p ¼ 2ðm 	 1Þðpe þ 2Þ þ 1;

q ¼ðp 	 1Þ=2ðm 	 1Þ:

Note that q is equal to pe þ 2:
We will apply the following Observation (cf. [20, p. 63]):

Observation 1. Let r ¼ ðr1;y; rmÞ and c ¼ ðc1;y; cnÞ be two lists of positive integers satisfyingPm
i¼1 ri ¼

Pn
j¼1 cj:

Let 1pkon: Let S be the set of ordered partitions s of
Pk

j¼1 cj into m parts that satisfy sipri for

all 1pipm: Then

jSr;cj ¼
X
sAS

jSs;ðc1;y;ckÞj � jSr	s;ðckþ1;y;cnÞj ð1Þ

Let 1pcom: Let T be the set of ordered partitions t of
Pc

i¼1 ri into n parts that satisfy tjpcj for all

1pjpn: Then

jSr;cj ¼
X
tAT

jSðr1;y;rcÞ;tj � jSðrcþ1;y;rmÞ;c	tj: ð2Þ

The following observation will also be useful.

Observation 2. Let mX2 be an integer, and let M be another positive integer. Then the number of

ordered partitions of M into m parts is

M þ m 	 1

m 	 1

 !
p2Mm	1:

Our algorithm is based on Observation 1.
In Step 1 of the algorithm, we choose an appropriate value for k and calculate jSs;ðc1;y;ckÞj

exactly for all sAS:
In Step 2 we approximate jSr	s;ðckþ1;y;cnÞj within ð17eÞ of its true value with high probability,

for every sAS:
In Step 3 we apply Eq. (1) to estimate Sr;c within ð17eÞ with high probability.

2.1. Step 1

Assume that ðc1;y; cnÞ is sorted in non-decreasing order. Let k be the index such that cjpnp

for all jpk and cj4np for all jXk þ 1:
Columns c1;y; ck are the ‘‘small columns’’ of the table.
Columns ckþ1;y; cn are the ‘‘large columns’’.
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In this step of our algorithm, we will use dynamic programming to calculate jSs;ðc1;y;ckÞj for
every partition sAS: In fact, our algorithm will consider each column index h (1phpk) in

increasing order, and compute jSs;ðc1;y;chÞj for every ordered partition s of
Ph

j¼1 cj into m parts.

We will let Sh represent the set of ordered partitions of
Ph

j¼1 cj into m parts, for 1phpk:

If h ¼ 1; then jSs;ðc1Þj ¼ 1 for every partition s of c1 into m parts. Note that because c1pnp; then

by Observation 2, the number of ordered partitions we will consider is at most 2ðnpÞm:
If 2phpk; then we apply Eq. (1) of Observation 1. Let sASh: For us, the values of the

parameters n; k and r of Eq. (1) are n̂ ¼ h; k̂ ¼ h 	 1 and r̂ ¼ s: Then by Eq. (1) we have

jSs;ðc1;y;chÞj ¼
X

qASh	1

jSq;ðc1;y;ch	1Þj � jSs	q;ch
j

¼
X

qASh	1;
qipsi for all i

jSq;ðc1;y;ch	1Þj; ð3Þ

since Ss	q;ch
¼ 1 if si 	 qiX0 for all 1pipm (the single ‘‘table’’ is given by Xi;h ¼ si 	 qi for all i)

and Ss	q;ch
¼ 0 otherwise. Therefore we use the jSq;ðc1;y;ch	1Þj values (constructed in the previous

phase of our algorithm) to obtain jSs;ðc1;y;chÞj:
Note that because cjpnp for all jpk; therefore

Xh

j¼1

cjphnppnpþ1; ð4Þ

for any 1phpk: By Observation 2 and by Inequality (4), the number of ordered partitions ofPh
j¼1 cj into m parts is at most 2ðnpþ1Þm: Therefore jShjp2n2mðpþ1Þ; which is polynomial in n and

e	1:

Therefore for any particular hpk; we perform Oðnmðpþ1ÞÞ operations to compute jSs;ðc1;y;chÞj;
therefore using Oðn2mðpþ1ÞÞ arithmetic operations, we compute a table containing jSs;ðc1;y;chÞj for
every ordered partition s of

Ph
j¼1 cj into m parts. Since kpn; this means that we compute the table

of jSs;ðc1;y;ckÞj using Oðn2mðpþ1Þþ1Þ arithmetic operations.

