
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 67 (2003) 654–685

The Turing way to parameterized complexity

Marco Cesati

Department of Computer Science, Systems, and Industrial Engineering, University of Rome ‘‘Tor Vergata’’,

via del Politecnico 1, I-00133 Rome, Italy

Received 28 September 2001; revised 2 April 2002

Abstract

We propose a general proof technique based on the Turing machine halting problem that allows us to
establish membership results for the classes W[1], W[2], and W[P]. Using this technique, we prove that
Perfect Code belongs to W[1], Steiner Tree belongs to W[2], and a-Balanced Separator, Maximal
Irredundant Set, and Bounded DFA Intersection belong to W[P].
r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Parameterized complexity; W-class membership; Turing machine; Halting problem

1. Introduction

Parameterized Complexity [10] has been introduced by Downey and Fellows during the last 10
years. It is a powerful framework in which to address the different ‘‘parameterized behavior’’ of
many computational problems. Almost all natural problems have instances consisting of at least
two logical items; many NP-complete problems admit ‘‘efficient’’ algorithms for small values of
one item (the parameter).
A parameterized problem is said to be fixed parameter tractable if it admits a solving algorithm

whose running time on instance ðx; kÞ is bounded by f ðkÞ � jxja; where f is an arbitrary function
and a is a constant not depending on the parameter k: The class of fixed parameter tractable
problems is denoted by FPT.
In order to characterize those problems that do not seem to admit a fixed parameter-efficient

algorithm, Downey and Fellows defined a parameterized reduction and a hierarchy of classes
W½1�DW½2�D? including likely fixed parameter intractable problems. Each W-class is the
closure under parameterized reductions with respect to a kernel problem, which is usually
formulated in terms of special mixed-type boolean circuits in which the number of input lines set
to true is bounded by a function of the parameter.

ARTICLE IN PRESS

E-mail address: cesati@uniroma2.it.

0022-0000/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0000(03)00073-4

Several natural parameterized problems have been proved to be complete for the first two levels
W[1] and W[2]. Although W[1]-complete problems are not fixed parameter tractable (unless
W½1� ¼ FPT; which is very unlikely), they appear to be easier than W[2]-complete problems.
Essentially, candidate solutions for W[1]-complete problems (like Independent Set [7,10]) can be
verified using constant-depth boolean circuits having just one level of gates with unbounded fan-
in, while solutions for W[2]-complete problems (like Dominating Set [8,10]) require two levels of
large gates. Many, but not all, parameterized problems can be verified by using general boolean
circuits in which the number of input lines set to true is bounded by a function of the parameter:
such problems belong to the class W[P].
In this paper we establish some membership results for the classes W[1], W[2], and W[P]

through parameterized reductions to special versions of the Turing machine halting problem.
In general, it seems fruitful to think in terms of Turing machine computations when trying to

establish membership in some W-class. In order to prove that a parameterized problem A belongs
to a W-class, we always pick (more or less randomly) a problem B already in the class and we try
to show that A reduces to B: However, it can be very difficult to devise such a reduction, because
problems A and B can be very different; thus, even if the reduction exists, it may be very
complicated. This is quite different from what we do in classical computational complexity, where
usually we just show that a suitable model of Turing machine (for instance, a polynomial-time
nondeterministic Turing machine) is able to decide an instance of our problem.
In our approach, in order to prove that problem A belongs to a W-class, we try to devise a

reduction from A to some version of the Turing machine halting problem. In particular, in this
paper we show that Perfect Code belongs to W[1], that Steiner Tree belongs to W[2], and that
a-Balanced Separator, Maximal Irredundant Set, and Bounded DFA Intersection belong to W[P].
Apparently, the technique adopted in these proofs is the usual way to show membership in a

W-class: a reduction from our candidate problem to a ‘‘target’’ problem already placed in the W-
class. However, we recognize an important difference: the target problem is formulated in terms of
a ‘‘general-purpose’’ Turing machine computation. For example, to show membership of Perfect
Code we devise a single-tape nondeterministic Turing machine that guesses and verifies a
candidate perfect code with a ‘‘short’’ computation. This is exactly what we would have done to
show that a problem belongs to NP: devise a nondeterministic Turing machine that guesses and
verifies a candidate solution in polynomial time.
The main advantage of the technique is that a Turing machine is a very general model of

computation: it is such an opaque object that the reduction is mostly straightforward. One just
has to design a suitable algorithm that solves the candidate problem without worrying about the
inner, cumbersome details of the target problem. Another advantage is that it affords a natural
way to arrive at certificates of size of the order of k2 or k3; when problems whose more natural
certificates have size k may require ones of the larger size for their classification in the W-
hierarchy.
All Turing machines discussed in this paper have just one head on each tape. The halting

problem asks whether the Turing machine accepts in a number of steps bounded by a parameter.
Nondeterministic Turing machines having a fixed number of tapes, or a number of tapes bounded
by a parameter, are used to show membership in W[1]. The same halting problem for
nondeterministic Turing machines having a unbounded number of tapes is used to show
membership in W[2]. The halting problem for nondeterministic single-tape Turing machines

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 655

where the number of steps is unbounded (yet specified in the instance, of course) and the number
of nondeterministic choices performed by the machine is bounded by a parameter is used to show
membership in W[P].
The paper is organized as follows. Section 2 introduces the necessary preliminaries. We define

the general technique for the W[1] class in Section 3; in particular, we prove in Section 3.1 that
Perfect Code belongs to W[1]. In Section 4 we introduce the multi-tape version of the Turing
machine halting problem, and we prove that it is W[2]-complete. Using this problem as target of a
suitable parameterized reduction we can show in Section 4.1 that Steiner Tree belongs to W[2]. In
Section 5 we define the W[P]-complete version of the Turing machine halting problem. Using this,
we can establish membership in W[P] for the problems a-Balanced Separator, Maximal
Irredundant Set, and Bounded DFA Intersection in Sections 5.1–5.3. Finally, in Section 6 we
draw the conclusions.

2. Parameterized computational complexity

A parameterized problem is a set LDS� 	 S�; where S is a fixed alphabet. For convenience,
we can always assume that LDS� 	N: We say that a parameterized problem is L (uniformly)
fixed parameter tractable if it admits a solving algorithm whose running time on instance

ðx; kÞ is bounded by f ðkÞ � jxja; where f is an arbitrary function and a is a constant not
depending on the parameter k: The class of fixed parameter tractable problems is denoted
by FPT.
A parameterized problem A is (uniformly many: 1) reducible to a parameterized problem B if

there is an algorithm F which transforms an instance ðx; kÞ of A into an instance ðx0; k0Þ of B; and
such that:

1. ðx; kÞAA if and only if ðx0; k0ÞAB;
2. k0 depends only on k (i.e., there exists a function g such that k0 ¼ gðkÞ);
3. the running time of F is bounded by f ðkÞ � jxja; for some arbitrary function f and constant a:

Let us consider now boolean circuits having two kinds of gates: small gates with bounded fan-in
(usually, at most two), and large gates with unrestricted fan-in. The depth of a circuit C is defined
to be the maximum number of small and large gates on an input–output path in C: The weft of C

is the maximum number of large gates on an input–output path in C: The weight of a boolean
vector x is the number of 1’s in the vector. A decision circuit is a boolean circuit having just one
output line. A decision circuit is said to accept every input vector that forces the value 1 on the
output line.
Let F be a family of decision circuits, possibly having several circuits with a given number of

input lines. Let LF ¼ fðC; kÞ : CAF accepts an input vector of weight kg: A parameterized
problem L belongs to W[t] if there is a constant h such that L reduces to the parameterized
problem LFðt;hÞ; where Fðt; hÞ is the family of decision circuits of weft at most t and depth at most

h: Thus, there is a hierarchy of W classes:

FPTDW½1�DW½2�D?DW½t�D?

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685656

From these definitions, if a parameterized problem A reduces to B; and BAW½t�; then AAW½t� as
well.
Many parameterized problems have been proved to be complete for W[1] and W[2], that is, the

first two levels of the W hierarchy. As an example, Independent Set is W[1]-complete [7].
Informally, W[1]-membership for Independent Set means that there exists an FPT algorithm that,
given a graph G and a parameter k; produces a constant-depth decision circuit C having
just one large gate on every input–output path, and such that C accepts a input vector x of
weight k if and only if x encodes an independent set of G: W[1]-hardness implies that all
parameterized problems in W[1] reduce to Independent Set; since there are many problems in W[1]
for which no FPT algorithm is known, it is very unlikely that Independent Set is fixed parameter
tractable.
The class W[P] contains the parameterized problems that reduce to LC ; where C is the family of

decision circuits of any weft and depth. Thus, W½t�DW½P�; for every tX1:While no W[t] class with
tX3 seems to be well populated, there are several W[P]-complete problems.

3. Membership in W[1]

In classical complexity theory, Cook’s theorem states that the problem of deciding whether a
CNF formula is satisfiable is NP-complete. The result is fundamental, because its proof consists of
the simulation of a generic nondeterministic Turing machine computation by means of a CNF
formula. In a sense, the theorem also provides strong evidence that PaNP; because a Turing
machine is such a generic object that it does not seem reasonable that we should be able to predict
its behavior without simulating all paths of the computation tree.
The analog of the Cook’s theorem is a fundamental result of the parameterized

complexity theory, because it gives evidence that W[1]-hard problems are likely not to be fixed
parameter tractable. The theorem concerns the complexity of the following parameterized
problem:

Short Nondeterministic Turing Machine Computation
Instance: A single-tape nondeterministic Turing machine M; a word x on the input alphabet of

M; a positive integer k:
Parameter: k:
Question: Is there a computation of M on input x that reaches a final accepting state in at most

k steps?

