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It  is shown that if division and multiplication in a Euclidean domain can be performed 
in O(N log ~ N) steps, then the residues of an N precision element in the domain can 
be computed in O(N log a+l N)  steps. A special case of this result is that the residues of 
an N precision integer can be computed in O(N logS N log log N)  total operations. 
Using a polynomial division algorithm due to Strassen [24], it is shown that  a poly- 
nomial of degree N -- 1 can be evaluated at N points in O(N log 2 N) total operations 
or O(N log N) multiplications. 

Using the methods of Horowitz [10] and Heindel [9], it is shown that if division 
and multiplication in a Euclidean domain can be performed in O(N log ~ N)  steps, 
then the Chinese Remainder Algorithm (CRA) can be performed in O(Nlog  ~+x N)  
steps. Special cases are: (a) the integer CRA can be performed in O(N log S N log log N) 
total operations, and (b) a polynomial of degree N -  1 can be interpolated in 
O(N log 2 N) total operations or O(Nlog N) multiplications. Using these results, it 
is shown that a polynomial of degree N and all its derivatives can be evaluated at 
a point in O(N log s N) total operations. 

1. INTRODUCTION 

Many of the efficient algorithms which have recently been developed for polynomial 
and number theoretic operations fall into a class which may be described as homomor- 
phism algorithms. These algorithms operate on sampled values (homomorphic 
images) of their variables. The general form of a homomorphism algorithm can be 
represented schematically as 

Ya 
A , A' 

~ l 
fB 

B , B '  
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where A and A' are the inputs and results, respectively, of performing the operation 
fA on the original problem. B, B', andfn are the inputs, results, and operation for the 
sampled problem, respectively. The functions q~ and ~' are used to map in and out 
of the sampled solution space. Analysis has shown that it is frequently better to 
compute A' by way of B, fB, and B', rather than directly usingfA. Examples of such 
algorithms applied to linear equations, polynomial GCD's, and resultants are given 
by Cabay [4], Brown [3], and Collins [5], respectively. 

In the polynomial and number theoretic cases (and indeed, for general Euclidean 
domains), the modular homomorphisms are the ones most frequently used. For a 
Euclidean domain D, the operation fB corresponds to computing modulo some 
element in the domain. In the number theoretic case, a convenient integer (frequently 
a prime) is used as the modulus. The polynomial case is computed modulo a poly- 
nomial (frequently a linear polynomial). 

It is apparent that the transformations ~ and q~' are critical links in such algorithms. 
It is these transformations which we shall investigate with a view to looking for fast 
algorithms. (Hence the title.) The transformation q~ corresponds to computing the 
residues of an element of the domain with respect to several moduli. ~' involves 
computing the Chinese Remainder Algorithm (i.e., interpolating) in the domain. 

In the polynomial case, the transforms correspond to evaluating a polynomial at 
many points (for linear moduli) and interpolating a polynomial given the values at 
sufficiently many points. These transforms could be performed by the Fast Fourier 
Transform (FFT) (of. Pollard [19]). However, in some algorithms, situations occur 
where certain sample values must be discarded (of. Brown [3] and Collins [5]). This 
implies that the FFT cannot be easily used, since it depends on a strict relationship 
between the sample points. This leaves us with the interpolation problem and its dual 
the problem of evaluation at many points. In any case, the general problems of evalua- 
tion and interpolation are interesting in their own right. 

The analogue of the interpolation problem in the number theoretic (integer) case is 
the integer Chinese Remainder Algorithm (CRA). Here we are given a set of residues 
corresponding to a set of moduli. The problem is to compute the unique integer with 
the same set of residues. The dual problem is to compute the residues of an integer 
with respect to a set of moduli. Lipson [12] shows that interpolation and the CRA are 
abstractly equivalent to the CRA for a Euclidean domain and gives a thorough exposi- 
tion of the classical algorithms for these problems. 

Classically, all these algorithms require O(N 2) steps, i.e., to interpolate or evaluate 
a polynomial of degree N -  1, or perform the CRA for an N precision integer all 
require O(N 2) steps. The question is whether this can be improved to something 
of the order of the FFT (i.e., O(N log N) steps). Intuition (perhaps) indicates that 
these algorithms cannot be improved upon. However, intuition is often wrong as 
shown by Fourier polynomial multiplication (el. Pollard [17]) or the Schoenhage- 
Strassen integer multiplication [19]. 
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Horowitz and Heindel [9] in investigating this question have produced an integer 
CRA which works in O(N log s N log log N) steps as a preconditioned algorithm and 
O(N log 3 N log log N) in its complete version. Borodin and Munro [7] have shown 
that many point polynomial evaluation can be performed in O(N 1"91) steps using 
Strassen's matrix multiplication algorithm assuming noniterative computation, but 
would require O(N 2) iteratively. Horowitz [10] has given a preconditioned polynomial 
interpolation algorithm which operates in O(N log 3 N). 