By definition, p þ 1 ¼ 2ðm 	 1Þðpe þ 2Þ þ 2 ¼ 2ðm 	 1Þpe þ 4m 	 2: Therefore

npþ1 ¼ 20nm

e

� �2ðm	1Þ
n4m	2:

Therefore Step 1 uses

O
n12m2

e4m2

 !
ð5Þ

arithmetic operations to compute the set of all jSs;ðc1;y;ckÞj values for sAS:

We know that none of the integers we compute is greater than Nnm; therefore each addition or
comparison performed during Step 1 can be carried out in Oðn log NÞ time.
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We also know jSjp2ðnpþ1Þm; and therefore jSj is

O
n6m2

e2m2

 !
: ð6Þ

2.2. Step 2

In this step we show how to approximate the value of jSr	s;ðckþ1;y;cnÞj within a multiplicative

factor of ð17eÞ of its true value in polynomial time, with high probability, for any given sAS:
First let Z0 ¼ Z=jSj; where Z is the original failure probability given as input to the algorithm. By

(6) this implies Z0 ¼ Ze2m2

=n6m2

d; where d is the constant inside the O in (6).
Sort the rows of r 	 s into non-decreasing order and rename this vector by r0:
Let n0 denote n 	 k; and rename the ðckþ1;y; cnÞ vector by ðc01;y; c0n0 Þ:
We will estimate jSr0;c0 j:
Let N̂ ¼

Pn0

j¼1 c0j be the table sum on the large columns.

Now classify the rows of r0 as ‘‘small rows’’ or ‘‘large rows’’ as follows: If r01Xnq; then we

classify all the rows as large rows. Otherwise r01onq: Then let c be the smallest index such that

r0cþ14nqr0c (if such an c exists). The rows 1 to c are the ‘‘small rows’’ and the rows greater than c
are the ‘‘large rows’’.

Define R ¼
Pc

i¼1 r0i:
We consider three cases.
Case 1: All the rows are large rows (r01Xnq). In this case, the row sums r0 and the column sums c0

satisfy the conditions of Theorem 3 (see Section 3). Therefore, by Theorem 3, the value of jSr0;c0 j is
within ð17e=15Þ of the volume of the convex polytope Pðr0; c0Þ defined in Section 3. We use the
polynomial-time algorithm of Kannan et al. [16] for approximating the volume of a convex body,
to approximate volðPðr0; c0ÞÞ within a factor of ð17e=5Þ; with probability at least 1	 Z0: Thus we
approximate jSr0;c0 j within ð17eÞ with probability at least 1	 Z0:

Case 2: All the rows are small rows. We show this case cannot occur. Suppose this is a

possibility. Since all the rows are small rows, the table sum N̂ is equal to R: This table sum is
bounded above by mnqm: By definition of q;

mnqm ¼mn
p	1

2ðm	1Þm

¼mn
p	1
2

ð1þ1=ðm	1ÞÞ

pmnp	1 because mX2

p np because mpn:

Therefore if all the rows were small rows, the table sum on the large columns would be at most np:

However, since all the large columns were assumed to have cj4np; N̂pnp implies that there are no

large columns. This is a contradiction (if there are no large columns, then jSr;cj would have been

computed exactly by Step 1, and Step 2 would not be carried out).
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Case 3: There are small rows and large rows. The quantity R plays a central role in the analysis

for this case. Before proceeding, note that Rp
Pc

i¼1 nqi; which is at most ðm 	 1Þnqðm	1Þ (since
com; we have at least one large row). Substituting for q and then for p;

Rpðm 	 1Þnðp	1Þ=2 ¼ ðm 	 1Þnðm	1Þðpeþ2Þ; ð7Þ

np=RXnðp	1Þ=2 ¼ nðm	1Þðpeþ2Þ: ð8Þ

Now we show how to approximate jSr0;c0 j for this case. By Eq. (2) of Observation 1, we write

jSr0;c0 j ¼
X

t

jSðr0
1
;y;r0cÞ;tj � jSðr0cþ1

;y;r0mÞ;c0	tj; ð9Þ

where the sum is taken over all partitions t of the value R into a list of n0 non-negative integers.
From here on we will denote the large row sums ðr0cþ1;y; r0mÞ by ðu1;y; um0 Þ; and any list of

modified large column sums c0 	 t by ðv1;y; vn0 Þ: By construction, every ui is at least nq: To obtain
a lower bound for the vj values, remember that by construction cjXnp for every 1pjpn0: Also we

know tjpR for every 1pjpn0: Therefore every vj value is at least as big as np 	 R; and by (8), this

is at least np=2:
In Section 3, we will define a convex polytope Pðu; vÞ in ðm0 	 1Þðn0 	 1Þ-dimensional space for

any large row sums u and modified large column sums v: Let volðPðu; vÞÞ denote the volume of the
convex polytope Pðu; vÞ: We will prove the following theorems:

In Theorem 3 we will show that for any list u of large row sums and any list v of modified large
column sums, jSu;vj lies within ð17e=15Þ of volðPðu; vÞÞ (see Section 3).

In Theorem 4 we will show that it you let u be a list of large row sums and let v and v̂ be two lists
of modified large column sums. Then volðPðu; vÞÞpð1þ e=15ÞvolðPðu; v̂ÞÞ (see Section 4).