Theorem 1 (Analog of Cook’s Theorem Cai et al. [4], Downey et al. [11]). Short Nondeterministic
Turing Machine Computation is W[1]-complete.

There are several variations of the basic Short Nondeterministic Turing Machine Computation
problem that remain W[1]-complete. For instance, the multi-tape version of the problem remains
W[1]-complete if the number of tapes is bounded by a parameter [6], or even if it is unbounded but
the transition table is full, that is, there is an applicable transition for every configuration of
scanned symbols under the heads [6].

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 657

Thus, we can formulate the following suggestion:

Turing way to W[1]-membership: In order to show that a parameterized problem L
belongs to W[1], devise a parameterized reduction from L to the Short
Nondeterministic Turing Machine Computation problem (or to one of its W[1]-
complete variations).

3.1. The Perfect Code problem

A Perfect Code in a graph G ¼ ðV ;EÞ is a subset of vertices V 0 such that for each vertex vAV ;
the subset V 0 includes exactly one element among v and all vertices adjacent to v; that is, exactly
one element in the closed neighborhood N½v� of v: Formally:

Perfect Code
Instance: A graph G ¼ ðV ;EÞ; a positive integer k:
Parameter: k:
Question: Does G have a k-element perfect code? A perfect code is a set of vertices V 0DV with

the property that for each vertex vAV there is precisely one vertex in N½v�-V 0:

Downey and Fellows proved that the Perfect Code problem is W[1]-hard by means of a
reduction from Independent Set [8]. Although Perfect Code may be easily placed in W[2] (see [8]),
till recently there was no evidence that it belongs to W[1]. Downey and Fellows conjectured that
the problem could be of difficulty intermediate between W[1] and W[2], and thus not W[1]-
complete ([10, pp. 277, 458]).
Eventually, however, the Perfect Code problem has been shown to belong to W[1] [5]. We

report the proof here, because it represents a fundamental example of a W[1]-membership result
established by means of the ‘‘Turing way.’’

Theorem 2. The Perfect Code problem belongs to W[1].

Proof. We devise a parameterized reduction from Perfect Code to Short Nondeterministic Turing
Machine Computation.
Given a graph G ¼ ðV ;EÞ with n vertices and a positive integer k; let us construct a

nondeterministic Turing machine T ¼ ðS;Q;DÞ; where S includes the alphabet symbols

S ¼ f&g,fsv : vAVg,fsi : i ¼ 1;y; ng

and Q contains the internal states

Q ¼ fqA; qRg,fqi : i ¼ 0;y; kg,fql
v; q

r
v : vAVg,fqs

j : j ¼ 1;y; ng

(Notice that both the alphabet size jSj and the state set size jQj depend on n; hence the Turing
machine behavior cannot be predicted with an FPT-algorithm unless W½1� ¼ FPT [6].)
When the Turing machine starts, the internal state is q0 and all tape cells contain the blank

symbol ð&Þ: The machine operates in three phases.

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685658

Phase 1: guess k vertices. The Turing machine nondeterministically chooses k vertices of G

writing the corresponding symbols into the tape. This is achieved by including the following
instructions in the transition table D:

/&; qi;sv; qiþ1;þ1SAD
ð8iAf0;y; k � 2g; 8vAVÞ guess k � 1 vertices moving to the right

/&; qk�1;sv; qk; 0SAD ð8vAVÞ guess last vertex, do not move

(Each instruction specifies, in order, the symbol scanned under the head, the internal state of the
machine, the new symbol written by the head, the new internal state, and the movement of the
head: �1 for left, þ1 for right, and 0 for no move.)

Phase 2: check that the k vertices are ‘‘perfect’’. The Turing machine scans the guessed vertices
and rejects as soon as it finds two vertices that violate one of the following conditions:

* For every pair of guessed vertices x and y; x and y are different.
* For every pair of guessed vertices x and y; x and y are not adjacent.
* For every pair of guessed vertices x and y; there is no vertex zAV that is adjacent to both

x and y:

Moreover, in this phase each symbol sv is replaced by the symbol sm; where m represents the size
of the neighborhood N½v� of v: This is achieved by including the following instructions in the
transition table D:

/sv; qk; sv; ql
v;�1SAD ð8vAVÞ enter a loop for checking the vertex v under the

head

/sw; ql
v; sw; q0;�1SAD ð8v;wAVÞ move to the left if the vertex w under the head

satisfies the conditions with respect to v; reject
otherwise

where q0 ¼

qR if v ¼ w

qR if ðv;wÞAE

qR if (zAV such that
ðv; zÞAE and ðw; zÞAE

ql
v otherwise:

8>>>><
>>>>:

/&; ql
v;&; qr

v;þ1SAD ð8vAVÞ
/sw; qr

v;sw; q
r
w;þ1SAD ð8v;wAV ; vawÞ end of symbols, go back to the right up to vertex v

/sv; q
r
v; sm; qk;�1SAD

ð8vAVÞ; where m ¼ jN½v�j
replace v with the symbol denoting the size of its
closed neighborhood, then move to the left and
enter the state qk; thus restarting the loop with
another vertex

/&; qk;&; qk;þ1SAD no more symbols to check, end of phase

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 659

Phase 3: taking the sum. The tape now contains exactly k symbols of fs1;y; sng; each of them
represents the neighborhood size of a guessed vertex. The Turing machine must accept if and only
if the sum of all neighborhood sizes is equal to n: In fact, the checks in Phase 2 grant that no vertex
in G belongs to the neighborhood of two different guessed vertices. In other words, the guessed
vertices cover nonoverlapping subsets of V : Therefore, the sum cannot be greater than n;
moreover, if the sum is equal to n; all vertices in G are dominated by the guessed k-element subset
of V : The following instructions in D computes the sum:

/si; qk; si; q
s
i ;þ1SAD ð8iAf1;y; ngÞ initialize the internal state counter, and move to

the right

/sj; q
s
i ; sj; q

s
t;þ1SAD

ð8i; jAf1;y; ng; i þ jpn; t ¼ i þ jÞ
add the size under the head to the internal state
counter, and move to the right

/&; qs
n;&; qA; 0SAD

/&; qs
j ;&; qR; 0SAD ð8jAf1;y; n � 1gÞ

end of size symbols, accept if the internal state
counter is equal to n; reject otherwise

It is straightforward to verify that the Turing machine T includes ð5=2Þn2 þ ðk þ 7=2Þn þ 1
instructions, that it can be derived in polynomial time in the size of G; and that it accepts in

k2 þ 4k þ 2 steps if and only if there exists a perfect code of size k in G: &

Downey and Fellows [8,10] showed that Perfect Code is equivalent to the Weighted Exact CNF
Satisfiability problem, in which the instance is a boolean expression in conjunctive normal form,
and the question is whether there exists a truth assignment of parameterized weight that makes
exactly one literal in each clause true. An immediate consequence of Theorem 2 is that Weighted
Exact CNF Satisfiability is W[1]-complete, hence it can be regarded as another analog of the
Cook’s theorem.

4. Membership in W[2]

Turing machines can be also useful in establishing membership results for the class W[2].
However, we need to identify a natural model of Turing machine whose parameterized
computation problem is W[2]-complete.
In [6] it is shown that the natural variation of Short Nondeterministic Turing

Machine Computation in which the machine has many read/write tapes is W[2]-hard. This is
an interesting result by itself: in classical complexity theory almost all natural variations of the basic
Turing machine model are equivalent, because they have NP-complete computation problems.
Conversely, natural variations of the basic Turing machine model may have different parameterized
complexities.

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685660

Formally, the multi-tape version of the problem is the following:

Short Multi-tape Nondeterministic Turing Machine Computation
Instance: A multi-tape nondeterministic Turing machine M; a word x on the input alphabet of

M; a positive integer k:
Parameter: k:
Question: Is there a computation of M on input x that reaches a final accepting state in at most

k steps?

We can now prove that this problem belongs to W[2]. The proof makes use of a
characterization of the problems in W[2] established by Downey and Fellows [9]. Essentially
they proved that the class W�½2�; defined as W[2] but allowing decision circuits of parameterized
depth instead of constant depth, coincides with W[2].

Theorem 3. The Short Multi-tape Nondeterministic Turing Machine Computation problem

belongs to W[2].

Proof. Let T ¼ ðS;Q;DÞ be a nondeterministic Turing machine having m tapes, let wAS� and let
k be an integer. We shall show how to construct a circuit C with kjDj þ 1 input lines such that
there exists a weight k input vector x such that CðxÞ ¼ 1 if and only if there exists an accepting
computation path of TðwÞ having at most k steps.
Let us denote the input lines as x½�1;�1� and x½i; j� ð0piok; 0pjojDjÞ: On any accepted

input vector x; the first input line x½�1;�1� is always 0. From now on, let us define
%
0 as x½�1;�1�;

and
%
1 as :x½�1;�1�: The other input lines are partitioned in k blocks x½i; ��; any block has jDj

input lines and encodes the transition applied in the ith step of the computation path.
We shall consider several gates encoding various information about the computation path

corresponding to x:

* toði; lÞ ð0piok; 0plojQjÞ identifies the ‘‘old’’ internal state of the ith transition of the
computation path

toði; lÞ ¼
X
jAJ

x½i; j�

(where J is the subset of f0;y; jDj � 1g containing the indices of the transitions whose old state
has index l).

* tnði; lÞ ð0piok; 0plojQj) identifies the ‘‘new’’ internal state of the ith transition of the
computation path

tnði; lÞ ¼
X
jAJ

x½i; j�

(where J is the subset of f0;y jDj � 1g containing the indices of the transitions whose new
state has index l).