Subsequent to our original report [14], Strassen [24] has developed an improved 
algorithm for polynomial division and, more important, proved a number of significant 
lower bounds. As a result of Strassen's work, we can now say that the multiplicative 
complexity of the algorithms presented here is within an order of magnitude of 
optimality. 

We must make the disclaimer that the algorithms presented here are not presently 
of practical usefulness. Their importance lies in being a theoretical background for the 
development of practical methods. 

2. SOME REMARKS ON FAST ALGORITHMS 

Since we are going to be looking for fast (i.e., O(N log a N)) algorithms, we should 
first look at the form of such algorithms in order to discover common features and the 
sort of properties such algorithms could exhibit. 

One common property of many such algorithms is that they solve a problem by 
dividing it into two simpler problems, each of which is half as difficult as the original 
problem. This "Divide and Rule" formulation implies that the timing function of the 
algorithm is defined by a recurrence relation of the form 

T(N) = 2 • T(N/2) + f(N), 

where f(N) is n o t  too large. In fact, if f(N) = O(N log a N), then T(N) = 
O(N log a+l N). This follows from expanding the recurrence relation: 

T(N) = 2" T(N/2) + O(X log ~ N) 

= 2(2T(N/4) + O(N/2 log ~ N/2)) + O(N log ~ N) 

= 4T(N/4) + O(X log a X/2) + O(N log ~ N) 
/ 1OgN \ 

= NT(1) + OIN ~ i a} = O(Nlog~+lN). 
\ i=0 / 

Divide and Rule algorithms also tend to be easily expressed recursively. Good 
examples of such algorithms are Merge Sorting and the Fast Fourier Transform. 

Another property of fast algorithms which depends on certain critical subroutines 
is that the eff• of the subroutine is optimized by correct choice of the size of the 
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inputs. For example, if the critical subroutine is a multiplication algorithm, then the 
size of the inputs must be approximately the same in order to maximize the efficiency 
of the algorithm. This follows from the fact that both classical and any fast multiplica- 
tion algorithm require N operations to multiply an N precision element by a single 
precision element. Examples of the balanced precision multiplication are seen in 
Schoenhage [21] and Horowitz and Heindel [9]. In fact, Horowitz and Heindel show 
that the classical algorithm for the CRA is not improved by using fast multiplication. 
(For another discussion on general techniques used in fast algorithms, see Moenck [15].) 

3. SOME BACKGROUND 

In order to emphasize the generality of the algorithms presented here, we shall 
define a common precision function for the integer and polynomial eases: 

prec(U) = t deg(U) %- 1 if U is a polynomial, 
flogs(U) if U is an integer. 

We shall analyze the polynomial form of the algorithms from two points of view. 
First, we shall count all arithmetic operations in an attempt to get a meaningful 
measure of the practical running time of the algorithms on a computer. Second, we 
will use a notion of complexity proposed by Ostrowski [17] and also used by Winograd 
[25], Hopcroft and Kerr [8], and Strassen [24]. This measure counts only the number 
of multiplications and divisions necessary to compute the function. Arbitrary linear 
combinations of partial results and multiplications by scalars are not counted. 

As an example of the use of these two measures, we will consider the multiplication 
of two polynomials of degrees n and m, using Fourier multiplication. In the following 
analysis and throughout the rest of the paper, the algorithms presented will work for 
all N. However, in order to ease the analysis, we shall assume N = 2 k, for some k ~ N. 
This may mean that the constants of proportionality in the timing functions may be 
in error for general N. However, they will be "out" by a factor of at most 2. We shall 
use the notation ldt to mean lower degree terms. Thus, in the practical model, the 
polynomial multiplication involves 

Operation 

(1) two forward Fourier transforms 
(2) multiplication of the sequences 
(3) and one inverse tranformation 

No. of arithmetic Steps 1 

2(N %- 3/2N log N) %- ldt 
N 

2N %- 3/2N log N %- ldt 

for a total of 9/2N log N %- 5N + ldt 
where N = m %- n 

1 Arithmetic steps will be the number  of {+ ,  -- ,  , ,  +} operations from the field over which 
the polynomials are distributed. 
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In the Ostrowski model, arbitrary linear combinations of variables are allowed for 
free. This means that the Fourier transforms, which can be thought of as a sequence of 
linear combinations of the coefficients, can be performed at no cost. Thus, multiplica- 
tion of two polynomials of degree n and m can be performed in the N multiplications 
required by step 2. Moreover, if we counted all multiplications, we could choose to 
perform the Fourier transform in a finite field and simulate integer multiplication by 
repeated additions (see, for example, Fiduccia [6]). This method also leads to an 
O(N) multiplications algorithm. 