Now we show that Theorems 3 and 4 allow us to approximate all of the different jSu;vj values
(there could be exponentially many of these) in a single step. Define some fixed list of modified

column sums v̂ by choosing an arbitrary partition t̂ of R; and defining v̂ as c0 	 t̂: Let v be any

other list of modified column sums. By Theorem 3 we have

jSu;vjp ð1þ e=15ÞvolðPðu; vÞÞ
p ð1þ e=15Þ2volðPðu; v̂ÞÞ
p ð1þ e=5ÞvolðPðu; v̂ÞÞ;

where the second line follows by Theorem 4. Also by Theorems 3 and 4 we have

jSu;vjX ð1	 e=15ÞvolðPðu; vÞÞ
X ð1	 e=15ÞvolðPðu; v̂ÞÞ=ð1þ e=15Þ
X ð1	 e=5ÞvolðPðu; v̂ÞÞ:

By (9), the product of volðPðu; v̂ÞÞ and
P

t jSðr0
1
;y;r0cÞ;tj approximates jSr0;c0 j within ð17e=5Þ:

We calculate
P

t jSðr0
1
;y;r0cÞ;tj directly as follows: Since we are summing over all possible column

sums t; we are simply counting the number of c� n0 tables with the row sums ðr01;y; r0cÞ (and any
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column sums). This is equal to the product of the terms ðr0
i
þn0	1
n0	1

Þ over all i such that 1pipc (the

term for i counts the number of ways of partitioning r0i into an ordered list of n0 non-negative
integers).
We use the algorithm of Kannan et al. [16] to approximate volðPðu; v̂ÞÞ within a factor of

ð17e=5Þ with probability at least 1	 Z0: Taking the product of this value and
P

t jSðr0
1
;y;r0cÞ;tj; we

will approximate jSr0;c0 j within a factor of ð17eÞ; with probability at least 1	 Z0:
To bound the running time for Step 2 of the algorithm, we use the O� notation, where we ignore

logarithmic factors as well as constant factors.
The algorithm of Kannan et al. [16] approximates the volume of a convex body P in d

dimensions to within ð17eÞ of its true value with high probability by sampling O�ðd5=e2Þ random
d-dimensional points and for each of these points, performing an oracle call to test whether the
point lies in the convex body. The total number of random bits used to generate all the points that

are tested is O�ðd6=e2Þ:
The convex polytopes that we construct (either in Cases 1 or 3) have dimension less than or

equal to nm: Also, for the convex polytopes Pðu; v̂Þ that we consider (defined in Section 3), we can
test a point for membership of Pðu; v̂Þ using OðmnÞ arithmetic operations. Therefore we can use
the algorithm of Kannan et al. [16] to approximate volðPðu; v̂ÞÞ (or volðPðr0; c0ÞÞ; in Case 1) within

ð17e=5Þ (with probability at least 1	 Z0) using O�ðn6=e2Þ arithmetic operations.
The number of arithmetic operations used to approximate jSr	s;ðckþ1;y;cnÞj is dominated by the

number of arithmetic operations of the volume estimation algorithm. Also, we can assume that all
the arithmetic operations are carried out on numbers of size O�ðNmnÞ; and therefore we can

assume that each arithmetic operation takes O�ðn2Þ time. Therefore the time to estimate
jSr	s;ðckþ1;y;cnÞj; for any sAS is

O�ðn8=e2Þ:

By (6), we will estimate jSr	s;ðckþ1;y;cnÞj for Oðn6m2

=e2m2Þ different sAS: The total running time to

estimate all these values is

O� n6m2þ8

e2m2þ2

 !
:

2.3. Step 3

Finally, in Step 3, we use (1) of Observation 1 to construct an estimate Sr;c of jSr;cj; using the

exact values of jSs;ðc1;y;ckÞj for sAS (constructed in Step 1), and the estimates of jSr	s;ðckþ1;y;cnÞj for
sAS (constructed in Step 2).
By definition of Z0 ¼ Z=jSj; we know that with probability at least ð1	 ZÞ; all of the estimates

constructed in Step 2 lie within ð17eÞ of their true values. Therefore

jjSr;cj 	 Sr;cjpejSr;cj

with probability at least ð1	 ZÞ:
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Combining the running times of Steps 1 and 2, the running time of our entire algorithm is

O� n12m2

e4m2

 !
:

3. Approximating jRu;vj by the volume of a convex body

In this section we prove the claim that the number of contingency tables with given row and
column sums can be closely approximated by the volume of a convex polytope, if the row and
column sums are large enough. We begin by introducing some notation. Let u ¼ ðu1;y; um0 Þ be a
list of row sums and v ¼ ðv1;y; vn0 Þ be a list of column sums. Let N 0 be the table sum. Then Su;v is

equivalent to the set of non-negative integer solutions for the following system of inequalities (see,
for example, [11]):Xn0	1

j¼1

Xi;jpui for 1pipm0 	 1; ð10Þ

Xm0	1

i¼1

Xi;jpvj for 1pjpn0 	 1; ð11Þ

Xm0	1

i¼1

Xn0	1

j¼1

Xi;jXN 0 	 um0 	 vn0 : ð12Þ

In this setting we assume

Xi;n0 ¼ ui 	
Pn0	1

j¼1 Xi;j for ipm0 	 1;

Xm0;j ¼ vj 	
Pm0	1

i¼1 Xi;j for jpn0 	 1; and

Xn0;m0 ¼
Pm0	1

i¼1

Pn0	1
j¼1 Xi;j 	 ðN 0 	 vn0 	 um0 Þ:

In this section and the next one, we work in the ðm0 	 1Þðn0 	 1Þ-dimensional space and assume
that i ranges over 1pipm0 	 1 and j ranges over 1pjpn0 	 1:
We define Pðu; vÞ as the convex polytope consisting of the set of non-negative real solutions for

(10)–(12).
For any convex body P and any a40; we define the dilation of P by a to be the set aP ¼

faX : XAPg: It is well-known that for any d-dimensional convex body P; volðaPÞ ¼ ad volðPÞ (see
[18, Corollary 15, p. 101]).