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 661

* soði; l; tÞ ð0piok; 0plojSj; 0ptomÞ identifies the ‘‘old’’ symbol scanned by the head on the
tth tape of the ith transition of the computation path

soði; l; tÞ ¼
X
jAJ

x½i; j�

(where J is the subset of f0;y jDj � 1g containing the indices of the transitions whose old
symbol on tape t has index l).

* snði; l; tÞ ð0piok; 0plojSj; 0ptomÞ identifies the ‘‘new’’ symbol scanned by the head on
the tth tape of the ith transition of the computation path

snði; l; tÞ ¼
X
jAJ

x½i; j�

(where J is the subset of f0;y; jDj � 1g containing the indices of the transitions whose new
symbol on tape t has index l).

* mði; l; tÞ (0piok; 0ptom; lAf�1; 0;þ1g) identifies the head move on the tth tape of the ith
transition of the computation path

mði; l; tÞ ¼
X
jAJ

x½i; j�

(where J is the subset of f0;y; jDj � 1g containing the indices of the transitions whose head
move on tape t is l).

* bði; l; tÞ (0piok; �kolok; 0ptom) encodes the head position on the tape t at the ith step
(before applying the ith transition)

bð0; l; tÞ ¼ %
0 if la0;

%
1 if l ¼ 0;

(

bði; l; tÞ ¼ bði � 1; l; tÞ � mði � 1; 0; tÞ
þ bði � 1; l � 1; tÞ � mði � 1;þ1; tÞ
þ bði � 1; l þ 1; tÞ � mði � 1;�1; tÞ

(where i40).
* sði; l; s; tÞ (0piok; �kolok; 0psojSj; 0ptom) encodes the content of the cells on tape t at
step i:

sð0; l; s; tÞ ¼
%
1 if ðt ¼ 0Þ4ð0plojwjÞ4ðs is the index of w½l�Þ;

%
1 if ðt ¼ 0Þ4ðlo03lXjwjÞ4ðs ¼ 0Þ;

%
0 otherwise

8><
>:

(where the index of the blank symbol is 0, and w½l� represents the lth character of the input
word wAS� on tape 0).

sði; l; s; tÞ ¼:bði � 1; l; tÞ � sði � 1; l; s; tÞ
þ bði � 1; l; tÞ � snði � 1; l; tÞ:

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685662

The circuit C has a final And gate, corresponding to the following expression:

E ¼ E0 � E1 � E2 � E2 � E4:

The first term enforces the first input line to be always set to 0:

E0 ¼ :x½�1;�1�:
The second term ensures that at most one input line in each block x½i; �� is set to 1:

E1 ¼
Yk�1
i¼0

YjDj�1
j; j0¼0
jaj0

ð:x½i; j� þ :x½i; j0�Þ:

The third term checks that the new internal state of the ði � 1Þth transition is equal to the old
internal state of the ith transition:

E2 ¼
Yk�1
i¼1

YjQj�1

j¼0
ð:tnði � 1; jÞ þ toði; jÞÞ:

The fourth term checks that, for every transition and for every tape, the old symbol coincides with
the symbol scanned under the corresponding head:

E2 ¼
Yk�1
i¼0

Ym�1

t¼0

Yk

j¼�k

YjSj�1
l¼0

ð:bði; j; tÞ þ :sði; j; l; tÞ þ soði; l; tÞÞ:

The fifth term ensures that the computation path starts from the internal state q0 and ends with
the accepting internal state qA:

E4 ¼ toð0; %tÞ4tnðk � 1; %lÞ;
where %t is the index corresponding to q0 and %l is the index corresponding to qA:
It is easy to verify that the circuit C accepts a weight k input word x if and only if x encodes the

k steps of a nondeterministic accepting computation path of TðwÞ; and that we can build the
circuit C from an instance of Short Multi-tape Nondeterministic Turing Machine Computation
with a parameterized reduction.
The above reduction shows that Short Multi-tape Nondeterministic Turing Machine

Computation belongs to W�½2�; which is the class of parameterized problems that
reduce to a weft-2 circuit problem in which the circuit depth is bounded by a function of the
parameter. In fact, every large gate having fan-in bounded by a function of the parameter
can be replaced by a tree of small gates of depth bounded by a function of the parameter. The
remaining large gates are either the sums whose input are the circuit’s input lines, or the products
in E1; E2; and E2: Since Downey and Fellows [9] proved that W�½2� ¼ W½2�; the assertion
follows. &

The previous theorem gives us another Turing machine model that can be used to establish
membership results. We can thus formulate the following suggestion:

Turingway to W[2]-membership: In order to show that a parameterized problem L
belongs to W[2], devise a parameterized reduction from L to the Short Multi-tape
Nondeterministic Turing Machine Computation problem.

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 663

4.1. The Steiner Tree problem

As an example of application of the ‘‘Turing way’’ for W[2], consider the following problem:

Steiner Tree

Instance: A graph G ¼ ðV ;EÞ; a set SDV ; a positive integer k:
Parameter: k:
Question: Is there a set of vertices TDV � S such that jT jpk and G½S,T � is connected?

This parameterized version of Steiner Tree is W[2]-hard [3]. (Notice however that the
parameterized version in which k is unbounded and jSj is a parameter is fixed-parameter
tractable [12].)
Although no membership result for this problem was previously known, we can easily place it in

W[2] by devising a multi-tape Turing machine that guesses a subset of vertices and checks whether
it is a Steiner Tree:

Theorem 4. The Steiner Tree problem belongs to W[2].

Proof. We show a parameterized reduction from Steiner Tree to the Short Multi-tape
Nondeterministic Turing Machine Computation problem on multi-tape machines. Since the
latter problem is W[2]-complete, the reduction proves that Steiner Tree belongs to W[2].
Let us consider an instance G ¼ ðV ;EÞ; SDV ; kAN of Steiner Tree. As first step of our

reduction, let us replace every connected component of G½S� with a single vertex. Formally, let us
construct a new graph G0 ¼ ðV 0;E0Þ where V 0 is obtained from V by replacing each connected
component C of G½S� with a vertex vC ; and

E0 ¼ fðv;wÞAE : v;wAV � Sg,fðv; vCÞ : (zAC such that ðv; zÞAEg:

Moreover, let us replace S with the subset S0 of all new vertices vC :
It is quite easy to verify that [G ¼ ðV ;EÞ; S; k] is a yes-instance of Steiner Tree if and only if

[G0 ¼ ðV 0;E0Þ; S0; k] is a yes-instance of Steiner Tree. In fact, TAV � S; jT jpk; is a solution to
the former problem if and only if G½S,T � is connected, that is, if and only if G0½S0,T � is
connected, that is, if and only if TDV 0 � S0 is a solution to the latter problem. Since connected
components can be determined in polynomial time in the size of the graph, this is a parameterized
reduction.
The second step of our reduction consists of constructing a ðm þ 1Þ-tape nondeterministic

Turing machine M ¼ ðS;Q;DÞ; where m ¼ jS0j;

S ¼ f&;#g,fv; v0; v00 : vAV 0 � S0g

and

Q ¼ fqA; qR; qa; qb; qe; q f ; q gg,fqi : 0pipk � 1g,fqc
v; q

d
v : vAV 0 � S0g:

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685664

We fix an ordering for the subset S0; and we associate each element of S0 to a tape of M; starting
from the second tape. The first tape will contain the elements of the subset T : Initially, all tapes
contain blanks.

The Turing machine M accepts in Oðk2Þ steps if and only if ½G0 ¼ ðV 0;E0Þ;S0;m� is a yes-
instance. It operates in three phases: it guesses at most k vertices of V 0 � S0 representing the subset
T ; then, it checks that T ‘‘covers’’ S0; that is, that each vertex of S0 is adjacent to some vertex of T ;
finally, it checks that all vertices of T are connected together, optionally by means of vertices in S0:
It is easy to verify that all checks are satisfied if and only if G0½S0,T � is connected, that is, if and
only if T is a solution of the problem.

Phase 1: guess k vertices of G0: The Turing machine nondeterministically chooses k vertices of G0

writing the corresponding symbols into the tape. This is achieved by including the following
instructions in the transition table D:

&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mþ1

; qi; v;&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m

; qiþ1;þ1; 0;y; 0|fflfflffl{zfflfflffl}
m

* +
AD

ð8iAf0;y; k � 2g; 8vAV 0 � S0Þ

guess k � 1 vertices and write them on the
first tape, moving the corresponding head to
the right; the heads on the other tapes do
nothing

&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mþ1

; qk�1; v;&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m

; qa; 0;y; 0|fflfflffl{zfflfflffl}
mþ1

* +
AD

guess the last vertex, write it on the first tape,
and leave the head on it

ð8vAV 0 � S0Þ

(Each instruction specifies, in order, the symbols scanned under the m þ 1 heads, the internal
state of the machine, the m þ 1 new symbols written by the machine, the new internal state, and
the movements of the m þ 1 heads: �1 for left, þ1 for right, and 0 for no move.)
Notice that there could be some duplicated vertices, thus the subset T may have less than k

vertices.
Phase 2: check that T covers S0: The Turing machine checks that every vertex in S0 is adjacent to

some vertex in T : Let us assume that S0 ¼ fs1;y; smg: For each guessed vertex v; the machine
writes a # symbol on every tape corresponding to a vertex in S0 that is adjacent to v: It must do
this with a running time depending only by jT j; and not by jS0j: Hence, the machine has to write
several # symbols in the same step, exploiting the parallelism inherent to the multi-tape model of
Turing machine.
We also need a ‘‘information hiding’’ trick: every time the machine writes a # symbol, it moves

the writing head, so that in the next step the head will read a blank (&). The trick is required in
order to keep the transition table small: basically, we cannot insert in the transition table 2m

different instructions to take into account all different configurations of & and # symbols on the
m tapes.
When all vertices in T have been considered, the Turing machine moves backward all heads

on the m tapes corresponding to the element of S0; and checks that all heads read a # symbol.
If there is a head reading a blank, the machine hangs up. Observe that S0 is an independent set