We shall not analyze the integer form of the algorithms in the same detail, since 
we do not know the constants of proportionality involved for fast integer multiplication. 
Instead, we shall use the big-O notation and assume that integer multiplication can be 
performed in O(N log N log log N) steps using the Schoenhage-Strassen algorithm 
[20]. However, Lipson [13] has pointed out that for practical purposes, there is an 
O(N log N) algorithm performing integer multiplication for all N of conceivable 
interest. 

4. FAST MODULAR FORMS 

As remarked above, classically the evaluation of a polynomial of degree N -  1 
at N points requires O(N 2) operations. This is performed by doing N evaluations of the 
polynomial at one point. A similar bound holds for the computation of the N single 
precision residues of an N precision integer. 

Evaluating a polynomial at one point can be considered as a division process (cf. 
Knuth [11, pp. 424]). This is a result of the remainder theorem, i.e., given a polynomial 
p(x), if we divide by x -- a we get 

p(x) = q(x)* (x -- a) + r(x), (4.1) 

where deg(r) = 0 (i.e., a constant). Putting x = a in (4.1), we get that p(a) = r" 
Homer's Rule and the process of synthetic division as used by the numerical analysts 
are directly related to this method. 

The remainder theorem suggests a generalization to more points. If we wish to 
evaluate p(x) at m points xi,  we form 

M(x) = ~-I (x -- xi) (4.2) 
i= l  

and divide p(x) by M(x) to get 

p(x) = M(x)* q(x) + r(x), 

where deg(r) < deg(M). Then at the points x = x i we have 

p(x~) = r(x~), 
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and assuming deg(M) < deg(p), we have reduced the problem to a simpler one. In  
the more general framework of a Euclidean domain with P = Q M  + R, 

P mod m i ----- R rood m i 

whenever m~l M. Fiduccia [7] uses this approach in discussing one way of under-  
standing the F F T .  

Taking note of our remarks on fast algorithms, a method for evaluating a polynomial 
of degree N - -  1 at N points suggests itself. First, we form a polynomial Mt(x ) with 
the first N/2 points {xi} as in (4.2) above and M2(x ) from the remaining N/2 points. 
We divide p(x) by Ml(x  ) to get Rl(x), and we obtain R2(x ) in the same manner.  This  
gives us two polynomials of degree N/2 - -  1, each of which is to be evaluated at N/2 
points. To  do this, we use the method recursively, which gives us a Divide and Rule 
algorithm. For example, to evaluate p(x) = x 3 - -  3x + 5 at x = - -  1, 1, 2, 3, we form 

g~(x)  = (x + l ) ( x - - 1 )  = x 2 - 1 ,  

M~(x) = (x - -  2)(x - -  3) = x 2 - -  5x + 6. 

Dividing p(x) by Mx(x ) and M2(x ) we get 

R 1 = - 2 x + 5 ,  R 2 = 1 6 x - - 2 5 .  

Dividing R 1 by (x + 1) and (x - -  1) we get from the remainders that 

p ( - -1 )  = 7, p(1) = 3. 

Dividing R 2 by (x - -  2) and (x - -  3) we get that 

p(2) = 7 ,  p(3) = 2 3 ,  

which can be easily verified. 

5. THE ALGORITHM 

In  order to discuss the problem further in the general setting, we shall make the 
following characterization of the problem. In  a Euclidean domain D, we are given a set 
of N moduli {mi} ~ D and an element U ~ D for which we wish to compute the set of 
residues ui ~ D such that 

ui -~ U mod mi , 1 ~ i ~ N.  

For polynomials, 

U = p(x) ~F[x], mi = (x - -  xi), and ui = p(xi). 
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For integers, 
U e Z, mi e Z, u i e Z/(mi). 2 

In the previous section, we reduced the evaluation problem to the problem of 
division in the domain. In fact, we can formalize our development in 

THEOREM 1. Given N moduli m i e D and U e D where prec(U) = N, if multiplica- 
tion and division of N precision elements can be performed in O(N log a N) operations, then 
the N residues {ui} , of U, with respect to {mi} can be computed in O(N log a+l N) steps, 
where a >~ O. 

Proof. We shall give a constructive proof in the form of an algorithm to perform 
the computation. However, first we need an algorithm to build up the moduli M i as 
required in (4.2). We shall state this in the form 

LEMMA. Under the assumptions of Theorem 1, the moduli M i may be built up in a 
total of O ( N  log a+l N )  operations. 