Theorem 3. Let n be an integer and p and q be defined as in Section 2. Let u ¼ ðu1;y; um0 Þ be a list
of row sums such that uiXnq for every i, and v ¼ ðv1;y; vn0 Þ be a list of column sums such that

vjXnp=2 for every j (by construction m0pm and n0pn). Then

1	 e
15

� �
volðPðu; vÞÞpjSu;vjp 1þ e

15

� �
volðPðu; vÞÞ:

Proof. We assume without loss of generality that um0 is the largest row sum among the ui; and that
vn0 is the largest column sum among the vj: Therefore um0XN 0=m0 and vn0XN 0=n0:
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The following interpretation of jSu;vj will be useful: for each ZASu;v; we define a hypercube

HðZÞ such that XAHðZÞ iff 0pXi;j 	 Zi;jo1 for all 1pipm0 	 1 and 1pjpn0 	 1: Then every

point in Pðu; vÞ is associated with at most one integer point ZASu;v: Also, for every ZASu;v; the
volume of the hypercube associated with Z; denoted volðHðZÞÞ; is exactly 1 (though some of the
hypercube HðZÞ may lie outside Pðu; vÞ).
In part (i) of this proof we will define two extra convex polytopes called P	ðu; vÞ and Pþðu; vÞ:

We will show that

P	ðu; vÞD
[

ZASu;v

HðZÞ and
[

ZASu;v

HðZÞDPþðu; vÞ:

As volð
S

ZASu;v
HðZÞÞ ¼ jSu;vj; this shows

volðP	ðu; vÞÞpjSu;vjpvolðPþðu; vÞÞ: ð13Þ

In Part (ii) we will show that

1	 e
15

� �
volðPðu; vÞÞpvolðP	ðu; vÞÞ

and

volðPþðu; vÞÞp 1þ e
15

� �
volðPðu; vÞÞ:

Putting this together with (13), we will have

1	 e
15

� �
volðPðu; vÞÞpjSu;vjp 1þ e

15

� �
volðPðu; vÞÞ

as required.
(i). Let P	ðu; vÞ be the set of all real ðm0 	 1Þðn0 	 1Þ-dimensional points X with non-negative

entries that satisfy the following three sets of inequalities:

Xn0	1

j¼1

Xi;jpui for 1pipm0 	 1; ð14Þ

Xm0	1

i¼1

Xi;jpvj for 1pjpn0 	 1; ð15Þ

Xm0	1

i¼1

Xn0	1

j¼1

Xi;jXN 0 	 um0 	 vn0 þ ðm0 	 1Þðn0 	 1Þ: ð16Þ

It should be obvious that P	ðu; vÞDPðu; vÞ: We will show something stronger. Let XAP	ðu; vÞ;
and let Z be the unique point with integer entries such that XAHðZÞ: We will show ZAPðu; vÞ:
Then since Z is an integer point by definition, we will have ZASu;v:
By definition of HðZÞ and the fact that the Xi;j values are non-negative, we know Zi;jX0 for all

1pipm0 	 1; 1pjpn0 	 1:
Also, because Zi;jpXi;j for all 1pipm0 	 1; 1pjpn0 	 1; therefore (14) and (15) imply that Z

satisfies (10) and (11) for Pðu; vÞ:
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Finally,

Xm0	1

i¼1

Xn0	1

j¼1

Zi;jX

Xm0	1

i¼1

Xn0	1

j¼1

Xi;j

 !
	 ðm0 	 1Þðn0 	 1Þ;

and combining this with (16), we have

Xm0	1

i¼1

Xn0	1

j¼1

Zi;jXN 0 	 um0 	 vn0 ;

which is (12).
So ZASu;v: Therefore P	ðu; vÞD

S
ZASu;v

HðZÞ:
Define Pþðu; vÞ to be the set of all real ðm0 	 1Þðn0 	 1Þ-dimensional points X with non-negative

entries that satisfy the following inequalities:

Xn0	1

j¼1

Xi;jpui þ ðn0 	 1Þ for 1pipm0 	 1; ð17Þ

Xm0	1

i¼1

Xi;jpvj þ ðm0 	 1Þ for 1pjpn0 	 1; ð18Þ

Xm0	1

i¼1

Xn0	1

j¼1

Xi;jXN 0 	 um0 	 vn0 : ð19Þ

Clearly Pðu; vÞDPþðu; vÞ: Now let ZASu;v: Then Z is also in Pðu; vÞ and satisfies (10)–(12). We will

show that HðZÞDPþðu; vÞ:
Let XAHðZÞ; so therefore Xi;jXZi;j for all 1pipm0 	 1; 1pjpn0 	 1: Therefore all of the

entries of X are non-negative.

