
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 8, 366- -386 (1974)

Fast Modular Transforms*

A. BORODIN

Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 1A7 Canada

AND

R. MOENCK

Department of Applied Analysis and Computer Science, University of Waterloo,
Waterloo, Ontario, N2L-3G1 Canada

Received February 12, 1973

It is shown that if division and multiplication in a Euclidean domain can be performed
in O(N log ~ N) steps, then the residues of an N precision element in the domain can
be computed in O(N log a+l N) steps. A special case of this result is that the residues of
an N precision integer can be computed in O(N logS N log log N) total operations.
Using a polynomial division algorithm due to Strassen [24], it is shown that a poly-
nomial of degree N -- 1 can be evaluated at N points in O(N log 2 N) total operations
or O(N log N) multiplications.

Using the methods of Horowitz [10] and Heindel [9], it is shown that if division
and multiplication in a Euclidean domain can be performed in O(N log ~ N) steps,
then the Chinese Remainder Algorithm (CRA) can be performed in O(Nlog ~+x N)
steps. Special cases are: (a) the integer CRA can be performed in O(N log S N log log N)
total operations, and (b) a polynomial of degree N - 1 can be interpolated in
O(N log 2 N) total operations or O(Nlog N) multiplications. Using these results, it
is shown that a polynomial of degree N and all its derivatives can be evaluated at
a point in O(N log s N) total operations.

1. INTRODUCTION

Many of the efficient algorithms which have recently been developed for polynomial
and number theoretic operations fall into a class which may be described as homomor-
phism algorithms. These algorithms operate on sampled values (homomorphic
images) of their variables. The general form of a homomorphism algorithm can be
represented schematically as

Ya
A , A'

~ l
fB

B , B '

* This research was supported by NRC Grants Nos. A-5549, A-7631, A-7641.

366
Copyright �9 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.

FAST MODULAR TRANSFORMS 367

where A and A' are the inputs and results, respectively, of performing the operation
fA on the original problem. B, B', andfn are the inputs, results, and operation for the
sampled problem, respectively. The functions q~ and ~' are used to map in and out
of the sampled solution space. Analysis has shown that it is frequently better to
compute A' by way of B, fB, and B', rather than directly usingfA. Examples of such
algorithms applied to linear equations, polynomial GCD's, and resultants are given
by Cabay [4], Brown [3], and Collins [5], respectively.

In the polynomial and number theoretic cases (and indeed, for general Euclidean
domains), the modular homomorphisms are the ones most frequently used. For a
Euclidean domain D, the operation fB corresponds to computing modulo some
element in the domain. In the number theoretic case, a convenient integer (frequently
a prime) is used as the modulus. The polynomial case is computed modulo a poly-
nomial (frequently a linear polynomial).

It is apparent that the transformations ~ and q~' are critical links in such algorithms.
It is these transformations which we shall investigate with a view to looking for fast
algorithms. (Hence the title.) The transformation q~ corresponds to computing the
residues of an element of the domain with respect to several moduli. ~' involves
computing the Chinese Remainder Algorithm (i.e., interpolating) in the domain.

In the polynomial case, the transforms correspond to evaluating a polynomial at
many points (for linear moduli) and interpolating a polynomial given the values at
sufficiently many points. These transforms could be performed by the Fast Fourier
Transform (FFT) (of. Pollard [19]). However, in some algorithms, situations occur
where certain sample values must be discarded (of. Brown [3] and Collins [5]). This
implies that the FFT cannot be easily used, since it depends on a strict relationship
between the sample points. This leaves us with the interpolation problem and its dual
the problem of evaluation at many points. In any case, the general problems of evalua-
tion and interpolation are interesting in their own right.

The analogue of the interpolation problem in the number theoretic (integer) case is
the integer Chinese Remainder Algorithm (CRA). Here we are given a set of residues
corresponding to a set of moduli. The problem is to compute the unique integer with
the same set of residues. The dual problem is to compute the residues of an integer
with respect to a set of moduli. Lipson [12] shows that interpolation and the CRA are
abstractly equivalent to the CRA for a Euclidean domain and gives a thorough exposi-
tion of the classical algorithms for these problems.

Classically, all these algorithms require O(N 2) steps, i.e., to interpolate or evaluate
a polynomial of degree N - 1, or perform the CRA for an N precision integer all
require O(N 2) steps. The question is whether this can be improved to something
of the order of the FFT (i.e., O(N log N) steps). Intuition (perhaps) indicates that
these algorithms cannot be improved upon. However, intuition is often wrong as
shown by Fourier polynomial multiplication (el. Pollard [17]) or the Schoenhage-
Strassen integer multiplication [19].

368 BORODIN AND MOENCK

Horowitz and Heindel [9] in investigating this question have produced an integer
CRA which works in O(N log s N log log N) steps as a preconditioned algorithm and
O(N log 3 N log log N) in its complete version. Borodin and Munro [7] have shown
that many point polynomial evaluation can be performed in O(N 1"91) steps using
Strassen's matrix multiplication algorithm assuming noniterative computation, but
would require O(N 2) iteratively. Horowitz [10] has given a preconditioned polynomial
interpolation algorithm which operates in O(N log 3 N).