Proof. Taking note of our remarks on fast algorithms, we shall try to balance the 
precision of the multiplication. It follows then that a binary treelike process as 
illustrated below will be fast. Assuming N ---- 2 n, we have 

moduli: m 1 , m 2 , m 3 , m 4 ,..., mN_ 1 , m N 

\ /  \ /  \ /  
level 1 : ml*m ~ , ma*m 4 m2v_xmN 

level 2: (mlm~)*(mam4) 

N/2 N 

l e v e l n - - l :  1-I mi , YI mi 
i=l  i=N/2+l  

\ /  
N 

level n: I-I mi" 
i = l  

A simple iterative algorithm (which we shall call construct moduli) can be produced 
to implement this scheme. We shall not give any further details since the necessary 
subscripting would only obscure the binary treelike structure of the scheme. 

We shall call the products 
k 

M~k = ]--[ m i (5.1) 
i= j  

Z/(mi) is the ring of integers modulo m~. 
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formed in this manner "supermoduli". Let CM(N) be the time to compute construct 
moduli for N moduli; this is specified by the recurrence relation: 

CM(N) = 2CM(N/2) -}- M(N) 

= 2CM(N/2) + O(N log a N). 

By the remarks of Section 2, CM(N) = O(N log a+l N). 
In the polynomial case, we can be more detailed in our analysis. If we let N = 2 n, 

then at thej-th level of the scheme we form 2n/2 ~ products of degree 2 5, for 0 ~<j ~< n. 
Thus, the total cost is 

CM(2 n) = ~ U(2J)2~/2 j 
j=0 

= 2 ~ ~ (9/2" 2~j § 5- 2~ + ldt)/2J 
j=0 

= 5" 2nn + (9/2). 2 n "(n(n + I)/2) + ldt 
-- 3" 2"n 2 -}- (9/2)-2"n + ldt, (5.2) 

and therefore 
CM(N) = (9/4)N log 2 N + (29/4)N log N + ldt. 

For the Ostrowski measure of computation we have 

CM(2 n) = ~ m(2J) 2'~/2 .4 = 2"n 
.4=0 

and 
CM(N) = N log N. (5.3) 

The coefficients of Mx,lv can be thought of as the elementary symmetric functions 
{aj(x 1 ..... XN), 1 <~j <~ N} of the roots {xi} of the moduli ( x -  xi). Strassen [23] 
shows that a lower bound for the multiplicative complexity for this computation is 
N log (N/e). Thus, it follows that the complexity of computing the supermoduli is 
N log (N/e) which is met by the construct-moduli algorithm, to within an additive 
term. Note that for the integer case, this algorithm requires O(N log 2 N log log N) 
steps. 

Now that we have the moduli, we can state the following recursive algorithm for 
computing the residues. 

ALGORITHM. Modular Form (U, j, k). 

Input: (1) the requisite supermoduli Mjk , 

(2) the element U where pree(U) ~< k -- j + 1. 

Output: the residues ui ~ U mod mi , j ~ i ~ k. 
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Step 
(1) Basis: l f  j = k, then begin 

output (U); 
return; 

end; 

(2) Division: e: = [ ( j + k - -  1)/2J; f :  = e +  1; 
R I :  = U r e m M ~ ;  
R 2 : - -  UremM1~;  

Recursion: Call Modular Form (Rt , j, e); 
Call Modular Form (R2 , f, k); 

(3) 

(4) Return: 

The algorithm is invoked as Modular Form (U, 1, N). 

For the analysis of the timing of the algorithm, let E(N) be the time to compute the 
N residues of an N precision element. If we assume that division with remainder 
requires R(N) = O(N log a N) steps, then E(N) is defined by 

E(N) = 2E(N/2) + 2R(N) 
= 2E(N/2) + 20(N log a g ) ,  

and so E(N) = O(N log ~+1 N) by the results of Section 2. Thus, the two steps of the 
evaluation algorithm require O(N log ~+1 N), establishing the theorem. 

As a special case we have 

COROLLARY ]. The N residues of an N precision integer with respect to N single 
precision moduli can be computed in O(N log s N log log N) steps. 

Proof. The algorithms given in Theorem 1 are easily carried over into the integer 
setting, since integer division can be defined as 

P = M * Q + R ,  O < ~ R ~ M .  
If mi ] M, 

P mod mi ---- R mod mi, 

but R will be sufficiently smaller than P, and therefore the algorithm follows. 
For the necessary division, Knuth ([11, pp. 275]) gives a method due to Cook for 

fast division of integers which has the same bound as the fast multiplication of integers, 
i.e., O(N log N log log N). This gives a bound for both of the algorithms used in 
Theorem 1 of O(N log ~ N log log N). 