By (12) and by Xi;jXZi;j; we have
Pm0	1

i¼1

Pn0	1
j¼1 Xi;jXN 0 	 um0 	 vn0 ; which is (19).

By definition of HðZÞ;
Xn0	1

j¼1

Xi;jp
Xn0	1

j¼1

Zi;j

 !
þ ðn0 	 1Þ;

and combining this with (10), we obtain (17). By a similar argument, X satisfies (18).

Therefore
S

ZASu;v
HðZÞDPþðu; vÞ:

Therefore we have shown that

P	ðu; vÞD
[

ZASu;v

HðZÞ

and [
ZASu;v

HðZÞDPþðu; vÞ;

and therefore we have proved (13), as required.
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(ii). We define d ¼ e=20m0n0: Note that n	pe ¼ e=20mn; which is at most d: Thus npeX1=d:
For this section of the proof, it will be useful to move the origin to a point lying inside Pðu; vÞ:

Let p0 be the real ðm0 	 1Þðn0 	 1Þ-dimensional point defined by p0
i;j ¼def uivj=N 0: We move the

origin of Pðu; vÞ to p0 as follows: substituting Y þ p0 for X in (10)–(12), we find that the point X
lies in Pðu; vÞ iff the point Y ¼ X 	 p0 satisfies Yi;jX	 uivj=N 0 for all 1pipm0 	 1; 1pjpn0 	 1

and also satisfies the following system of inequalities:Xn0	1

j¼1

Yi;jp
uivn0

N 0 for 1pipm0 	 1; ð20Þ

Xm0	1

i¼1

Yi;jp
um0vj

N 0 for 1pjpn0 	 1; ð21Þ

Xm0	1

i¼1

Xn0	1

j¼1

Yi;jX	 um0vn0

N 0 : ð22Þ

Let P0ðu; vÞ be the set of real ðm0 	 1Þðn0 	 1Þ-dimensional points Y that satisfy (20)–(22) and
satisfy Yi;jX	 uivj=N 0 for all 1pipm0 	 1; 1pjpn0 	 1: Clearly

volðP0ðu; vÞÞ ¼ volðPðu; vÞÞ:

We now move the origin for the polytopes P	ðu; vÞ and Pþðu; vÞ; using the same point p0: We

define two more transformed convex polytopes Q	ðu; vÞ and Qþðu; vÞ; where
volðP	ðu; vÞÞ ¼ volðQ	ðu; vÞÞ

and

volðPþðu; vÞÞ ¼ volðQþðu; vÞÞ:
Q	ðu; vÞ is the set of points Y satisfying Yi;jX	 uivj=N 0 for all 1pipm0 	 1; 1pjpn0 	 1 and

satisfyingXn0	1

j¼1

Yi;jp
uivn0

N 0 for 1pipm0 	 1; ð23Þ

Xm0	1

i¼1

Yi;jp
um0vj

N 0 for 1pjpn0 	 1; ð24Þ

Xm0	1

i¼1

Xn0	1

j¼1

Yi;jX	 um0vn0

N 0 þ ðm0 	 1Þðn0 	 1Þ: ð25Þ

Qþðu; vÞ is the set of points Y satisfying Yi;jX	 uivj=N 0 for all 1pipm0 	 1; 1pjpn0 	 1 and

satisfyingXn0	1

j¼1

Yi;jp
uivn0

N 0 þ ðn0 	 1Þ for 1pipm0 	 1; ð26Þ
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Xm0	1

i¼1

Yi;jp
um0vj

N 0 þ ðm0 	 1Þ for 1pjpn0 	 1; ð27Þ

Xm0	1

i¼1

Xn0	1

j¼1

Yi;jX	 um0vn0

N 0 : ð28Þ

We prove ð1	 dÞP0ðu; vÞDQ	ðu; vÞ: Let YAð1	 dÞP0ðu; vÞ; so Y=ð1	 dÞAP0ðu; vÞ: We show
that Y satisfies the lower bounds for Q	ðu; vÞ and Inequalities (23)–(25).

Lower bounds: The lower bounds for P0ðu; vÞ ensure that Yi;jX	 ð1	 dÞuivj=N 0 for all

1pipm0 	 1; 1pjpn0 	 1; therefore Yi;jX	 uivj=N 0 holds trivially.

Inequality (23): By (20),
Pn0	1

j¼1 Yi;jpð1	 dÞuivn0=N 0; which is less than uivn0=N 0:

Inequality (24): Follows by an similar argument.
Inequality (25): By (22), we have

Xm0	1

i¼1

Xn0	1

j¼1

Yi;jX	 um0vn0

N 0 þ d
um0vn0

N 0 :

By definition, dum0vn0=N 0
Xdvn0=m0

Xdnp	1=2 (using nXmXm0). Therefore by definition of p and by
npeX1=d; we find

d
um0vn0

N 0 Xd
np	1

2
¼ d

n2ðm	1Þðpeþ2Þ

2

X
n4ðm	1Þ

2

X ðm0 	 1Þðn0 	 1Þ;

where the second last step follows by mX2 and npeX1=d; and the last step follows by m 	 1X1
and nXmX2: Then

Xm0	1

i¼1

Xn0	1

j¼1

Yi;jX	 um0vn0

N 0 þ ðm0 	 1Þðn0 	 1Þ;

which is (25).