Subsequent to our original report [14], Strassen [24] has developed an improved
algorithm for polynomial division and, more important, proved a number of significant
lower bounds. As a result of Strassen's work, we can now say that the multiplicative
complexity of the algorithms presented here is within an order of magnitude of
optimality.

We must make the disclaimer that the algorithms presented here are not presently
of practical usefulness. Their importance lies in being a theoretical background for the
development of practical methods.

2. SOME REMARKS ON FAST ALGORITHMS

Since we are going to be looking for fast (i.e., O(N log a N)) algorithms, we should
first look at the form of such algorithms in order to discover common features and the
sort of properties such algorithms could exhibit.

One common property of many such algorithms is that they solve a problem by
dividing it into two simpler problems, each of which is half as difficult as the original
problem. This "Divide and Rule" formulation implies that the timing function of the
algorithm is defined by a recurrence relation of the form

T(N) = 2 • T(N/2) + f(N),

where f(N) is n o t too large. In fact, if f(N) = O(N log a N), then T(N) =
O(N log a+l N). This follows from expanding the recurrence relation:

T(N) = 2" T(N/2) + O(X log ~ N)

= 2(2T(N/4) + O(N/2 log ~ N/2)) + O(N log ~ N)

= 4T(N/4) + O(X log a X/2) + O(N log ~ N)
/ 1OgN \

= NT(1) + OIN ~ i a} = O(Nlog~+lN).
\ i=0 /

Divide and Rule algorithms also tend to be easily expressed recursively. Good
examples of such algorithms are Merge Sorting and the Fast Fourier Transform.

Another property of fast algorithms which depends on certain critical subroutines
is that the eff• of the subroutine is optimized by correct choice of the size of the

FAST MODULAR TRANSFORMS 369

inputs. For example, if the critical subroutine is a multiplication algorithm, then the
size of the inputs must be approximately the same in order to maximize the efficiency
of the algorithm. This follows from the fact that both classical and any fast multiplica-
tion algorithm require N operations to multiply an N precision element by a single
precision element. Examples of the balanced precision multiplication are seen in
Schoenhage [21] and Horowitz and Heindel [9]. In fact, Horowitz and Heindel show
that the classical algorithm for the CRA is not improved by using fast multiplication.
(For another discussion on general techniques used in fast algorithms, see Moenck [15].)

3. SOME BACKGROUND

In order to emphasize the generality of the algorithms presented here, we shall
define a common precision function for the integer and polynomial eases:

prec(U) = t deg(U) %- 1 if U is a polynomial,
flogs(U) if U is an integer.

We shall analyze the polynomial form of the algorithms from two points of view.
First, we shall count all arithmetic operations in an attempt to get a meaningful
measure of the practical running time of the algorithms on a computer. Second, we
will use a notion of complexity proposed by Ostrowski [17] and also used by Winograd
[25], Hopcroft and Kerr [8], and Strassen [24]. This measure counts only the number
of multiplications and divisions necessary to compute the function. Arbitrary linear
combinations of partial results and multiplications by scalars are not counted.

As an example of the use of these two measures, we will consider the multiplication
of two polynomials of degrees n and m, using Fourier multiplication. In the following
analysis and throughout the rest of the paper, the algorithms presented will work for
all N. However, in order to ease the analysis, we shall assume N = 2 k, for some k ~ N.
This may mean that the constants of proportionality in the timing functions may be
in error for general N. However, they will be "out" by a factor of at most 2. We shall
use the notation ldt to mean lower degree terms. Thus, in the practical model, the
polynomial multiplication involves

Operation

(1) two forward Fourier transforms
(2) multiplication of the sequences
(3) and one inverse tranformation

No. of arithmetic Steps 1

2(N %- 3/2N log N) %- ldt
N

2N %- 3/2N log N %- ldt

for a total of 9/2N log N %- 5N + ldt
where N = m %- n

1 Arithmetic steps will be the number of {+ , -- , , , +} operations from the field over which
the polynomials are distributed.

370 BORODIN AND MOENCK

In the Ostrowski model, arbitrary linear combinations of variables are allowed for
free. This means that the Fourier transforms, which can be thought of as a sequence of
linear combinations of the coefficients, can be performed at no cost. Thus, multiplica-
tion of two polynomials of degree n and m can be performed in the N multiplications
required by step 2. Moreover, if we counted all multiplications, we could choose to
perform the Fourier transform in a finite field and simulate integer multiplication by
repeated additions (see, for example, Fiduccia [6]). This method also leads to an
O(N) multiplications algorithm.

We shall not analyze the integer form of the algorithms in the same detail, since
we do not know the constants of proportionality involved for fast integer multiplication.
Instead, we shall use the big-O notation and assume that integer multiplication can be
performed in O(N log N log log N) steps using the Schoenhage-Strassen algorithm
[20]. However, Lipson [13] has pointed out that for practical purposes, there is an
O(N log N) algorithm performing integer multiplication for all N of conceivable
interest.