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 665

in G0; thus if some vertex of S0 is not adjacent to any vertex of T ; then G0½S0,T � cannot be
connected.

v;&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m

; qa; v; s1;y; sm; qa;�1; m1;y; mm

* +
AD

ð8vAV 0 � S0Þ; where sj ¼
if sjAN½v�
& if sjeN½v�

�
and mj ¼

þ1 if sjAN½v�
0 if sjeN½v�

�

consider the vertex v under the head of
the first tape; in parallel, write a #
symbol on each tape corresponding to a
vertex in S0 that is adjacent to v; move all
writing heads to the right, and the head on
the first tape to the left

&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mþ1

; qa;&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mþ1

; qa; 0;�1;y;�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m

* +
AD

no more elements of T to consider: move
to the left all heads on the tapes corres-
ponding to the elements of S0

&;#;y;#|fflfflfflfflffl{zfflfflfflfflffl}
m

; qa;&;y;&|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mþ1

; qb;þ1; 0;y; 0|fflfflffl{zfflfflffl}
m

* +
AD

proceed with the next phase only if all
heads on the tapes corresponding to
the elements of S0 read a # symbol

Phase 3: check that T is connected by means of S0: The Turing machine checks whether all
vertices of T are connected together, optionally using vertices of S0: Recall that S0 is an
independent set in G0; so the Turing machine doesn’t have to search for paths inside G0½S0�:
The machine iteratively enlarges the set of vertices that are reachable from the first guessed

vertex of T : It uses three different sets of symbols: fv : vAV 0 � S0g is used to identify the elements
of T that have not been reached, fv0 : vAV 0 � S0g is used to identify the elements that have been
reached but not yet analyzed, and fv00 : vAV 0 � S0g is used to identify the elements that have been
reached and analyzed.

Internal states qc
v and qd

v are used to search for the vertices reachable from v: the former state

moves the head onto the first guessed vertex, and the latter state scans all vertices on the tape.

Internal states qe and q f move the head toward the first guessed vertex before considering another

reachable vertex not yet analyzed; the state q f indicates that at least one unreached vertex exists.
Finally, internal state q g looks for a reachable vertex that has not been analyzed.
From now on, the Turing machine uses the first tape only. To save space, in the following

instructions we shall omit the symbols under the heads of the other tapes (always &’s), as well as
their moves (always 0’s).

/v; qb; v00; qc
v;�1SAD ð8vAV 0 � S0Þ mark the rightmost vertex v as being analyzed

and record it in the internal state

/s; qc
v;s; q

c
v;�1SAD

ð8vAV 0 � S0;8sAfw;w0;w00 : wAV 0 � S0gÞ
go to the leftmost vertex before searching for
vertices reachable from v

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685666

/&; qc
v;&; qd

v ;þ1SAD ð8vAV 0 � S0Þ head at left end, go to the right and mark the
vertices reachable from v

/w; qd
v ;w0; qd

v ;þ1SAD ð8vAV 0 � S0;8wAN½v�Þ mark w as reached if it is adjacent to v

/w; qd
v ;w

0; qd
v ;þ1SAD

ð8v;wAV 0 � S0;weN½v�;N½v�-N½w�-S0a|Þ
mark w as reached if there exists a vertex in S0

that is adjacent to both w and v

/w; qd
v ;w; q

d
v ;þ1SAD

ð8v;wAV 0 � S0;weN½v�;N½v�-N½w�-S0 ¼ |Þ
if w is neither adjacent to v nor adjacent to a
vertex in S0 that is adjacent to v; leave it unreached

/s; qd
v ; s; qd

v ;þ1;SAD skip over already reached vertices

ð8vAV 0 � S0; 8sAfw0;w00 : wAV 0 � S0gÞ

/&; qd
v ;&; qe;�1SAD ð8vAV 0 � S0Þ head at right end, go back to left end

/s; qe; s; qe;�1;SAD
ð8sAfv0; v00 : vAV 0 � S0gÞ

keep moving to the left end (the internal state
indicates that till now no unreached vertex has
been seen)

/v; qe; v; q f ;�1SAD ð8vAV 0 � S0Þ record that, while going back to left end, a
unreached vertex has been seen

/s; q f ;s; q f ;�1SAD
(8sA\{v,v0,v00 : vAV0�S0\})

keep moving to the left end (the internal state
indicates that at least one unreached vertex still
exists)

/&; qe;&; qA; 0SAD head at left end, all vertices have been marked as
reached, hence accept

/&; q f ;&; q g;þ1SAD head at left end, at least one unreached vertex
exists: start searching for a reached vertex that
has not yet been analyzed

/s; q g;s; q g;þ1SAD
ð8sAfv; v00 : vAV 0 � S0gÞ

skip over unreached vertices and reached
vertices that have already been analyzed

/v0; q g; v00; qc
v;�1SAD ð8vAV 0 � S0Þ v is a reached vertex still to be analyzed; mark v

as analyzed, and go to the leftmost vertex

/&; q g;&; qR; 0SAD no reached vertex still to be analyzed has been
found: reject, because a unreached vertex exists

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 667

It is straightforward to verify that both phases 1 and 2 end after exactly k steps. Moreover,

it easy to see that phase 3 ends after at most Oðk2Þ steps. Thus, ½M; k0�; k0 ¼ Oðk2Þ; is a yes-
instance of Short Multi-tape Nondeterministic Turing Machine Computation if and only if
½G0 ¼ ðV 0;E0Þ;S0; k� is a yes-instance of Steiner Tree. &

5. Membership in W[P]

Finally, Turing machines can be useful in establishing membership results for the class W[P].
Again, we need to identify a model of Turing machine whose parameterized computation problem
is W[P]-complete.
The class W[P] is quite large; it includes all parameterized problems that reduce to LF ; where F

is the family of decision circuits with any depth and weft. The depth of the decision circuit roughly
corresponds to the number of steps of a Turing machine, while the Hamming weight of the input
corresponds to the number of nondeterministic steps of the Turing machine. Thus, a natural
version of the Turing machine computation problem is the following:

Bounded Nondeterminism Turing Machine Computation

Instance: A nondeterministic Turing machine T ; an input word w; an integer n (encoded in
unary); a positive k:

Parameter: k:
Question: Does TðwÞ nondeterministically accept in at most n steps and using at most k

nondeterministic steps?

We now prove that the Bounded Nondeterminism Turing Machine Computation problem is
W[P]-complete.

Theorem 5. Bounded Nondeterminism Turing Machine Computation belongs to W[P].

Proof. Let T ¼ ðS;Q;DÞ be a nondeterministic Turing machine, let wAS� and let n; k be integers.
We shall show how to construct a circuit C with njDj þ 1 input lines such that there exists a weight
k input vector x such that CðxÞ ¼ 1 if and only if there exists an accepting computation path of
TðwÞ having at most n steps and at most k nondeterministic steps.
Let us denote the input lines as x½�1;�1� and x½i; j� ð0pion; 0pjojDjÞ: On any accepted

input vector x; the first input line x½�1;�1� is always 0. From now on, let us define
%
0 as x½�1;�1�;

and
%
1 as :x½�1;�1�: The other input lines are partitioned in n blocks x½i; ��; any block has jDj

input lines and encodes a nondeterministic transition applied in the ith step of the computation
path. If the ith step of the computation path is deterministic, the input lines x½i; �� are all 0’s.
We shall consider several gates encoding various information about the computation path

corresponding to x:

* gðiÞ ð0pionÞ indicates whether the ith step is nondeterministic

gðiÞ ¼
XjDj�1
j¼0

x½i; j�:

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685668

* tði; lÞ ð0pion; 0plojQjÞ encodes the internal state at step i:

tð0; lÞ ¼ %
0 if la0;

%
1 if l ¼ 0

(

(where the index of the initial state is 0)

tði; lÞ ¼
X
jAJ

ðx½i � 1; j� þ ð:gði � 1Þ � aði � 1; jÞÞÞ

(where i40 and J is the subset of f0;y jDj � 1g corresponding to the indices of the transitions
whose new state has index l).

* aði; lÞ ð0pion; 0plojDjÞ indicates whether the lth transition is applicable at the ith step:

aði; lÞ ¼ tði; %qÞ �
Xn�1
j¼0

ðbði; jÞ � sði; j; %sÞÞ

(where %q is the index of the old state of the lth transition, and %s is the index of the old symbol of
the lth transition).

* bði; lÞ ð0pion; � nolonÞ encodes the head position on the tape

bð0; lÞ ¼ %
0 if la0;

%
1 if l ¼ 0;

(

bði; lÞ ¼ bði � 1; lÞ �
X
jAJ0

ðx½i � 1; j� þ ð:gði � 1Þ � aði � 1; jÞÞÞ

þ bði � 1; l � 1Þ �
X
jAJþ

ðx½i � 1; j� þ ð:gði � 1Þ � aði � 1; jÞÞÞ

þ bði � 1; l þ 1Þ �
X
jAJ�

ðx½i � 1; j� þ ð:gði � 1Þ � aði � 1; jÞÞÞ

(where i40 and J0; Jþ; and J� are the subsets of f0;y; jDj � 1g corresponding to the indices
of the transitions whose head moves are, respectively, 0, þ1; and �1).