Now we show Qþðu; vÞDð1þ dÞP0ðu; vÞ: Let YAQþðu; vÞ: We show that Y=ð1þ dÞ satisfies the
lower bounds for P0ðu; vÞ and Inequalities (20)–(22).

Lower bounds: By definition of Qþðu; vÞ; we know Yi;jX	 uivj=N 0 for all 1pipm0 	 1;
1pjpn0 	 1: Then Yi;jX	 ð1þ dÞuivj=N 0 holds trivially, so Y=ð1þ dÞ satisfies the lower bounds
for P0ðu; vÞ:

Inequality (20): By (26),

Xn0	1

j¼1

Yi;jp
uivn0

N 0 þ ðn0 	 1Þ:
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Define d0 ¼ ðn0 	 1ÞN 0=uivn0 ; so we have

Xn0	1

j¼1

Yi;jpð1þ d0Þ uivn0

N 0 :

Then by N 0=vn0pn0 and uiXnq; we have d0p1=nq	2: By definition q 	 2 ¼ pe; so we have d0pd:
Therefore Y=ð1þ dÞ satisfies (20).

Inequality (21): By (27),

Xm0	1

i¼1

Yi;jp
um0vj

N 0 þ ðm0 	 1Þ:

Define d00 ¼ ðm0 	 1ÞN 0=um0vj; and write

Xm0	1

i¼1

Yi;jpð1þ d00Þ um0vj

N 0 :

Applying N 0=um0pm0 and vjXnp=2; and using our assumptions that m0pm and mpn; we have

d00p2=np	2: By definition of p and by n	pepd; we have d00pd; and Y=ð1þ dÞ satisfies (21).
Inequality (22): By (28),

Pm0

i¼1

Pn0	1
j¼1 Yi;jX	 um0vn0=N 0: But 	um0vn0=N 0

X	 ð1þ dÞum0vn0=N 0;

so Y=ð1þ dÞ satisfies (22).
Now we have ð1	 dÞP0ðu; vÞDQ	ðu; vÞ and Qþðu; vÞDð1þ dÞP0ðu; vÞ; and this gives

volðð1	 dÞP0ðu; vÞÞpvolðQ	ðu; vÞÞ

and

volðQþðu; vÞÞpvolðð1þ dÞP0ðu; vÞÞ:

Also

volðð1	 dÞP0ðu; vÞÞ ¼ ð1	 dÞðm
0	1Þðn0	1ÞvolðP0ðu; vÞÞ;

volðð1þ dÞP0ðu; vÞÞ ¼ ð1þ dÞðm
0	1Þðn0	1ÞvolðP0ðu; vÞÞ:

But ð1	 dÞðm
0	1Þðn0	1Þ

Xð1	 ðm0 	 1Þðn0 	 1ÞdÞ; and by the definition of d; this is at least ð1	
e=20Þ: Therefore

1	 e
15

� �
volðP0ðu; vÞÞpvolðQ	ðu; vÞÞ:

Then by volðP0ðu; vÞÞ ¼ volðPðu; vÞÞ and volðQ	ðu; vÞÞ ¼ volðP	ðu; vÞÞ; we have

1	 e
15

� �
volðPðu; vÞÞpvolðP	ðu; vÞÞ: ð29Þ

Also ð1þ dÞðm
0	1Þðn0	1Þpee=20 (using ð1þ x=nÞnpex), and since eo1; this is at most ð1þ e=15Þ:

Therefore

volðQþðu; vÞÞp 1þ e
15

� �
volðP0ðu; vÞÞ;
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and by volðP0ðu; vÞÞ ¼ volðPðu; vÞÞ and volðQþðu; vÞÞ ¼ volðPþðu; vÞÞ;

volðPþðu; vÞÞp 1þ e
15

� �
volðPðu; vÞÞ: ð30Þ

Combining (30) and (29) with (13), we have our result. &

4. Approximating the volume of a convex body by another convex body

In this section we prove the second claim made in Case 3 of Step 2 of our algorithm. We will use
notation from Sections 2 and 3 and some of the ideas from Section 3.

Theorem 4. Let ðu1;y; um0 Þ and ðv1;y; vn0 Þ be lists of row and column sums such that m0pm 	 1;
n0pn; uiXnq for all i and vjXnp=2 for all j. Suppose that ðv̂1;y; v̂n0 Þ is another list of column sums

satisfying v̂jXnp=2 for all j, and also satisfying jvj 	 v̂jjpR for all j. Then

volðPðu; vÞÞp 1þ e
15

� �
volðPðu; v̂ÞÞ:

Proof. Again, let d ¼ e=20m0n0:
Assume without loss of generality that vn0 is the largest column sum among the vj:
Let p0 be the real ðm0 	 1Þðn0 	 1Þ-dimensional point defined by p0i;j ¼def uivj=N 0: We will use the

same trick that we used in part (ii) of Theorem 3, and consider the convex polytope P0ðu; vÞ
centered at this point.