6. FAST POLYNOMIAL DIVISION 

The above algorithm requires a fast algorithm for dividing polynomials in order to 
be effective in the polynomial setting. The division 

U(x) = V(x)* Q(x) + R(x), (6.1) 
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where deg(U) = N, deg(V) = K, deg(R) < K, deg(Q) = N -- K, classically requires 
2K(N -- K + 1) steps which in the worst case K = N/2 is O(An). However, we are 
looking for an algorithm with a bound of the form O(N log ~ N). Without loss of 
generality, the method can be to compute the quotient separately, then the remainder 
R(x) can be obtained in one multiplication and one subtraction. 

The observations on fast algorithms indicate that one approach could be to segment 
the problem into two simpler problems; namely, by computing the quotient in two 
parts. 

This divison algorithm would give rise to a polynomial evaluation algorithm of 
order O(N log 3 N) (as is shown in [14]). However, Strassen [24] has shown that the 
remainder of a polynomial of degree N divided by a polynomial of degree N/2 can be 
performed in (9/2) M(N) + N steps 3 (see Corollary 2). This algorithm uses another 
algorithm due to Seiveking [23] which computes the power series division for two 
power series of degree K in 7M(K) steps. Therefore, 

R(N) = (9/2) M(N) q- N total operation 

= (81/4)N log N q- (47/2)N, 

or using the Ostrowski measure, R(N) = (9/2)N. Now we can make a more detailed 
analysis of the Modular-Forms algorithm in order to determine the constants involved. 
Let E(N) be the time to evaluate a polynomial of degree N -- 1 at N points. Then 
expanding as before, 

E(N) = 20�88 log 2 N + 67�88 log N + ldt. 

If we include the time for construct moduli, the total time for the evaluation is 

Exo t (N) = 22�89 log 2 N + 74�89 log N + ldt 

= O(N log 2 N). 

We can also analyze the time for evaluation under the Ostrowski model: 

E(2 ~) = 9 " 2  ~ ' n = 9 N l o g N .  

This leads us to 

COROLLARY 2. A polynomial of degree N -- 1 can be evaluated at N distinct points 
in 22(1/2)N log 2 N + O(N log N) total arithmetic steps and 10N log N multiplications. 

a Kung independently developed an O(NlogN) algorithm for "preconditioned" division 
and the associated results of Corollary 2 and Theorem 4. Schoenhage also independently exhibited 
in O(N log N) polynomial division algorithm, and a more abstract development for fast division 
in a Euclidean domain and can be found in Moenck [15]. 
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Strassen [24] shows that the number of multiplications required for the many 
point evaluation of a general Nth degree polynomial is N log N. From this, it follows 
that the Modular-Form algorithm comes within an order of magnitude of the multi- 
plicative bound for the process. In particular, the multipoint evaluation of the special 
polynomial x N requires N log (N/e) multiplications. While the factor algorithm (cf. 
Brauer [2] or Knuth [11, pp. 398-418]) applied N times is optimal to within an 
additive term, the Modular-Forms algorithm comes within a constant multiple of the 
multiplicative bound. 

Throughout the presentation, we have assumed that the polynomial moduli are 
linear, i.e., we are evaluating polynomials. Obviously, the same algorithms will work 
successfully and just as "efficiently" for higher-order moduli. 

7. FAST INTERPOLATION 

This is the inverse operation of computing the Modular Forms as given in the 
previous sections. As mentioned in the Introduction, interpolation of a polynomial is 
a special case of the CRA over a Euclidean domain D. In our generalized framework, 
we can characterize the problem as follows: 

Given N single precision moduli {mi} and N residues, we wish to compute the unique 
U e D such that 

U ~ u i mod mi, 0 ~ prec(U) ~ N. 

Thus, when we say fast interpolation, we shall in fact mean a fast CRA for a Euclidean 
domain which has a fast multiplication algorithm. 

The classical Lagrangian and Newtonian algorithms for polynomial interpolation 
and the CRA require O(N ~) operations (cf. Lipson [12]). Horowitz and Heindel [9] 
have given a method for computing the integer CRA which has a bound of 
O(N log ~ N log log N) as a preconditioned algorithm and O(N log z N log log N) as a 
complete algorithm. 

Horowitz [10] has given a preconditioned polynomial interpolation algorithm which 
requires O(N log 3 N) steps. Horowitz also demonstrated that the approach to speeding 
the interpolation up is to appropriately factor the interpolation formula. Using a 
somewhat different factoring, we will now synthesize a general interpolation algorithm. 