4. FAST MODULAR FORMS

As remarked above, classically the evaluation of a polynomial of degree N - 1
at N points requires O(N 2) operations. This is performed by doing N evaluations of the
polynomial at one point. A similar bound holds for the computation of the N single
precision residues of an N precision integer.

Evaluating a polynomial at one point can be considered as a division process (cf.
Knuth [11, pp. 424]). This is a result of the remainder theorem, i.e., given a polynomial
p(x), if we divide by x -- a we get

p(x) = q(x)* (x -- a) + r(x), (4.1)

where deg(r) = 0 (i.e., a constant). Putting x = a in (4.1), we get that p(a) = r"
Homer's Rule and the process of synthetic division as used by the numerical analysts
are directly related to this method.

The remainder theorem suggests a generalization to more points. If we wish to
evaluate p(x) at m points xi, we form

M(x) = ~-I (x -- xi) (4.2)
i= l

and divide p(x) by M(x) to get

p(x) = M(x)* q(x) + r(x),

where deg(r) < deg(M). Then at the points x = x i we have

p(x~) = r(x~),

FAST MODULAR TRANSFORMS 371

and assuming deg(M) < deg(p), we have reduced the problem to a simpler one. In
the more general framework of a Euclidean domain with P = Q M + R,

P mod m i ----- R rood m i

whenever m~l M. Fiduccia [7] uses this approach in discussing one way of under-
standing the F F T .

Taking note of our remarks on fast algorithms, a method for evaluating a polynomial
of degree N - - 1 at N points suggests itself. First, we form a polynomial Mt(x) with
the first N/2 points {xi} as in (4.2) above and M2(x) from the remaining N/2 points.
We divide p(x) by Ml(x) to get Rl(x), and we obtain R2(x) in the same manner. This
gives us two polynomials of degree N/2 - - 1, each of which is to be evaluated at N/2
points. To do this, we use the method recursively, which gives us a Divide and Rule
algorithm. For example, to evaluate p(x) = x 3 - - 3x + 5 at x = - - 1, 1, 2, 3, we form

g~(x) = (x + l) (x - - 1) = x 2 - 1 ,

M~(x) = (x - - 2)(x - - 3) = x 2 - - 5x + 6.

Dividing p(x) by Mx(x) and M2(x) we get

R 1 = - 2 x + 5 , R 2 = 1 6 x - - 2 5 .

Dividing R 1 by (x + 1) and (x - - 1) we get from the remainders that

p (- -1) = 7, p(1) = 3.

Dividing R 2 by (x - - 2) and (x - - 3) we get that

p(2) = 7 , p(3) = 2 3 ,

which can be easily verified.

5. THE ALGORITHM

In order to discuss the problem further in the general setting, we shall make the
following characterization of the problem. In a Euclidean domain D, we are given a set
of N moduli {mi} ~ D and an element U ~ D for which we wish to compute the set of
residues ui ~ D such that

ui -~ U mod mi , 1 ~ i ~ N.

For polynomials,

U = p(x) ~F[x], mi = (x - - xi), and ui = p(xi).

372 BORODIN AND MOENCK

For integers,
U e Z, mi e Z, u i e Z/(mi). 2

In the previous section, we reduced the evaluation problem to the problem of
division in the domain. In fact, we can formalize our development in

THEOREM 1. Given N moduli m i e D and U e D where prec(U) = N, if multiplica-
tion and division of N precision elements can be performed in O(N log a N) operations, then
the N residues {ui} , of U, with respect to {mi} can be computed in O(N log a+l N) steps,
where a >~ O.

Proof. We shall give a constructive proof in the form of an algorithm to perform
the computation. However, first we need an algorithm to build up the moduli M i as
required in (4.2). We shall state this in the form

LEMMA. Under the assumptions of Theorem 1, the moduli M i may be built up in a
total of O (N log a+l N) operations.

Proof. Taking note of our remarks on fast algorithms, we shall try to balance the
precision of the multiplication. It follows then that a binary treelike process as
illustrated below will be fast. Assuming N ---- 2 n, we have

moduli: m 1 , m 2 , m 3 , m 4 ,..., mN_ 1 , m N

\ / \ / \ /
level 1 : ml*m ~ , ma*m 4 m2v_xmN

level 2: (mlm~)*(mam4)

N/2 N

l e v e l n - - l : 1-I mi , YI mi
i=l i=N/2+l

\ /
N

level n: I-I mi"
i = l

A simple iterative algorithm (which we shall call construct moduli) can be produced
to implement this scheme. We shall not give any further details since the necessary
subscripting would only obscure the binary treelike structure of the scheme.

We shall call the products
k

M~k =]--[m i (5.1)
i= j

Z/(mi) is the ring of integers modulo m~.

FAST MODULAR TRANSFORMS 373

formed in this manner "supermoduli". Let CM(N) be the time to compute construct
moduli for N moduli; this is specified by the recurrence relation:

CM(N) = 2CM(N/2) -}- M(N)

= 2CM(N/2) + O(N log a N).