Remember that volðP0ðu; vÞÞ ¼ volðPðu; vÞÞ:
We now construct P0ðu; v̂Þ by taking the identical point p0 that we used for P0ðu; vÞ and letting

YAP0ðu; v̂Þ iff Y þ p0APðu; v̂Þ (remember that this center point p0 is defined in terms of the ui and vj

values, rather than the ui and v̂j values). Then we consider ð1þ dÞP0ðu; v̂Þ: Then Y is an element of

ð1þ dÞP0ðu; v̂Þ iff Yi;jX	 ð1þ dÞuivj=N 0 for all i; j and

Xn0	1

j¼1

Yi;jpð1þ dÞ uivn0

N 0 for 1pipm0 	 1; ð31Þ

Xm0	1

i¼1

Yi;jpð1þ dÞ ðv̂j 	 vjÞ þ
um0vj

N 0

� �
for 1pjpn0 	 1; ð32Þ

Xm0	1

i¼1

Xn0	1

j¼1

Yi;jXð1þ dÞ ðvn0 	 v̂n0 Þ 	
um0vn0

N 0

� �
: ð33Þ

We will show P0ðu; vÞDð1þ dÞP0ðu; v̂Þ: Within this proof we will show that the quantity ðvn0 	
v̂n0 Þ 	 um0vn0=N 0 (lower bound on

Pm0	1
i¼1

Pn0	1
j¼1 Yi;j for P

0ðu; v̂Þ) is negative and that each of the

ðv̂j 	 vjÞ þ um0vj=N 0 values (upper bounds on
Pm0	1

i¼1 Yi;j for P
0ðu; v̂Þ) is positive.

Let Y be any element of P0ðu; vÞ; so Y satisfies (20)–(22) and Yi;jX	 uivj=N 0:We prove YAð1þ
dÞP0ðu; v̂Þ by checking that it satisfies the four types of constraints for ð1þ dÞP0ðu; v̂Þ: Inequalities
(31)–(33), and the lower bounds on the entries of Y :
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Lower bounds: We know Yi;jX	 uivj=N 0 for all 1pipm0 	 1; 1pjpn0 	 1: Then Yi;jX	 ð1þ
dÞuivj=N 0; as required.

Inequality (31): By (20) we know
Pn0	1

j¼1 Yi;jpuivn0=N 0; and by d40; this trivially implies (31).

Inequality (32): Consider the quantity ð1þ dÞðv̂j 	 vjÞ þ dum0vj=N 0: We know that v̂j 	 vjX	 R

and that

um0vj=N 0
Xvj=m0

Xnp=2m0:

Therefore ð1þ dÞðv̂j 	 vjÞ þ dum0vj=N 0 is at least as big as dnp=2m0 	 2R: By (8) and by npeX1=d;

dnp=2m0 	 2R ¼Rðdnp=2m0R 	 2Þ
XRðdnðp	1Þ=2=2m0 	 2Þ
¼Rðdnðm	1Þðpeþ2Þ=2m0 	 2Þ
XRðdnpen2ðm	1Þ=2m0 	 2Þ
XRðn2ðm	1Þ=2m0 	 2Þ
X 0;

where the last step follows by nXmX2 and m0pm 	 1: By (21), we know
Pm0	1

i¼1 Yi;j is bounded

above by um0vj=N 0: Therefore we have

Xm0	1

i¼1

Yi;jp
um0vj

N 0 þ ð1þ dÞðv̂j 	 vjÞ þ d
um0vj

N 0

¼ ð1þ dÞ ðv̂j 	 vjÞ þ
um0vj

N 0

� �
;

so (32) is satisfied.
Inequality (33): Consider ð1þ dÞðvn0 	 v̂n0 Þ 	 dum0vn0=N 0: Using vn0 	 v̂n0pR and

um0vn0=N 0
Xvn0=m0

Xnp=2m0; we have

ð1þ dÞðvn0 	 v̂n0 Þ 	 dum0vn0=N 0p 2R 	 dnp=2m0

p 0

because (8) and npeX1=d imply that 2R 	 dnp=2m0 is negative. By (22), the double sumPm0	1
i¼1

Pn0	1
j¼1 Yi;j is bounded below by 	um0vn0=N 0: Therefore

Xm0	1

i¼1

Xn0	1

j¼1

Yi;jX 	 um0vn0

N 0 þ ð1þ dÞðvn0 	 v̂n0 Þ 	 d
um0vn0

N 0

¼ ð1þ dÞ ðvn0 	 v̂n0 Þ 	
um0vn0

N 0

� �
so (33) is satisfied.