We shall start with the familiar version of the Lagrangian Interpolation Formula: 

N 

U(x) = Y (8.1) 
k=l 
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where Lk are the Lagrangian interpolating polynomials: 

I f  we set 

L~ = [ I  (x - -  xi x~ - -  x, . 
i=1 
iCk i~:k 

N 

a k = 1/i~=l= ( x ~ - - x i ) '  

then we can rewrite (8.1) as 

U ( x )  = uka k (x  - -  x i )  �9 
k=l  

i#/c 

Examining the terms in the summation as the subscript runs from k ---- 1 to N,  we 
see that most of the polynomial terms are duplicated. Taking note of our remarks on 
fast algorithms, we are looking for a Divide and Rule method which uses balanced 
precision multiplication. The necessary simplification is to separate the summation into 
two parts each of length N/2 and factor out all of the common polynomial terms from 
each part, i.e., 

V(x) _ -  x,)p, E FI ( x -  x,) 
i= +I / kk=l k i=1 

/ \ k = N / 2 + l  \ i = N / 2 + l  
ir 

I f  N = 2 n, then the formula now involves two "interpolations" with 2 n-1 terms 
and two polynomial multiplications of balanced degree and one addition. This gives 
us the essentials of a recursive algorithm. 

In the more general context of Euclidean domains (cf. Lipson [12]), the Lagrangian 
formula for the moduli mi  and residues ui is 

where the Lagrangian Lk is 

N 

U = ~ u~Lk, (8.3) 
k=l  

L k ---- m siklm , 
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and the sik are the inverses of the moduli mi with respect to mk, i.e., 

siam i ~ - - -  1 mod ink. 

Here we make the substitution 

a k = s~ mod m k , 

and we would write the analogue of (8.2) as 

IN~2 [ N/2 \ \  

U = 1141" / E ukak~ IJ mi~} 
\ k = l  \ i=l / I  

+ M s *  U m, , 
k= +1 

i c k  

where  
N N/2 

tffiN/2+1 t - 1  

(8.4) 

Note that these powers of moduli are none other than the supermoduli computed in 
Section 5. 

8. PRECONDITIONED INTERPOLATION 

The  foregoing analysis leads us to the conclusion that preconditioned polynomial 
interpolation is "reducible" to polynomial multiplication (in the same sense that 
polynomial evaluation is reducible to polynomial division). 

THEOREM 3. I f  multiplication in the domain can be performed in O(N log a N) steps, 
and the constants ak can be preconditioned, then the generalized CRA from an N precision 
element can be performed in O(N log a+l N) steps. 

Proof. We can use the following algorithm for the process. 

ALGORITHM: I n t o ' p  (ui , e ~ i ~ f ) .  

Input: (1) the residues ui , e ~ i ~ f ,  to be interpolated, 

(2) the constants ak , 

(3) the supermoduli Mj~ 1-Ii=j m i  �9 

Output: the interpolated value of U. 
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Step 

(1) 

(2) 

(3) 

Basis: I f  e = fi then return (u,a,); 

Recursion: k: = [(e + f - -  1)/2]; 

j:  = k + l ;  

U 1 : = Interp (ui, e <~ i <~ k); 

U 2 : = Interp (ui , j  ~ i <~f); 

Multiplication: Return ( UI* Mjf + U2*M,k); 

The algorithm will be invoked as Interp (ui, 1 ~ i ~ N). 

Let I(N) be the time to interpolate N values; then 

I(N) =- 2I(N/2) + M(N)  

-~ 2I(N/2) + O(N log a N) 

--- O(N log a+l N) 

by the results of Section 2, and the theorem is established. 
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9. COMPUTING THE a k 

In order to have a complete interpolation algorithm, we need to be able to compute 
the constants ak. We first look at the polynomial domain which affords a certain 
simplification. 

In the previous section, we made the substitution 

In a more familiar form, 

i # k  

a~ = IlM~N(X) I~=~k, (10.1) 

N ! 
where MIN(X) = •i=i (x -- xi) and M;N(X ) is its derivative. Ml~i(x ) is a by product 
of the construct-moduli algorithm which must be invoked to do the evaluation of 
(10.1). This reduces the general interpolation problem for a polynomial to the evalua- 
tion problem. This means we can state 

TH~Om~M 4. The interpolation of a polynomial of degree N -- 1 at N points can be 
performed in 36N log S N + O(N log S N) total steps or 12N log N + N multiplications. 
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Proof. Using the results of Theorem 3, we have that the preconditioned inter- 
polation can be performed in 

Assuming N = 2 n, 

I (N)  = 2I(N/2) + 2M(N). 

I (N)  ---- 4�89 log s N + 15�89 log N + ldt. 

From Theorem 2, we have that a polynomial can be evaluated in 22(1/2)Nlog2N 
-}- 74(1/2)N log N steps. Since the evaluation will supply the supermoduli required 
by the Interp algorithm, the total is 

/tot (N) = 27N log s N -}- 90N log N + ldt. 