* sði; l; sÞ ð0pion; � nolon; 0psojSjÞ encodes the content of the tape cells at step i:

sð0; l; sÞ ¼
%
1 if ð0plojwjÞ4ðs is the index of w½l�Þ;

%
0 if ð0plojwjÞ4ðs is not the index of w½l�Þ;

%
1 if ðlo03lXjwjÞ4ðs ¼ 0Þ;

%
0 if ðlo03lXjwjÞ4ðsa0Þ

8>>><
>>>:

(where the index of the blank symbol is 0, and w½l� represents the lth character of the input
word wAS�).

sði; l; sÞ ¼:bði � 1; lÞ � sði � 1; l; sÞ
þ bði � 1; lÞ �

X
jAJ

ðx½i � 1; j� þ ð:gði � 1Þ � aði � 1; jÞÞÞ

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 669

(where J is the subset of f0;y; jDj � 1g corresponding to the indices of the transitions whose
new symbol has index s).

The circuit C has a final And gate, corresponding to the following expression:

E ¼ E0 � E1 � E2 � E2 � E4:

The first term enforces the first input line to be always set to 0:

E0 ¼ :x½�1;�1�:
The second term ensures that at most one input line in each block x½i; �� is set to 1:

E1 ¼
Yn�1
i¼0

YjDj�1
j; j0¼0
jaj0

ð:x½i; j� þ :x½i; j0�Þ:

The third term checks that any instruction specified by the input lines can be legally applied:

E2 ¼
Yn�1
i¼0

YjDj�1
j¼0

ð:x½i; j� þ aði; jÞÞ:

The fourth term forces a value 1 in any input line block corresponding to a nondeterministic
step:

E2 ¼
Yn�1
i¼0

YjDj�1
j; j0¼0
jaj0

ð:gðiÞ þ :aði; jÞ þ :aði; j0ÞÞ:

The fifth term ensures that the computation path is an accepting one:

E4 ¼ tðn; %qÞ;
where %q is the index corresponding to the accepting state qA:
It is easy to verify that the circuit C accepts a weight k input word x if and only if x encodes the

k nondeterministic steps of a nondeterministic accepting computation path of TðwÞ: In particular,
the term E2 ensures that every block of input lines x½i; �� having no line set to 1 corresponds to a
deterministic step; the circuit can thus derive the transition to be applied from the internal state
and the symbol under the head of the Turing machine.
We can build the circuit C from an instance of bounded nondeterminism Turing machine

computation with a parameterized reduction; notice, however, that we can do this only because
the length of the computation path in the problem is encoded in unary. &

Theorem 6. Bounded Nondeterminism Turing Machine Computation is W[P]-hard.

Proof. We show a parameterized reduction from the Chain Reaction Closure problem [1] to
Bounded Nondeterminism Turing Machine Computation. Chain Reaction Closure is W[P]-
complete [1], and it is defined as follows:

Chain Reaction Closure

Instance: A directed graph D ¼ ðV ;AÞ; a positive integer k:

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685670

Parameter: k:
Question: Does there exist a set V 0 of k vertices of D whose chain reaction closure is V? (A chain

reaction closure of V 0 is the smallest superset S of V 0 such that if u; u0AS and arcs ux; ux0 are in A
then xAS:)
Given a directed graph D ¼ ðV ;AÞ with n vertices and a positive integer k; let us construct a

nondeterministic Turing machine T ¼ ðS;Q;DÞ; where S includes the alphabet symbols

S ¼ f&g,fv : vAVg

and Q contains the internal states

Q ¼fqA; qR; q
a; qhg,fqi : 0pipk � 1g

, fqb
v ; q

c
v; q

d
v ; q

e
v; q

f
v ; q g

v : vAVg,fql
i : 0pipn � 1g:

When the Turing machine starts, the internal state is q0 and all tape cells contain the blank
symbol ð&Þ: The machine guesses k different vertices that represent V 0: It then generates the
chain reaction closure of V 0; and computes its size.

Phase 1: guess k different vertices. Assume a fixed ordering v0; v1;y; vn�1 of the vertices of D:
The Turing machine nondeterministically chooses k different vertices of D writing the
corresponding symbols onto the tape. This is achieved by including the following instructions
in the transition table D:

/&; qi; v; qiþ1;þ1SAD

ð8vAV ; 8iAf0;y; k � 2gÞ

guess k vertices, leaving the head on the right-
most one

/&; qk�1; v; qa; 0SAD ð8vAVÞ

/v; qa; v; qb
v ;�1SAD ð8vAVÞ go to the left end checking whether v has been

guessed several times

/w; qb
v ;w; qb

v ;�1SAD ð8v;wAV ; vawÞ skip over vertices different than v

/v; qb
v ; v; qR; 0SAD ð8vAVÞ v has been guessed at least twice, hence reject

/&; qb
v ;&; qc

v;þ1SAD ð8vAVÞ head at left end, go back to the vertex v

/w; qc
v;w; qc

v;þ1SAD ð8v;wAV ; vawÞ skip over vertices different than v

/v; qc
v; v; q

a;�1SAD ð8vAVÞ head on vertex v; restart checking the vertex at
the left of v

/&; qa;&; qd
v0
;þ1SAD no more vertices to check, continue with the

next phase

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 671

Phase 2: compute the chain reaction closure. The Turing machine considers in turn each vertex
xAV and scans the symbols on the tape. If it finds two vertices u and u0 on tape such that uxAA

and u0xAA; then it writes x on tape (if x is not already there) and restarts considering the first
vertex v0 of D: The phase ends when the Turing machine considers the last vertex vn�1 of D and

detects that it cannot be written on the tape. Internal states qd
v ; qe

v; and q g
v are used to check

whether v can be written on the tape; they indicate respectively that no witness, one witness u; and

two witnesses u and u0 have been found. Internal state q f
v indicates that v cannot be written on the

tape and that the vertex following v in the fixed ordering must be considered. Internal state qh is
used to restart, from the beginning, the loop over the vertices of D after a symbol has been written
on tape.

/w; qd
v ;w; q

e
v;þ1SAD ð8v;wAV ; vaw;wvAAÞ w is the first witness for v; move to the right to

search for the second witness

/w; qe
v;w; q g

v ;þ1SAD ð8v;wAV ; vaw;wvAAÞ w is the second witness for v; move to the right
to verify that v is not already on tape

/w; qd
v ;w; q

d
v ;þ1SAD ð8v;wAV ; vaw;wveAÞ w is not a witness for v; move to the right to

search for a witness
/w; qe

v;w; q
e
v;þ1SAD ð8v;wAV ; vaw;wveAÞ

/v; qd
v ; v; q f

v ;�1SAD ð8vAVÞ v is already on the tape, consider the next vertex
in V

/v; qe
v; v; q

f
v ;�1SAD ð8vAVÞ

/v; q g
v ; v; q f

v ;�1SAD ð8vAVÞ

/w; q g
v ;w; q g

v ;þ1SAD ð8v;wAV ; vawÞ wav; hence move to the right (v already has two
witnesses, thus there is no need to check whether
wvAA)

/&; qd
v ;&; q f

v ;�1SAD ð8vAVÞ head at right end: since either no witness or just
one witness for v has been found, consider the
next vertex in D

/&; qe
v;&; q f

v ;�1SAD ð8vAVÞ

/&; q g
v ; v; q

h;�1SAD ð8vAVÞ head at right end: v has two witnesses, hence
write v onto the tape, and go to the left end to
restart from the beginning

/v; qh; v; qh;�1SAD ð8vAVÞ keep moving to the left until the left end is
reached

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685672

/&; qh;&; qd
v0
;þ1SAD head at left end: restart from the begin-

ning (search for witnesses relative to the first
vertex v0)

/w; q f
v ;w; q

f
v ;�1SAD ð8v;wAVÞ keep moving to the left until the left end is

reached (the internal state records the vertex v
just analyzed)

/&; q f
vi
;&; qd

viþ1
;þ1SAD ð8iAf0;y; n � 2gÞ head at left end, and vertex vi has just been

analyzed: move to the right and start consider-
ing vertex viþ1

/&; q f
vn�1

;&; ql
0;þ1SAD head at left end, and the last vertex vn�1 has just

been analyzed: continue with the next phase

Phase 3: compute the size of the chain reaction closure. The Turing machine simply counts the
number of symbols written on tape, and accepts if the total is n; the internal state acts as a
counter.

/v; ql
i ; v; q

l
iþ1;þ1SAD keep moving to the right counting the number of

vertices written on the tape
ð8vAV ; 8iAf0;y; n � 2gÞ

/v; ql
n�1; v; qA;þ1SAD ð8vAVÞ the counter is equal to n � 1; and another vertex

has been found: accept

/&; ql
i ;&; qR; 0SAD ð8iAf0;y; n � 1gÞ head at right end, and the counter is smaller

than n: reject

It is straightforward to verify that the transition table D includes Oðn2Þ instructions and that it
can be derived by simply looking at the directed graph D: The Turing machine accepts if and only
if it can nondeterministically guess a subset of k different vertices whose chain reaction closure is

as large as D: Moreover, it either accepts or rejects in at most k þ 2kn þ 2ðk þ 1Þn þ?þ 2n2 ¼
Oðn3Þ steps. &

The previous theorems enable us to formulate the following suggestion:

Turing way to W[P]-membership In order to show that a parameterized problem L
belongs to W[P], devise a parameterized reduction from L to the Bounded
Nondeterminism Turing Machine Computation problem.