By the remarks of Section 2, CM(N) = O(N log a+l N).
In the polynomial case, we can be more detailed in our analysis. If we let N = 2 n,

then at thej-th level of the scheme we form 2n/2 ~ products of degree 2 5, for 0 ~<j ~< n.
Thus, the total cost is

CM(2 n) = ~ U(2J)2~/2 j
j=0

= 2 ~ ~ (9/2" 2~j § 5- 2~ + ldt)/2J
j=0

= 5" 2nn + (9/2). 2 n "(n(n + I)/2) + ldt
-- 3" 2"n 2 -}- (9/2)-2"n + ldt, (5.2)

and therefore
CM(N) = (9/4)N log 2 N + (29/4)N log N + ldt.

For the Ostrowski measure of computation we have

CM(2 n) = ~ m(2J) 2'~/2 .4 = 2"n
.4=0

and
CM(N) = N log N. (5.3)

The coefficients of Mx,lv can be thought of as the elementary symmetric functions
{aj(x 1 XN), 1 <~j <~ N} of the roots {xi} of the moduli (x - xi). Strassen [23]
shows that a lower bound for the multiplicative complexity for this computation is
N log (N/e). Thus, it follows that the complexity of computing the supermoduli is
N log (N/e) which is met by the construct-moduli algorithm, to within an additive
term. Note that for the integer case, this algorithm requires O(N log 2 N log log N)
steps.

Now that we have the moduli, we can state the following recursive algorithm for
computing the residues.

ALGORITHM. Modular Form (U, j, k).

Input: (1) the requisite supermoduli Mjk ,

(2) the element U where pree(U) ~< k -- j + 1.

Output: the residues ui ~ U mod mi , j ~ i ~ k.

374 BORODIN AND MOENCK

Step
(1) Basis: l f j = k, then begin

output (U);
return;

end;

(2) Division: e: = [(j + k - - 1)/2J; f : = e + 1;
R I : = U r e m M ~ ;
R 2 : - - UremM1~;

Recursion: Call Modular Form (Rt , j, e);
Call Modular Form (R2 , f, k);

(3)

(4) Return:

The algorithm is invoked as Modular Form (U, 1, N).

For the analysis of the timing of the algorithm, let E(N) be the time to compute the
N residues of an N precision element. If we assume that division with remainder
requires R(N) = O(N log a N) steps, then E(N) is defined by

E(N) = 2E(N/2) + 2R(N)
= 2E(N/2) + 20(N log a g) ,

and so E(N) = O(N log ~+1 N) by the results of Section 2. Thus, the two steps of the
evaluation algorithm require O(N log ~+1 N), establishing the theorem.

As a special case we have

COROLLARY]. The N residues of an N precision integer with respect to N single
precision moduli can be computed in O(N log s N log log N) steps.

Proof. The algorithms given in Theorem 1 are easily carried over into the integer
setting, since integer division can be defined as

P = M * Q + R , O < ~ R ~ M .
If mi] M,

P mod mi ---- R mod mi,

but R will be sufficiently smaller than P, and therefore the algorithm follows.
For the necessary division, Knuth ([11, pp. 275]) gives a method due to Cook for

fast division of integers which has the same bound as the fast multiplication of integers,
i.e., O(N log N log log N). This gives a bound for both of the algorithms used in
Theorem 1 of O(N log ~ N log log N).

6. FAST POLYNOMIAL DIVISION

The above algorithm requires a fast algorithm for dividing polynomials in order to
be effective in the polynomial setting. The division

U(x) = V(x)* Q(x) + R(x), (6.1)

FAST MODULAR TRANSFORMS 375

where deg(U) = N, deg(V) = K, deg(R) < K, deg(Q) = N -- K, classically requires
2K(N -- K + 1) steps which in the worst case K = N/2 is O(An). However, we are
looking for an algorithm with a bound of the form O(N log ~ N). Without loss of
generality, the method can be to compute the quotient separately, then the remainder
R(x) can be obtained in one multiplication and one subtraction.

The observations on fast algorithms indicate that one approach could be to segment
the problem into two simpler problems; namely, by computing the quotient in two
parts.

This divison algorithm would give rise to a polynomial evaluation algorithm of
order O(N log 3 N) (as is shown in [14]). However, Strassen [24] has shown that the
remainder of a polynomial of degree N divided by a polynomial of degree N/2 can be
performed in (9/2) M(N) + N steps 3 (see Corollary 2). This algorithm uses another
algorithm due to Seiveking [23] which computes the power series division for two
power series of degree K in 7M(K) steps. Therefore,

R(N) = (9/2) M(N) q- N total operation

= (81/4)N log N q- (47/2)N,

or using the Ostrowski measure, R(N) = (9/2)N. Now we can make a more detailed
analysis of the Modular-Forms algorithm in order to determine the constants involved.
Let E(N) be the time to evaluate a polynomial of degree N -- 1 at N points. Then
expanding as before,

E(N) = 20�88 log 2 N + 67�88 log N + ldt.

If we include the time for construct moduli, the total time for the evaluation is

Exo t (N) = 22�89 log 2 N + 74�89 log N + ldt

= O(N log 2 N).