Within the Ostrowski model of computation, we see from Theorem 3 that the time 
to interpolate a preconditioned polynomial is 

I (N)  = 2I(N/2) + 2M(N) 

~- 2N log N + N. 

Using the results of Section 8, the total time to interpolate a polynomial of degree 
N - -  l i s  

Itot (N) = 12N log N + N. 

Strassen [24] shows that interpolation has a lower bound of (N + 1) log N multiplica- 
tions for its complexity within the Ostrowski model. This means that the multiplieative 
complexity of interpolation is of the order of magnitude of N log N. 

In the integer ease or in the more general setting of a Euclidean domain D, we have 
that 

a k  ~ -  $ik mod mk, 

i~k  

where 
1 ~ (sikmi) mod m k . (10.2) 

We note that ak is a single precision element of D and from congruence properties 
we have that 

1 = ms s~ mod mk 

by commutativity of (10.2). This implies that there exists a bk in a coset of the ideal 
(ink) such that 

1 ~ bka k mod ink, (10.3) 
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where 

i=1 
ir 

Therefore, ak is a unit in the ring Z,% = Z/(mk). We can compute the {ak} from the 
{bk} using the standard extended Euclidean algorithm. Since each mk and b~ are single 
precision, each computation only requires a constant number of operations or O(N)  
operations to compute all the {ak) from the {b~). From the eonstruct-moduli algorithm, 
we get 

N 

M1N = ~ mi . 
i=1 

Since the moduli m i must be pairwise relatively prime M l n  lies in the ideal (m~) 
but not in (m~2). Since if 

mi = d " mk + bk , 

we have that 

Maw = d" m~ 2 + bkmk , 

and so b~mk ~ MIN rood mk 2. 
If we can compute 

then 

and 

c k ~- Mln mod mk ~, 

b~ = ck/mk dividing exactly 

as = b; 1 = (ck/mk) -a. 

Therefore, we can compute the constants as from the ck in O(N)  steps using exact 
division and the ck can be computed using the modular-forms algorithm in O ( N  log ~ N 
log log N) double precision steps. We have reduced the interpolation problem in the 
general setting to the evaluation problem. This gives us 

THEOREM 5. 
total steps. 

and 

The complete integer CRA can be computed in O ( N  log ~ N log log N) 

57x/8/3-8 
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THEOREM 6. I f  division R(N) and multiplication M(N) in the Euclidean domain D 
can be performed in O(N log a N) steps, then the complete CRA in D can be performed in 
O(N log a+l N) total steps. 

Again in the sections on interpolation we have focused our attention on linear 
moduli for the polynomial case. This is because they are the most frequently 
encountered forms. As before, the algorithms operate with equal facility on moduli 
of higher degree. 

I0. EVALUATING A POLYNOMIAL AND ALL ITS DERIVATIVES 

One further problem which can be "efficiently" solved using these algorithms 
is that of evaluating a polynomial and all its derivatives at a point. Shaw and 
Traub [22] have shown that this can be done for a polynomial of degree N in O(N) 
multiplications. Since we know that just the evaluation of the polynomial requires N 
multiplications (cf. Pan [18]), this method is asymptotically optimal. However, their 
algorithm requires O(N 2) additions. The following method can be used to evaluate a 
polynomial and all its normalized derivatives in O(N log 2 N) total operations. Yet 
it should be noted that their method is reasonably practical whereas ours is not 
practical. 

First, we note that a polynomial of degree N can be defined by its Taylor series 
about a point x = a, i.e., about a point x = a, i.e., 

h h2 h N 
p(a + h) = p(a) + p'(a) + -~.p"(a) + "" +~..p~m(a). (11.1) 

So we can evaluate the polynomial p(x) at N + 1 points {a + h~} for distinct {h~} 
to obtain the values {p(a + hi)}. The series in (11.1) can now be regarded as a poly- 
nomial in h, and we can compute that polynomial which interpolates the pairs of values 
(p(a + h~), hi). The coefficients of this polynomial will then be the values of the 
polynomial and all its normalised derivatives at the point x = a, i.e., 

p'(a) p"(a) p~m(a) 

p(a), 1! ' 2! ' " "  N! 

This gives us the following: 

THEOREM 7. The values of a polynomial of degree N and all its normalized derivatives 
at a point can all be computed in O(N log 2 N) total steps. 

Proof. The evaluation and interpolation each require O(N log 2 N) total steps. 
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I I .  CONCLUSION AND OPEN QUESTIONS 

We should say that while the algorithms which have been presented are for the 
moment more of theoretical interest, they may not be hopelessly beyond the bounds of 
practicality. In  our analysis of the polynomial algorithms, we made assumptions 
about the time to do polynomial multiplication. The  constants of proportionality 
involved in the multiplication and division have a considerable impact on the constants 
for the new algorithms. Thus,  if any improvement could be made to the multiplication 
or division algorithms, it would also affect the others. 