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 673

5.1. The a-Balanced Separator problem

As a first example of W[P]-membership result by means of a reduction to a Turing machine
computation problem, consider the following problem:
a-Balanced Separator
Instance: A graph G ¼ ðV ;EÞ; a positive integer k:
Parameter: k:
Question: Does there exist a subset S of at most k vertices such that each connected component

of G½V � S� has at most ajV j vertices?
This parameterized problem is W[1]-hard (reduction from [3]); as far as we know, no

membership result was previously known.

Theorem 7. The a-Balanced Separator problem belongs to W[P].

Proof. We show a parameterized reduction from a-Balanced Separator to the Bounded
Nondeterminism Turing Machine Computation problem. Since the latter problem is W[P]-
complete, the reduction proves that a-Balanced Separator belongs to W[P].
Given a graph G ¼ ðV ;EÞ with n vertices and a positive integer k; let us construct a

nondeterministic Turing machine T ¼ ðS;Q;DÞ; where S includes the alphabet symbols

S ¼ f&; $;	g,fv; v0 : vAVg

and Q contains the internal states

Q ¼fqA; qR; q
a; qe; q g; qh; qmg,fqi : 0pipkg

,fqb
v ; qc

v; q
d
v ; q f

v ; q
h
v ; q

l
v; q

s
v : vAVg

,fq
e;v
i : vAV ; 0pipIanmg,fq f ; i

v : vAV ; 0pipng:

When the Turing machine starts, the internal state is q0 and all tape cells contain the blank
symbol ð&Þ: The machine guesses at most k vertices of G that represents the subset S; next, it
computes, for each vertex vAV ; the connected component of G½V � S� including v and checks that
its size doesn’t exceed ajV j:

Phase 1: guess k vertices. The Turing machine nondeterministically chooses k vertices of G (the
subset S) writing the corresponding symbols onto the tape (since there could be some duplicated
vertices, S may have less than k vertices). This is achieved by including the following instructions
in the transition table D:

/&; qi; v; qiþ1;þ1SAD guess k vertices and leave the head at the right
end

ð8iAf0;y; k � 1g;8vAVÞ

/&; qk; $; qa;þ1SAD mark the right end of the guessed vertices with a
$ symbol, then move to the right and continue
with the next phase

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685674

Phase 2: generate the connected components. For each vertex vAV � S; the Turing machine
computes the connected component of G½V � S� that includes v: In the following, assume a fixed
ordering v0; v1;y; vn�1 of the vertices of G: Internal state qa controls the loop over all vertices of
V ; from v0 to vn�1:

/&; qa; v0; q
b
v0
;�1SAD start the loop with the first vertex v0

/vi; qa; viþ1; qb
viþ1

;�1SAD ð8iAf0;y; n � 2gÞ work on vi is finished, hence start the next
iteration of the loop on viþ1

/vn�1; q
a; vn�1; qA; 0SAD work on the last vertex vn�1 is finished, hence

accept

Phase 2a: check that veS: Internal states qb
v scan the guessed vertices at the left of the $ symbol;

internal states qc
v and qd

v denote, respectively, that vAS and veS:

/$; qb
v ; $; qb

v ;�1SAD ð8vAVÞ move to the left and skip the $ symbol

/	; qb
v ;	; qb

v ;�1SAD ð8vAVÞ move to the left and skip the 	 symbol

/u; qb
v ; u; qb

v ;�1SAD ð8u; vAV ; uavÞ guessed vertex u is not equal to v; all right

/v; qb
v ; v; qc

v;þ1SAD ð8vAVÞ found v at the left of the $ symbol: record that
vAS and go back to the $ symbol

/&; qb
v ;&; qd

v ;þ1SAD ð8vAVÞ

/u; qc
v; u; qc

v;þ1SAD ð8u; vAV ; uavÞ

head at left end: record that veS and go back to
the $ symbol

/u; qd
v ; u; qd

v ;þ1SAD ð8u; vAV ; uavÞ

/	; qc
v;	; qc

v;þ1SAD ð8vAVÞ

keep moving to the right until the $ symbol is
found

/	; qd
v ;	; qd

v ;þ1SAD ð8vAVÞ while moving to the right, skip the 	 symbols

/$; qc
v; $; qa;þ1SAD ð8vAVÞ move to the right and start a new iteration of the

external loop, because vAS

/$; qd
v ; $; qe;þ1SAD ð8vAVÞ move to the right and continue with Phase 2b,

because veS

Phase 2b: generate the connected component including v: For each vertex w at the right of the $
symbol, write onto the tape the vertices in N½w� � S: We can further distinguish three sub-phases:

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 675

Phase 2bðiÞ: generate the neighborhood of w:

/w; qe;w0; q f
w ;þ1SAD ð8wAVÞ mark w as being expanded, and go to the right

end

/u; q f
w ; u; q

f
w ;þ1SAD ð8u;wAVÞ keep moving to the right until the right end is

reached

/	; q f
w ;	; q f

w ;þ1SAD ð8wAVÞ move to the right and skip the 	 symbol

/&; q f
w ; u0; q f ;1

w ;þ1SAD ð8wAVÞ write onto the tape the vertices adjacent to w;
assume that they are fu0; u1;y; umw

g; then,
continue with Phase 2b(ii)

/&; q f ; i
w ; ui; q f ; iþ1

w ;þ1SAD
ð8wAV ;8iAf1;y;mw � 1gÞ

/&; q f ;mw
w ; umw

; q g;�1SAD ð8wAVÞ

Phase 2bðiiÞ: cancel the duplicated vertices.

/w; q g;w; q g;�1SAD ð8wAVÞ

/w0; q g;w0; q g;�1SAD ð8wAVÞ

keep moving to the left until the left end is
reached

/	; q g;	; q g;�1SAD while moving to the left, skip over any $ and 	
symbol

/$; q g; $; q g;�1SAD

/&; q g;&; qh;þ1SAD head at left end: start deleting the duplicated
vertices

/v; qh; v; qh
v ;þ1SAD ð8vAVÞ start scanning the vertices at the right of v to

find duplicates of v

/v0; qh; v0; qh
v ;þ1SAD ð8vAVÞ

/u; qh
v ; u; qh

v ;þ1SAD ð8u; vAV ; uavÞ u is different than v; continue

/u0; qh
v ; u0; qh

v ;þ1SAD ð8u; vAV ; uavÞ

/v; qh
v ;	; qh

v ;þ1SAD ð8vAVÞ found a duplicate of v: delete it by writing a 	
symbol

/$; qh
v ; $; qh

v ;þ1SAD ð8vAVÞ move to the right and skip $ and 	 symbols

/	; qh
v ;	; qh

v ;þ1SAD ð8vAVÞ

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685676

/&; qh
v ;&; ql

v;�1SAD ð8vAVÞ head at right end, go left back to the vertex v

/u; ql
v; u; ql

v;�1SAD ð8u; vAV ; uavÞ keep moving to the left until v is reached, skip
over $ and 	 symbols

/u0; ql
v; u0; ql

v;�1SAD ð8u; vAV ; uavÞ
/$; ql

v; $; ql
v;�1SAD ð8vAVÞ

/	; ql
v;	; ql

v;�1SAD ð8vAVÞ

/v; ql
v; v; q

h;þ1SAD ð8vAVÞ head on vertex v; move to the right and start
removing duplicates of the next vertex

/v0; ql
v; v

0; qh;þ1SAD ð8vAVÞ

/$; qh; $; qh;þ1SAD searching for another vertex to check for
duplicates, skip $ and 	 symbols

/	; qh;	; qh;þ1SAD

/&; qh;&; qm;�1SAD head at right end, no more vertices to check for
duplicates: continue with Phase 2b(iii)

Phase 2bðiiiÞ: locate the next vertex to expand.

/w; qm;w; qm;�1SAD ð8wAVÞ keep moving to the left until the marked vertex
is found

/	; qm;	; qm;�1SAD

/v0; qm; v; qe;þ1SAD ð8vAVÞ unmark the vertex, and start expanding the next
vertex on the right (Phase 2b(i) restarts)

/	; qe;	; qe;þ1SAD skip deleted vertices (symbols)

/&; qe;&; qe;v0
0 ;�1SAD head at right end: all vertices at the right of the $

symbol have been expanded, continue with
Phase 2c

Phase 2c: compute the size of the connected component. The Turing machine hangs if there are more
than Ianm vertices on the right of the $ symbol. While counting the vertices, the Turing machine

erases the tape portion at the right of the $ symbol. The internal state q
e;v
i records both the counter

value i and the last vertex v that has been counted; the internal state qs
v writes back onto the tape the

leftmost vertex at the right of the $ symbol before generating the next connected component.