We can also analyze the time for evaluation under the Ostrowski model:

E(2 ~) = 9 " 2 ~ ' n = 9 N l o g N .

This leads us to

COROLLARY 2. A polynomial of degree N -- 1 can be evaluated at N distinct points
in 22(1/2)N log 2 N + O(N log N) total arithmetic steps and 10N log N multiplications.

a Kung independently developed an O(NlogN) algorithm for "preconditioned" division
and the associated results of Corollary 2 and Theorem 4. Schoenhage also independently exhibited
in O(N log N) polynomial division algorithm, and a more abstract development for fast division
in a Euclidean domain and can be found in Moenck [15].

376 BORODIN AND MOENCK

Strassen [24] shows that the number of multiplications required for the many
point evaluation of a general Nth degree polynomial is N log N. From this, it follows
that the Modular-Form algorithm comes within an order of magnitude of the multi-
plicative bound for the process. In particular, the multipoint evaluation of the special
polynomial x N requires N log (N/e) multiplications. While the factor algorithm (cf.
Brauer [2] or Knuth [11, pp. 398-418]) applied N times is optimal to within an
additive term, the Modular-Forms algorithm comes within a constant multiple of the
multiplicative bound.

Throughout the presentation, we have assumed that the polynomial moduli are
linear, i.e., we are evaluating polynomials. Obviously, the same algorithms will work
successfully and just as "efficiently" for higher-order moduli.

7. FAST INTERPOLATION

This is the inverse operation of computing the Modular Forms as given in the
previous sections. As mentioned in the Introduction, interpolation of a polynomial is
a special case of the CRA over a Euclidean domain D. In our generalized framework,
we can characterize the problem as follows:

Given N single precision moduli {mi} and N residues, we wish to compute the unique
U e D such that

U ~ u i mod mi, 0 ~ prec(U) ~ N.

Thus, when we say fast interpolation, we shall in fact mean a fast CRA for a Euclidean
domain which has a fast multiplication algorithm.

The classical Lagrangian and Newtonian algorithms for polynomial interpolation
and the CRA require O(N ~) operations (cf. Lipson [12]). Horowitz and Heindel [9]
have given a method for computing the integer CRA which has a bound of
O(N log ~ N log log N) as a preconditioned algorithm and O(N log z N log log N) as a
complete algorithm.

Horowitz [10] has given a preconditioned polynomial interpolation algorithm which
requires O(N log 3 N) steps. Horowitz also demonstrated that the approach to speeding
the interpolation up is to appropriately factor the interpolation formula. Using a
somewhat different factoring, we will now synthesize a general interpolation algorithm.

We shall start with the familiar version of the Lagrangian Interpolation Formula:

N

U(x) = Y (8.1)
k=l

FAST MODULAR TRANSFORMS 377

where Lk are the Lagrangian interpolating polynomials:

I f we set

L~ = [I (x - - xi x~ - - x, .
i=1
iCk i~:k

N

a k = 1/i~=l= (x ~ - - x i) '

then we can rewrite (8.1) as

U (x) = uka k (x - - x i) �9
k=l

i#/c

Examining the terms in the summation as the subscript runs from k ---- 1 to N, we
see that most of the polynomial terms are duplicated. Taking note of our remarks on
fast algorithms, we are looking for a Divide and Rule method which uses balanced
precision multiplication. The necessary simplification is to separate the summation into
two parts each of length N/2 and factor out all of the common polynomial terms from
each part, i.e.,

V(x) _ - x,)p, E FI (x - x,)
i= +I / kk=l k i=1

/ \ k = N / 2 + l \ i = N / 2 + l
ir

I f N = 2 n, then the formula now involves two "interpolations" with 2 n-1 terms
and two polynomial multiplications of balanced degree and one addition. This gives
us the essentials of a recursive algorithm.

In the more general context of Euclidean domains (cf. Lipson [12]), the Lagrangian
formula for the moduli mi and residues ui is

where the Lagrangian Lk is

N

U = ~ u~Lk, (8.3)
k=l

L k ---- m siklm ,

378 BORODIN AND MOENCK

and the sik are the inverses of the moduli mi with respect to mk, i.e.,

siam i ~ - - - 1 mod ink.

Here we make the substitution

a k = s~ mod m k ,

and we would write the analogue of (8.2) as

IN~2 [N/2 \ \

U = 1141" / E ukak~ IJ mi~}
\ k = l \ i=l / I

+ M s * U m, ,
k= +1

i c k

where
N N/2

tffiN/2+1 t - 1

(8.4)

Note that these powers of moduli are none other than the supermoduli computed in
Section 5.

8. PRECONDITIONED INTERPOLATION

The foregoing analysis leads us to the conclusion that preconditioned polynomial
interpolation is "reducible" to polynomial multiplication (in the same sense that
polynomial evaluation is reducible to polynomial division).

THEOREM 3. I f multiplication in the domain can be performed in O(N log a N) steps,
and the constants ak can be preconditioned, then the generalized CRA from an N precision
element can be performed in O(N log a+l N) steps.

Proof. We can use the following algorithm for the process.