In  our reckoning of the time for the algorithms, we counted only the arithmetic 
operations and excluded any implementation-dependent operations such as storage 
accesses. Obviously, in the real world, such things have a substantial effect on the 
constants of proportionality, but  it may not be too unreasonable to assume that they 
affect all methods equally. Also, for any practical implementation, the algorithms 

would have to be recast from their recursive to an iterative format. 
Table I shows the prohibitively high cross-over points for the timing functions of 

the classical versus the new algorithms. While the table does not give the exact cross- 
over, experimental results have been obtained which tend to confirm the table entries. 

TABLE I" 

Timing functions in N 
te rmsofN 256 = 2 s 512 = 2' 1 0 2 4 ~ 2  l~ 2 0 4 8 = 2  u 4096 = 212 

Classical polynomial 
division: N/2 128 250 

Fast polynomial division: 
202 log N + 67�88 230 250 

Classical many-point evaluation 
and interpolation: 2N 512 1024 2048 4096 8192 

Fast preconditioned 
interpolation: 
4�89 log 2 N + 15�89 log N 268 

Fast many-point evaluation: 
22~ log a N + 74�89 log N 2995 3542 

Fast interpolation: 
27 log I N + 90 log N 4257 4968 

~ In order to simplify the table, only those powers of 2 above and below the cross-over have 
been filled in. In order to avoid numbers too large, N has been factored out of all of the timing 
functions. The prefix "fast" means assmyptotieally fast. 
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We should also note the theoretically interesting open problems in the area. The 
fundamental theoretical problem has to do with the discrepancy of the log factor 
between the multiplicative and total arithmetic complexity of the algorithms. It would 
seem that computing the Fourier transform of length 2N given the transform of length 
N of a sequence of length N is a fairly easy operation to perform. It would not appear 
unreasonable to conjecture that this process which we call "transform doubling" 
could be performed in O(N) arithmetic operations. If this were true then, the pre- 
conditioned Interp algorithm and the construct-moduli algorithm could be performed 
in O(N log N) total arithmetic operations. 

In addition, it would seem possible that division with remainder might be performed 
on polynomials in transformed form in O(N) arithmetic operations, much in the way 
multiplication is presently done. This together with the conjecture on transform 
doubling would imply that the complete Modular-Form and Interp algorithms could 
be performed in O(N log N) total arithmetic operations. 

On the other hand, we have Morgenstern's [16] result that the FFT considered as a 
"linear algorithm with bounded scalars" requires N log (N/e) additions or sub- 
tractions. It would be remarkable if multipoint evaluation of N arbitrary points could 
be done in the same order of magnitude of time as evaluation at the very special set 
of points, the primitive roots of unity. 

A practical open problem is to reduce the constants of proportionality for polynomial 
multiplication and division and thus for all of the algorithms, as described above. 

As a final summary, we can state the results of this paper for the polynomial domain 
in terms of reducibilities. We shall say a process is directly reducible to another process 
if the former process can be computed using the latter in the same order of magnitude 
of time. We shall say a process is log reducible to another process if it is a log factor 
slower than another process it uses. Then we have: 

(1) Evaluating a polynomial and all its derivatives is directly reducible to inter- 
polation and many-point polynomial evaluation. 

(2) Polynomial interpolation is directly reducible to many-point polynomial 
evaluation and preconditioned polynomial interpolation. 

(3) Preconditioned polynomial interpolation is log reducible to polynomial 
multiplication. 

(4) Many-point polynomial evaluation is log reducible to polynomial division. 

(5) Polynomial division is directly reducible to polynomial multiplication (Strassen 
[24]). 

Analogous results hold for general Euclidean domains. 
Specifically, using Strassen's O(N log N) division, a polynomial of degree N -  1 

can be evaluated at N points in O(N log 2 N) total steps or O(N log N) multiplications. 
The multiplicative bound is within a constant multiple of optimality. Using the same 
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method, the residues of an N precision integer can be computed in O ( N  log s N 

log log N)  total steps. 
We  have also shown that the N - -  1 degree polynomial interpolating N points can 

be computed in O ( N l o g  z N)  total operations or 12N log N + N multiplications. 

Again, the multiplicative bound is within a constant mult iple of optimality. Using a 

related method, the integer CRA can be computed in O ( N  log s N log log N)  total 

operations. Using these algorithms, we have shown that a polynomial and all its 

derivatives can be evaluated at a point  in O ( N  log 2 N )  total operations. 
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