/v; q
e;u
i ;&; qe;v

iþ1;�1SAD keep moving to the left until the $ symbol is
found; record the current counter value and
the last vertex seen; skip deleted vertices
(symbols)

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 677

ð8u; vAV ;8iAf0;y;Ianm� 1gÞ
/	; q

e;u
i ;&; q

e;u
i ;�1SAD

ð8uAV ;8iAf0;y;IanmgÞ

/$; q
e;u
i ; $; qs

u;þ1SAD head on the $ symbol: write back the last wiped-
out vertex on the right of $; and continue with
the next iteration of the main loop of Phase 2

ð8uAV ;8iAf0;y;IanmgÞ
/&; qs

v; v; q
a; 0SAD ð8vAVÞ

It is straightforward to verify that the Turing machine has OðnÞ symbols, Oðn2Þ internal states,
and Oðn3Þ transitions.
Phase 1 ends after exactly k steps. Phase 2 consists of several nested loops. We iterate over the n

vertices of G: For each of these we check whether it was previously guessed (Phase 2a, OðkÞ steps),
and then we write onto the tape the vertices in its neighborhood (Phase 2b(i), OðnÞ steps). Next, we
remove the vertices belonging to S and the duplicated vertices (Phase 2b(ii), Oððm þ kÞ2Þ steps,
where m is the number of symbols at the left of the $ symbol). We select another vertex among
those at the left of $ (Phase 2b(iii), OðmÞ steps), and we continue with Phase 2b(i). Eventually, the
number of symbols written at the right of the $ symbol (including the 	 symbols) is m ¼ Oðn2Þ;
because we systematically cancel the duplicated vertices. Thus, the whole Phase 2b requires Oðn4Þ
steps. Phase 2c ends in Oðn2Þ steps. Since Phases 2a–2c are executed once for every vertex of G; the

Turing machine either hangs up or accepts in Oðn5Þ steps.
It is easy to verify that the Turing machine accepts if and only if the guessed symbols at the left

of the $ symbol represent a subset S that is an effective solution of the a-Balanced Separator
problem. &

5.2. The Maximal Irredundant Set problem

Let us show a second example of W[P]-membership result by means of a reduction to a Turing
machine computation problem. We want to place in the W-hierarchy the following parameterized
problem:

Maximal Irredundant Set

Instance: A graph G ¼ ðV ;EÞ; a positive integer k:
Parameter: k:
Question: Is there a set V 0DV of cardinality k such that (1) each vertex uAV 0 has a private

neighbor and (2) V 0 is not a proper subset of any V 00DV which also has this property? (A private

neighbor of a vertex uAV 0 is a vertex u0AN½u� (possibly u0 ¼ u) with the property that for every
vertex vAV 0 � fug; u0eN½v�:)
Maximal Irredundant Set is W[2]-hard (reduction from Dominating Set [2]); no membership

result was previously known.

Theorem 8. The Maximal Irredundant Set problem belongs to W[P].

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685678

Proof. We show a parameterized reduction from Maximal Irredundant Set to the Bounded
Nondeterminism Turing Machine Computation problem. Since the latter problem is W[P]-
complete, the reduction proves that Maximal Irredundant Set belongs to W[P].
Given a graph G ¼ ðV ;EÞ with n vertices and a positive integer k; let us construct a

nondeterministic Turing machine T ¼ ðS;Q;DÞ; where S includes the alphabet symbols

S ¼ f&; $g,fv : vAVg
and Q contains the internal states

Q ¼fqA; qR; q
IS; qa; q f ; q g; qN ; qN

0 ; qN
1 ; qY ; qY

0 ; q
Y
1 ; qY

2 ; q
Y
2 g

,fqi : 0pipk � 1g,fqe
v; q

g
v ; q

h
v : vAVg,fqb

u;z; qc
u;z; q

d
u;z : u; zAVg:

Our Turing machine operates according to the following algorithm: it guesses k distinct vertices
of G (that is, the subset V 0), and then it verifies that V 0 is an irredundant set. Later, it considers
each vertex vAV � V 0 and checks whether v,V 0 is still an irredundant set. If so, V 0 cannot be a
maximal irredundant set. On the other hand, if v,V 0 is not an irredundant set for each vertex
vAV � V 0; then V 0 is a maximal irredundant set, since if W is an irredundant set then W � fxg
remains an irredundant set.
For our convenience, we shall define a sub-routine that checks whether a given subset of

vertices is an irredundant set.
Sub-routine ‘‘check irredundant set’’. This procedure checks whether a subset of vertices given in

input is an irredundant set for the graph G: It is invoked by entering in the internal state qIS while
the head is reading a blank symbol. The subset of vertices to be checked is on the cells at the right
of the head, and it is terminated by a blank symbol. The procedure terminates leaving the tape

unchanged, and entering either the internal state qY (if the subset is an irredundant set) or the

internal state qN (if the subset is not an irredundant set).
Internal state qa checks whether the symbol under the head has a private neighbor. Internal

states qb
u;z and qc

u;z take care of checking whether zAN½u� is a private neighbor of u: Internal state

qd
u;z indicates that zAN½u� is not a private neighbor, hence the Turing machine should consider the
next element in N½u�; or enter qN if z was the last element. Internal state qe

u indicates that a private

neighbor of u was found, and therefore that the Turing machine should check the next vertex in

the subset, or enter qY if u was the last element in the subset. Internal state q f is used to move the

head to the front of the subset of vertices before entering the internal state qY :

/&; qIS;&; qa;þ1SAD move to the right and start checking the first
vertex

/u; qa; u; qb
u;z0

;�1SAD ð8uAVÞ search for a private neighbor for u; starting with
the first vertex z0 in N½u� (assume a fixed
ordering of N½u�: z0; z1;y; zl)

/v; qb
u;z; v; qb

u;z;�1SAD ð8u; vAV ; 8zAN½u�Þ go to the left end

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 679

/&; qb
u;z;&; qc

u;z;þ1SAD ð8uAV ; 8zAN½u�Þ head on the left end, start checking whether z is
a private neighbor for u

/v; qc
u;z; v; q

c
u;z;þ1SAD z is fine till now, keep checking

ð8u; vAV ; vau; 8zeN½v�Þ
/u; qc

u;z; u; q
c
u;z;þ1SAD ð8uAV ; 8zAN½u�Þ

/v; qc
u;z; v; q

d
u;z;�1SAD z is not a private neighbor, go back to the left

end to check the next vertex in N½u�
ð8u; vAV ; vau; 8zAN½v�Þ

/v; qd
u;z; v; qd

u;z;�1SAD ð8u; vAV ; 8zAN½u�Þ keep moving to the left until a blank is found

/&; qd
u;zi

;&; qc
u;ziþ1

;þ1SAD head at left end: if there is a unchecked vertex in
N½u�; check it; otherwise, terminate the sub-
routine by answering ‘‘No’’

ð8uAV ;8ziAN½u�; ialÞ
/&; qd

u;zl
;&; qN ; 0SAD ð8uAV ; zlAN½u�Þ

/&; qc
u;z;&; qe

u;�1SAD ð8uAV ; 8zAN½u�Þ head at right end: z is a private neighbor, hence
guessed vertex u is fine; go back to the vertex u
before checking the next guessed vertex

/v; qe
u; v; qe

u;�1SAD ð8u; vAV ; vauÞ keep moving to the left until vertex u is reached;
then, check the guessed vertex at the right of v

/u; qe
u; u; qa;þ1SAD ð8uAVÞ

/&; qa;&; q f ;�1SAD head at right end, no more guessed vertices to
check; go back to the left end

/u; q f ; u; q f ;�1SAD ð8uAVÞ keep moving to the left until a blank is found,
then terminate the sub-routine by answering
‘‘Yes’’

/&; q f ;&; qY ; 0SAD

It is easy to verify that, when invoked on a subset of m vertices, the sub-routine ‘‘returns’’ after

Oðnm2Þ steps.
Using the ‘‘check irredundant set’’ sub-routine, we can easily write the main program of our

Turing machine. It works in three phases: in the first phase it guesses the k-element subset of
vertices, in the second phase it checks that the guessed subset is an irredundant set, and in the
third phase it tries to augment the irredundant set by adding a vertex of G:

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685680

Phase 1: guess k different vertices of G:

/&; qi; v; qiþ1;þ1SAD guess k vertices, leaving the head on the right-
most one

ð8vAV ; 8iAf0;y; k � 2gÞ
/&; qk�1; v; q

g; 0SAD ð8vAVÞ

/v; q g; v; q g
v ;�1SAD ð8vAVÞ start checking whether the vertex v under the

head is duplicated (looking only at the vertices
at the left of v)

/w; q g
v ;w; q g

v ;�1SAD ð8v;wAV ; vawÞ keep moving to the left, rejecting if the vertex v
is found

/v; q g
v ; v; qR; 0SAD ð8vAVÞ

/&; q g
v ;&; qh

v ;þ1SAD ð8vAVÞ head at left end: no duplicates of v have been
found, go back on v

/w; qh
v ;w; qh

v ;þ1SAD ð8v;wAV ; vawÞ keep moving to the right until the vertex v is
found; then start checking for duplicates of the
vertex at the left of v

/v; qh
v ; v; q

g;�1SAD ð8vAVÞ

Phase 2: check whether the guessed vertices are an irredundant set. If the answer is negative ðqNÞ;
the Turing machine rejects (remember that all tape cells except those containing the guessed subset

are blank). Otherwise, if the answer is positive ðqY Þ; the Turing machine continues with the third
phase.

/&; q g;&; qIS; 0SAD Phase 1 ends with the head at the left of all
guessed vertices; invoke the sub-routine to check
whether they are an irredundant set

/&; qN ;&; qN
0 ;�1SAD the sub-routine answered ‘‘No’’; move to the left

to check whether it was applied to the original
subset of guessed vertices; in the affirmative
case, reject

/&; qN
0 ;&; qR; 0SAD

/&; qY ;&; qY
0 ;�1SAD the sub-routine answered ‘‘Yes’’; move to the

left to check whether it was applied to the
original subset of guessed vertices; in the
affirmative case, move to the left to leave room
for another vertex, and write a $ symbol in the

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 681

/&; qY
0 ;&; qY

1 ;�1SAD
/&; qY

1 ; $; q
Y
2 ;þ1SAD

/&; qY
2 ;&; qY

2 ;þ1SAD

tape; then go back to the blank cell at the left of
the guessed vertices, and continue with Phase 3

Phase 3: for each vertex vAV ; add v to the subset and check whether it is an irredundant set. The
Turing machine rejects whenever it finds an augmented subset that is an irredundant set; if no
augmented subsets are irredundant, the Turing machine accepts. In Phase 2 the Turing machine
has written the $ symbol at the left of the blank symbol that delimits the augmented subsets, so
that it can distinguish an augmented subset from the original subset of guessed vertices. Assume a
fixed ordering v0; v1;y; vn�1 of the vertices of G: Notice that this phase uses some instructions
introduced in Phase 2.