ALGORITHM: I n t o ' p (ui , e ~ i ~ f) .

Input: (1) the residues ui , e ~ i ~ f , to be interpolated,

(2) the constants ak ,

(3) the supermoduli Mj~ 1-Ii=j m i �9

Output: the interpolated value of U.

FAST MODULAR TRANSFORMS

Step

(1)

(2)

(3)

Basis: I f e = fi then return (u,a,);

Recursion: k: = [(e + f - - 1)/2];

j: = k + l ;

U 1 : = Interp (ui, e <~ i <~ k);

U 2 : = Interp (ui , j ~ i <~f);

Multiplication: Return (UI* Mjf + U2*M,k);

The algorithm will be invoked as Interp (ui, 1 ~ i ~ N).

Let I(N) be the time to interpolate N values; then

I(N) =- 2I(N/2) + M(N)

-~ 2I(N/2) + O(N log a N)

--- O(N log a+l N)

by the results of Section 2, and the theorem is established.

379

9. COMPUTING THE a k

In order to have a complete interpolation algorithm, we need to be able to compute
the constants ak. We first look at the polynomial domain which affords a certain
simplification.

In the previous section, we made the substitution

In a more familiar form,

i # k

a~ = IlM~N(X) I~=~k, (10.1)

N !
where MIN(X) = •i=i (x -- xi) and M;N(X) is its derivative. Ml~i(x) is a by product
of the construct-moduli algorithm which must be invoked to do the evaluation of
(10.1). This reduces the general interpolation problem for a polynomial to the evalua-
tion problem. This means we can state

TH~Om~M 4. The interpolation of a polynomial of degree N -- 1 at N points can be
performed in 36N log S N + O(N log S N) total steps or 12N log N + N multiplications.

380 BORODIN AND MOENCK

Proof. Using the results of Theorem 3, we have that the preconditioned inter-
polation can be performed in

Assuming N = 2 n,

I (N) = 2I(N/2) + 2M(N).

I (N) ---- 4�89 log s N + 15�89 log N + ldt.

From Theorem 2, we have that a polynomial can be evaluated in 22(1/2)Nlog2N
-}- 74(1/2)N log N steps. Since the evaluation will supply the supermoduli required
by the Interp algorithm, the total is

/tot (N) = 27N log s N -}- 90N log N + ldt.

Within the Ostrowski model of computation, we see from Theorem 3 that the time
to interpolate a preconditioned polynomial is

I (N) = 2I(N/2) + 2M(N)

~- 2N log N + N.

Using the results of Section 8, the total time to interpolate a polynomial of degree
N - - l i s

Itot (N) = 12N log N + N.

Strassen [24] shows that interpolation has a lower bound of (N + 1) log N multiplica-
tions for its complexity within the Ostrowski model. This means that the multiplieative
complexity of interpolation is of the order of magnitude of N log N.

In the integer ease or in the more general setting of a Euclidean domain D, we have
that

a k ~ - $ik mod mk,

i~k

where
1 ~ (sikmi) mod m k . (10.2)

We note that ak is a single precision element of D and from congruence properties
we have that

1 = ms s~ mod mk

by commutativity of (10.2). This implies that there exists a bk in a coset of the ideal
(ink) such that

1 ~ bka k mod ink, (10.3)

FAST MODULAR TRANSFORMS 381

where

i=1
ir

Therefore, ak is a unit in the ring Z,% = Z/(mk). We can compute the {ak} from the
{bk} using the standard extended Euclidean algorithm. Since each mk and b~ are single
precision, each computation only requires a constant number of operations or O(N)
operations to compute all the {ak) from the {b~). From the eonstruct-moduli algorithm,
we get

N

M1N = ~ mi .
i=1

Since the moduli m i must be pairwise relatively prime M l n lies in the ideal (m~)
but not in (m~2). Since if

mi = d " mk + bk ,

we have that

Maw = d" m~ 2 + bkmk ,

and so b~mk ~ MIN rood mk 2.
If we can compute

then

and

c k ~- Mln mod mk ~,

b~ = ck/mk dividing exactly

as = b; 1 = (ck/mk) -a.

Therefore, we can compute the constants as from the ck in O(N) steps using exact
division and the ck can be computed using the modular-forms algorithm in O (N log ~ N
log log N) double precision steps. We have reduced the interpolation problem in the
general setting to the evaluation problem. This gives us

THEOREM 5.
total steps.

and

The complete integer CRA can be computed in O (N log ~ N log log N)

57x/8/3-8

382 BORODIN AND MOENCK

THEOREM 6. I f division R(N) and multiplication M(N) in the Euclidean domain D
can be performed in O(N log a N) steps, then the complete CRA in D can be performed in
O(N log a+l N) total steps.

Again in the sections on interpolation we have focused our attention on linear
moduli for the polynomial case. This is because they are the most frequently
encountered forms. As before, the algorithms operate with equal facility on moduli
of higher degree.