Then P0ðu; vÞDð1þ dÞP0ðu; v̂Þ and therefore

volðP0ðu; vÞÞpð1þ dÞðm
0	1Þðn0	1ÞvolðP0ðu; v̂ÞÞ:
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By the same argument given at the end of Theorem 3, we obtain

volðP0ðu; vÞÞp 1þ e
15

� �
volðP0ðu; v̂ÞÞ;

or equivalently,

volðPðu; vÞÞp 1þ e
15

� �
volðPðu; v̂ÞÞ: &

5. Generating a contingency table almost uniformly at random

An almost-uniform sampler for contingency tables is an algorithm that takes a list of row sums r;
a list of column sums c and an error parameter EAð0; 1Þ; and returns an element XASr;c with

probability sðXÞ; such thatX
XASr;c

jsðXÞ 	 jSr;cj	1jpE:

The sampler is a polynomial almost-uniform sampler (paus) if it runs in time polynomial in the

number of rows and columns, the table sum, and E	1: The sampler is a fully polynomial almost-

uniform sampler (fpaus) if the dependence on the error parameter is polynomial in ðlog E	1Þ:
The error term

P
XASr;c

jsðXÞ 	 jSr;cj	1j is the variation distance between the output

distribution of our sampler and the uniform distribution on Sr;c:
We now describe how to convert our fpras into a paus for the set of contingency tables with row

sums r and column sums c; when the number of rows is constant. If Eo1; we show how to
generate a point with probabilities within 17E of the uniform distribution on the set of
contingency tables. We are currently unable to improve this to an fpaus, since the contingency
table problem is not self-reducible, as required by the methods of [15], nor does it apparently even
satisfy the weaker condition of [8]. This is a somewhat surprising technical difficulty, given that it
has recently been shown that a fpaus does in fact exist for this problem [3].
Let e ¼ E=5: We first perform Step 1 from Section 2 and partition the columns into small

columns and large columns.

S is the set of ordered partitions s of
Pk

j¼1 cj into m parts such that sipri for all 1pipm:

For any 1phpk; Sh is the set of ordered partitions q of
Ph

j¼1 cj into m parts.

The dynamic programming algorithm constructs jSs;ðc1;y;ckÞj for all sAS: It also constructs

jSq;ðc1;y;chÞj; for every qASh and 1phpk:

Carrying out Step 2 of our original algorithm, we obtain an approximation to Sr	s;ðckþ1;y;cnÞ; for

every sAS; leading to an approximation of Sr;c:

Let s be any ordered partition of
Pk

j¼1 cj into m parts such that sipri for all 1pipm: Then

Eq. (1) of Observation 1 implies that if we choose a contingency table X according to the uniform
distribution on Sr;c; the probability rðsÞ that X has the partial row sums s is

rðsÞ ¼
jSs;ðc1;y;ckÞj � jSr	s;ðckþ1;y;cnÞj

jSr;cj
:
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Define #rðsÞ by

#rðsÞ ¼
jSs;ðc1;y;ckÞj � Sr	s;ðckþ1;y;cnÞ

Sr;c
:

Since we have an fpras, we can ensure that j #rðsÞ=rðsÞ 	 1jpe for all sAS; with arbitrarily high
probability. Therefore if we can

(i) choose sAS according to the probabilities #rðsÞ;
(ii) choose an element of Ss;ðc1;y;ckÞ within 17e of the uniform probability,

(iii) choose an element of Sr	s;ðckþ1;y;cnÞ uniformly within 17e of the uniform probability,

we will generate from a distribution s with probabilities within ð17eÞ3 of the uniform

distribution. Therefore the probabilities of our distribution s will all lie within ð174eÞ of jSr;cj	1

(using the fact that e ¼ E=5p1=5).
Clearly (i) can be accomplished, since we have explicitly computed the numerators and

denominator of all the #rðsÞ values.
We now show that we can generate a sample uniformly at random from Ss;ðc1;y;ckÞ: We

construct the values for the hth column of X in decreasing order. Suppose we have already
constructed columns h þ 2;y; k of the table and that s is the current partial row sum for the first
h þ 1 rows. From Eq. (3), we choose qASh (0pqipsi; iA½m�) with probability
jSq;ðc1;y;chÞj=jSs;ðc1;y;chþ1Þj; and set column h to ðs 	 qÞ: We iterate this until all the entries in the

small columns have been assigned.
We now complete the c small rows. These are chosen independently to be any ordered partition

of r0i into n0 parts (iA½c�). This can be done as follows. Choose a sample of size ðn0 	 1Þ uniformly

without replacement from ½r0i þ n0 	 1�; and sort to give k1ok2?okn0	1: Let k0 ¼ 0; kn0 ¼ r0i þ n0:
Then the elements of the partition are (kj 	 kj	1 	 1Þ (jA½n0�).
The departure from uniform of the points in the small rows and columns will be very small. (It

arises only from the precision of our random number generation.) We can certainly ensure that all
probabilities are within 17e of their target values.
We now subtract the partial column totals over the small columns from the large column totals.

We now have to generate an integer point uniformly in a polytope of the form given in (10)–(12).
Since all row and column totals are sufficiently large, we can do this by the method given in [11].
Hence we can obtain a sample point with probabilities within 17e of the uniform distribution on
this set.
Finally, to show that the variation distance between the uniform distribution and our output

distribution s is bounded, note that by (i), (ii) and (iii) we have jjSr;cj	1 	 sðXÞjp4ejSr;cj	1 for all

XASr;c: Therefore, the variation distance satisfiesX
XASr;c

jjSr;cj	1 	 sðXÞjp
X

XASr;c

4ejSr;cj	1 ¼ 4eoE;

as required.
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