/&; qY
2 ; v0; q

IS;�1SAD add the first vertex v0 of G to the subset of
guessed vertices, and ask the sub-routine
whether the resulting subset is irredundant

/$; qN
0 ; $; q

N
1 ;þ1SAD

/&; qN
1 ;&; qN

1 ;þ1SAD

the sub-routine answered ‘‘No’’ and it was
applied to an augmented subset: go back to
the leftmost vertex of the subset

/vi; q
N
1 ; viþ1; q

IS;�1SAD ð8iAf0;y; n � 2gÞ replace the leftmost vertex vi of the subset with
viþ1; then check the new subset

/vn�1; qN
1 ;&; qA; 0SAD the leftmost vertex of the subset is vn�1: accept,

because no superset of the guessed vertices is
irredundant

/$; qY
0 ; $; qR; 0SAD the sub-routine answered ‘‘Yes’’, and it was

applied on an augmented subset: reject

It is straightforward to verify that the Turing machine has OðnÞ symbols, Oðn2Þ states, and Oðn3Þ
transitions; it is also easy to see that the Turing machine halts in Oðk2n2Þ steps, and that it accepts
if and only if it guesses a maximal irredundant set. &

5.3. The bounded DFA Intersection problem

As a third example of W[P]-membership result by means of a reduction to a Turing machine
computation problem, consider the following problem:

Bounded DFA Intersection
Instance: A set of k deterministic finite state automata A1;y;Ak having the same input

alphabet S; a positive integer m:

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685682

Parameter: either m; or ðk;mÞ:
Question: Is there a string XASm that is accepted by each Ai; 1pipk?
We consider two different parameterized versions of the same problem; in the first version

(Bounded DFA Intersection ðmÞ) the parameter represents the length m of the string X ; while in
the second version (Bounded DFA Intersection ðk;mÞ) the parameters are both the string length
m and the number k of automata. The first version is W[2]-hard [13], while the second version is
W[1]-hard [13]. No previous membership results are known.

Theorem 9. The Bounded DFA Intersection ðmÞ problem belongs to W[P].

Proof. We show a parameterized reduction from Bounded DFA Intersection ðmÞ to the Bounded
Nondeterminism Turing Machine Computation problem. Since the latter problem is W[P]-
complete, the reduction proves that Bounded DFA Intersection ðmÞ belongs to W[P].
Given k deterministic finite state automata A1;y;Ak with input alphabet S and a positive

integer m; let us construct a nondeterministic Turing machine T ¼ ðS0;Q;DÞ; where S includes the
alphabet symbols

S0 ¼ f&g,S

and Q contains the internal states

Q ¼fqA; qRg,fqi : 0pipm � 1g

,fqðiÞ : 1pipkg,fq
ðiÞ
j : 1pipk; qjAQAi

g;

where QAi
represents the set of internal states of Ai:

The Turing machine operates in two phases: it guesses a string of length m; and then it simulates
the executions of the automata A1;y;Ak on the guessed string, in turn. The Turing machine
accepts if and only if all deterministic automata accept the guessed string.

Phase 1: guess a string of length m:

/&; qi; s; qiþ1;�1SAD guess a string of length m; leaving the head on the leftmost

symbol, then enter the initial state q
ð1Þ
0 of the first automaton

ð8iAf0;y;m � 2g; 8sASÞ
/&; qm�1; s; q

ð1Þ
0 ; 0SAD ð8sASÞ

Phase 2: for each iAf1;y; kg; emulate Ai on the guessed string. In the following, ðqj !
s

qhÞ
represents the rule of automaton Ai that forces state qh from state qj when reading input symbol s:

/s; q
ðiÞ
j ; s; q

ðiÞ
h ;þ1SAD

ð8iAf1;y; kg;8ðqj !
s

qhÞAAiÞ keep emulating the automaton Ai

/&; q
ðiÞ
j ;&; qðiÞ;�1SAD head at the right end, go back to the left end

if the automaton Ai accepts the string

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 683

ð8iAf1;y; kg; 8qjAQAi
s:t: qj ‘‘accepts’’Þ

/s; qðiÞ; s; qðiÞ;�1SAD ð8iAf1;y; kg; 8sASÞ

/&; qðiÞ;&; q
ðiþ1Þ
0 ;þ1SAD ð8iAf1;y; k � 1gÞ head at the left end, start emulating the next

automaton Aiþ1

/&; qðkÞ;&; qA; 0SAD no more automata to emulate, therefore accept

It is easy to verify that the Turing machine T accepts if it guesses a string of length m that is
accepted by every automaton; otherwise, T hangs up while simulating the execution of a rejecting
automaton. It is also straightforward to verify that T uses m nondeterministic steps and it accepts
in OðkmÞ steps. Finally, a parameterized reduction may derive a description of the Turing machine
T from the description of the k deterministic finite state automata A1;y;Ak: &

Corollary 10. The Bounded DFA Intersection ðk;mÞ problem belongs to W[1].

Proof. Just consider the same Turing machine T described in the proof of Theorem 9. When k is a
parameter, the Turing machine halts in a parameterized number of steps. Therefore, Bounded
DFA Intersection ðk;mÞ reduces to the W[1]-complete Short Nondeterministic Turing Machine
Computation problem [4], and hence it belongs to W[1]. &

6. Conclusions

We have proposed a general method to establish membership results in the parameterized
classes W[1], W[2], and W[P]. To validate our proposal, we have established some membership
results for widely known parameterized problems: Perfect Code (in W[1]), Steiner Tree (in W[2]),
a-Balanced Separator, Maximal Irredundant Set, and Bounded DFA Intersection (in W[P]).
We have also proved that the Short Multi-tape Nondeterministic Turing Machine Computation

problem belongs to W[2]. This is the first exact characterization of the class W[2] according to the
Turing machine model: candidate solutions for problems in W[2] can be generated and verified
with a parameterized number of steps by using a unbounded number of tapes. (Recall that
problems in W[1] can be generated and verified with a parameterized number of steps by using a
constant or parameterized number of tapes.)
Finally, we have proved that the Bounded Nondeterminism Turing Machine Computation

problem is W[P]-complete. Again, this is the first exact characterization of the class W[P]
according to the Turing machine model.

Acknowledgments

We thank the anonymous referees for their helpful comments and suggestions. We are also
grateful to Stephane Demri for pointing out a mistake in a preliminary version of the paper.

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685684

References

[1] K.R. Abrahamson, R.G. Downey, M.R. Fellows, Fixed parameter tractability and completeness IV: On

completeness for W ½P� and PSPACE analogues, Ann. Pure Appl. Logic 73 (1995) 235–276.

[2] H.L. Bodlaender, B. de Fluiter, Intervalizing k-colored graphs, in: Proceedings of the 22th International

Colloquium on Automata, Languages, and Programming (ICALP’95), Lecture Notes in Computer Science,

Vol. 944, Springer, Berlin, 1995, 87–98.

[3] H.L. Bodlaender, D. Kratsch, Private communication, 1994.

[4] L. Cai, J. Chen, R.G. Downey, M.R. Fellows, The parameterized complexity of short computation and

factorization, Arch. Math. Logic 36 (4/5) (1997) 321–337.

[5] M. Cesati, Perfect Code is W ½1�-complete, Inform. Process. Lett. 81 (3) (2002) 163–168.

[6] M. Cesati, M. Di Ianni, Computation models for parameterized complexity, MLQ Math. Log. Q 43 (1997)

179–202.

[7] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness II: On completeness for W ½1�;
Theoret. Comput. Sci. 141 (1995) 109–131.

[8] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness I: basic results, SIAM J. Comput. 24

(1995) 873–921.

[9] R.G. Downey, M.R. Fellows, Threshold dominating sets and an improved characterization of W ½2�; Theoret.
Comput. Sci. 209 (1998) 123–140.

[10] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, New York, 1999.

[11] R.G. Downey, M.R. Fellows, B. Kapron, M.T. Hallett, H.T. Wareham, Parameterized complexity of some

problems in logic and linguistics (Extended Abstract), in: Proceedings of Second Workshop on Structural

Complexity and Recursion-theoretic Methods in Logic Programming, Lecture Notes in Computer Science,

Vol. 813, Springer, Berlin, 1994, pp. 89–101.

[12] S. Dreyfus, R. Wagner, The Steiner problem in graphs, Networks 1 (1971) 195–207.

[13] H.T. Wareham, The parameterized complexity of intersection and composition operations on sets of finite-state

automata, in: Proceedings of the Fifth International Conference on Implementation and Application of Automata,

Lecture Notes in Computer Science, Vol. 2088, Springer, Berlin, 2000, 302–310.

ARTICLE IN PRESS

M. Cesati / Journal of Computer and System Sciences 67 (2003) 654–685 685

	The Turing way to parameterized complexity
	Introduction
	Parameterized computational complexity
	Membership in W[1]
	Analog of Cook’s Theorem Cai et™al. [4], Downey et™al. [11]
	The Perfect Code problem

	Membership in W[2]
	The Steiner Tree problem

	Membership in W[P]
	The alpha-Balanced Separator problem
	The Maximal Irredundant Set problem
	The bounded DFA Intersection problem

	Conclusions
	Acknowledgements
	References