I0. EVALUATING A POLYNOMIAL AND ALL ITS DERIVATIVES

One further problem which can be "efficiently" solved using these algorithms
is that of evaluating a polynomial and all its derivatives at a point. Shaw and
Traub [22] have shown that this can be done for a polynomial of degree N in O(N)
multiplications. Since we know that just the evaluation of the polynomial requires N
multiplications (cf. Pan [18]), this method is asymptotically optimal. However, their
algorithm requires O(N 2) additions. The following method can be used to evaluate a
polynomial and all its normalized derivatives in O(N log 2 N) total operations. Yet
it should be noted that their method is reasonably practical whereas ours is not
practical.

First, we note that a polynomial of degree N can be defined by its Taylor series
about a point x = a, i.e., about a point x = a, i.e.,

h h2 h N
p(a + h) = p(a) + p'(a) + -~.p"(a) + "" +~..p~m(a). (11.1)

So we can evaluate the polynomial p(x) at N + 1 points {a + h~} for distinct {h~}
to obtain the values {p(a + hi)}. The series in (11.1) can now be regarded as a poly-
nomial in h, and we can compute that polynomial which interpolates the pairs of values
(p(a + h~), hi). The coefficients of this polynomial will then be the values of the
polynomial and all its normalised derivatives at the point x = a, i.e.,

p'(a) p"(a) p~m(a)

p(a), 1! ' 2! ' " " N!

This gives us the following:

THEOREM 7. The values of a polynomial of degree N and all its normalized derivatives
at a point can all be computed in O(N log 2 N) total steps.

Proof. The evaluation and interpolation each require O(N log 2 N) total steps.

FAST MODULAR TRANSFORMS 383

I I . CONCLUSION AND OPEN QUESTIONS

We should say that while the algorithms which have been presented are for the
moment more of theoretical interest, they may not be hopelessly beyond the bounds of
practicality. In our analysis of the polynomial algorithms, we made assumptions
about the time to do polynomial multiplication. The constants of proportionality
involved in the multiplication and division have a considerable impact on the constants
for the new algorithms. Thus, if any improvement could be made to the multiplication
or division algorithms, it would also affect the others.

In our reckoning of the time for the algorithms, we counted only the arithmetic
operations and excluded any implementation-dependent operations such as storage
accesses. Obviously, in the real world, such things have a substantial effect on the
constants of proportionality, but it may not be too unreasonable to assume that they
affect all methods equally. Also, for any practical implementation, the algorithms

would have to be recast from their recursive to an iterative format.
Table I shows the prohibitively high cross-over points for the timing functions of

the classical versus the new algorithms. While the table does not give the exact cross-
over, experimental results have been obtained which tend to confirm the table entries.

TABLE I"

Timing functions in N
te rmsofN 256 = 2 s 512 = 2' 1 0 2 4 ~ 2 l~ 2 0 4 8 = 2 u 4096 = 212

Classical polynomial
division: N/2 128 250

Fast polynomial division:
202 log N + 67�88 230 250

Classical many-point evaluation
and interpolation: 2N 512 1024 2048 4096 8192

Fast preconditioned
interpolation:
4�89 log 2 N + 15�89 log N 268

Fast many-point evaluation:
22~ log a N + 74�89 log N 2995 3542

Fast interpolation:
27 log I N + 90 log N 4257 4968

~ In order to simplify the table, only those powers of 2 above and below the cross-over have
been filled in. In order to avoid numbers too large, N has been factored out of all of the timing
functions. The prefix "fast" means assmyptotieally fast.

384 BORODIN AND MOENCK

We should also note the theoretically interesting open problems in the area. The
fundamental theoretical problem has to do with the discrepancy of the log factor
between the multiplicative and total arithmetic complexity of the algorithms. It would
seem that computing the Fourier transform of length 2N given the transform of length
N of a sequence of length N is a fairly easy operation to perform. It would not appear
unreasonable to conjecture that this process which we call "transform doubling"
could be performed in O(N) arithmetic operations. If this were true then, the pre-
conditioned Interp algorithm and the construct-moduli algorithm could be performed
in O(N log N) total arithmetic operations.

In addition, it would seem possible that division with remainder might be performed
on polynomials in transformed form in O(N) arithmetic operations, much in the way
multiplication is presently done. This together with the conjecture on transform
doubling would imply that the complete Modular-Form and Interp algorithms could
be performed in O(N log N) total arithmetic operations.

On the other hand, we have Morgenstern's [16] result that the FFT considered as a
"linear algorithm with bounded scalars" requires N log (N/e) additions or sub-
tractions. It would be remarkable if multipoint evaluation of N arbitrary points could
be done in the same order of magnitude of time as evaluation at the very special set
of points, the primitive roots of unity.

A practical open problem is to reduce the constants of proportionality for polynomial
multiplication and division and thus for all of the algorithms, as described above.

As a final summary, we can state the results of this paper for the polynomial domain
in terms of reducibilities. We shall say a process is directly reducible to another process
if the former process can be computed using the latter in the same order of magnitude
of time. We shall say a process is log reducible to another process if it is a log factor
slower than another process it uses. Then we have:

(1) Evaluating a polynomial and all its derivatives is directly reducible to inter-
polation and many-point polynomial evaluation.

(2) Polynomial interpolation is directly reducible to many-point polynomial
evaluation and preconditioned polynomial interpolation.

(3) Preconditioned polynomial interpolation is log reducible to polynomial
multiplication.

(4) Many-point polynomial evaluation is log reducible to polynomial division.

(5) Polynomial division is directly reducible to polynomial multiplication (Strassen
[24]).

Analogous results hold for general Euclidean domains.
Specifically, using Strassen's O(N log N) division, a polynomial of degree N - 1

can be evaluated at N points in O(N log 2 N) total steps or O(N log N) multiplications.
The multiplicative bound is within a constant multiple of optimality. Using the same

FAST MODULAR TRANSFORMS 385

method, the residues of an N precision integer can be computed in O (N log s N

log log N) total steps.
We have also shown that the N - - 1 degree polynomial interpolating N points can

be computed in O (N l o g z N) total operations or 12N log N + N multiplications.

Again, the multiplicative bound is within a constant mult iple of optimality. Using a

related method, the integer CRA can be computed in O (N log s N log log N) total

operations. Using these algorithms, we have shown that a polynomial and all its

derivatives can be evaluated at a point in O (N log 2 N) total operations.

ACKNOWLEDGMENT

We thank Prof. J. Lipson for introducing us to modular techniques and for his many helpful
suggestions.

REFERENCES

1. A. BORODIN AND I. MUNRO, Evaluating polynomials at many points, Information Processing
Letters 1, No. 2 (1971).

2. A. BRAVER, On addition chains, Bull. Amer. Math. Soc. 45 (1939), 736-739.
3. W. S. BRowN, On Euclid's algorithm and the computation of polynomial greatest common

divisors, J. Assoc. Comput. Mach. 18, No. 4 (1971).
4. S. CABAY, Exact solution of linear equations, Proc. of the 2nd Syrup. on Symbolic and

Algebraic Manipulation, March 1971.
5. G. E. COLLINS, The calculation of multivariate polynomial resultants, J. Assoc. Comput.

Mach. 18, No. 4 (1971).
6. C. FIDUCClA, Fast matrix multiplication, Proc. Third Annual ACM Symposium on Theory

of Computation, May 1971, pp. 45-49.
7. C. FII)UCClA, Polynomial evaluation via the division algorithm: The fast Fourier transform

revisited, Proc. 4th Symp. on Theory of Computing.
8. J. HOPCROFT AND L. KERR, On minimizing the number of multiplications necessary for

matrix multiplication, SIAM J. Appl. Math. 20, No. 1 (1971).
9. E. HOROWITZ AND L. HEINDEL, On decreasing the computing time for modular algorithms,

Proc. of the 12th Syrup. on Switching and Automata Theory, Oct. 1971.
10. E. HOROWITZ, A fast method for interpolation of polynomials using preconditioning,

Information Processing Letters 1, No. 4 (1972).
11. n . KNUTH, "The Art of Computer Programming," VoL 2, Addison-Wesley, 1969.
12. J. LIPSON, Chinese remainder and interpolation algorithms, Proc. of the 2nd Syrup. on

Symbolic and Algebraic Manipulation, March 1971.
13. J. LIPSON, private communication.
14. R. MOENCK AND A. BORODIN, Fast modular transforms via division, Proc. of the 13th

Annual Syrup. on Switching and Automata Theory., Oct. 1972.
15. R. MOENCK, Studies in fast algebraic algorithms, Ph.D. Thesis, University of Toronto, 1973.
16. J. MORGENSTERN, Note on a lower bound of the linear complexity of the fast Fourier trans-

form, J. Assoc. Comput. Mach. 20, No. 2 (1973).
17. A. OSTaOWSKE, On Two Problems in Abstract Algebra Connected with Homer's Rule,

"Studies Presented to R. yon Mises," Academic Press, New York, 1954, pp. 40-48.

386 BORODIN AND MOENCK

18. V. PAN, Methods of computing values of polynomials, Russian Math. Surveys 21, No. 1
(1966).

19. J. POLLARD, The fast Fourier transform in a finite field, Math. Comp. 25, No. 114 (1971).
20. A. SCHO~HAGB AND V. STRaSSEN, Fast multiplication of large numbers, Computing 7 (1971),

281-292.
21. A. SCHOENHAG~, Schnelle Berechnung yon Kettenbruchentwicklungen, Acta Informatica I,

No. 1 (1971).
22. M. SHAW AND J. F. TaAUB, On the number of multiplications for the evaluation of a polyno-

mial and its derivatives, Proc. of the 13th Annual Symp. on Switching and Automata Theory,
Oct. 1973.

23. M. SmWKINC, An algorithm for division of power series, Computing 10, No. 1-2 (1972),
153-156.

24. V. STRASSEN, Die Berechnungskomplexit~it yon elementarsymetrischen Funktionen und yon
Interpolationskoeffizienten, Numer. Math. 20, No. 3 (1973), 238-251.

25. S. WINOCmm, On the number of multiplications necessary to compute certain functions,
Comm. Pure .4ppl. Math. 23 (1970).

