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1. Introduction

Linear Discriminant Analysis (LDA) has been suc-
cessfully used as a dimensionality reduction technique
to many classification problems, such as speech recog-
nition, face recognition, and multimedia information
retreival. The objective is to find a projection A
that maximizes the ratio of between-class scatter Sb
against within-class scatter Sw (Fisher’s criterion):

arg max
A

|ASbAT |
|ASwAT |

However, for a task with very high dimensional data
such as images, the traditional LDA algorithm en-
counters several difficulties. Consider face recognition
for example. A low-definition face image of size 64 by
64 implies a feature space of 64 × 64 = 4096 dimen-
sions, and therefore scatter matrices of size 4096 ×
4096 = 16M. First, it is computationally challenging
to handle big matrices (such as computing eigenval-
ues). Second, those matrices are almost always singu-
lar, as the number of training images needs to be at
least 16M for them to be non-degenerate.

Due to these difficulties, it is commonly believed
that a direct LDA solution for such high-dimensional
data is infeasible. Thus, ironically, before LDA can be
used to reduce dimensionality, another procedure has
to be first applied for dimensionality reduction.

In face recognition, many techniques have been
proposed (For a good review, see [2]). Among them,
the most notable is a two-stage PCA+LDA approach
[4,1]:

A = ALDAAPCA

Principal Component Analysis (PCA) is used to
project images from the original image space into a
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face-subspace, where dimensionality is reduced and
Sw is no longer degenerate, so that LDA can pro-
ceed without trouble. A potential problem is that the
PCA criterion may not be compatible with the LDA
criterion, thus the PCA step may discard dimensions
that contain important discriminative information.

Chen et al. have recently proved that the null space
of Sw contains the most discriminative information
[2]. But, their approach fell short of making use of
any information outside of that null space. In addi-
tion, heuristics are needed to extract a small number
of features for image representation, so as to avoid
computational problems associated with large scatter
matrices.

In this paper, we present a direct, exact LDA algo-
rithm for high dimensional data set. It accepts high
dimensional data (such as raw images) as input, and
optimizes Fisher’s criterion directly, without any fea-
ture extraction or dimensionality reduction steps.

2. Direct LDA Solution

At the core of the direct LDA algorithm lies the idea
of simultaneous diagonalization, the same as in the
traditional LDA algorithm. As the name suggests, it
tries to find a matrix that simultaneously diagonalizes
both Sw and Sb:

ASwA
T = I, ASbA

T = Λ

where Λ is a diagonal matrix with diagonal elements
sorted in decreasing order. To reduce dimensionality
to m, we simply pick the top m rows of A, which
corresponds to the largest m diagonal elements in Λ.
Details of the algorithm can be found in [3].

The key idea of our new algorithm is to discard
the null space of Sb – which contains no useful in-
formation – rather than discarding the null space of
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Sw, which contains the most discriminative informa-
tion. This can be achieved by diagonalizing Sb first
and then diagonalizing Sw. The traditional procedure
takes the reverse order. While both approaches pro-
duce the same result when Sw is not singular, the re-
versal in order makes a drastic difference for high di-
mensional data, where Sw is likely to be singular.

The new algorithm is outlined below. Figure 1 pro-
vides a conceptual overview of this algorithm. Com-
putational issues will be discussed shortly after.

(1) Diagonalize Sb: find matrix V such that

V TSbV = Λ

where V TV = I. Λ is a diagonal matrix sorted
in decreasing order.

This can be done using the traditional eigen-
analysis, i.e. each column of V is an eigenvector
of Sb, and Λ contains all the eigenvalues. As Sb
might be singular, some of the eigenvalues will
be 0 (or close to 0). It is necessary to discard
those eigenvalues and eigenvectors, as projection
directions with a total scatter of 0 don’t carry
any discriminative power at all.

Let Y be the first m columns of V (an n×m
matrix, n being the feature space dimensional-
ity), now

Y TSbY = Db > 0

where Db is the m ×m principal sub-matrix of
Λ.

(2) Let Z = Y D
− 1

2

b ,

(Y D
− 1

2

b )TSb(Y D
− 1

2

b ) = I ⇒ ZTSbZ = I

Thus, Z unitizes Sb, and reduces dimensionality
from n to m.

Diagonalize ZTSwZ by eigen-analysis:

UTZTSwZU = Dw

where UTU = I. Dw may contain 0s in its diag-
onal.

Since the objective is to maximize the ratio of
total-scatter against within-class scatter, we can
sort the diagonal elements of Dw and discard
some eigenvalues in the high end, together with
the corresponding eigenvectors. It is important
to keep the dimensions with the smallest eigen-
values, especially 0s. This is exactly the reason
why we started by diagonalizing Sb, rather than
Sw. See Section 2.2 for more discussion.

(3) Let the LDA matrix

A = UTZT

A diagonalizes both the numerator and the de-
nominator in Fisher’s criterion:

ASwA
T = Dw, ASbA

T = I

(4) For classification purpose, notice that A already
diagonalizes Sw, therefore the final transforma-
tion that spheres the data should be:

x∗ ← D
− 1

2
w Ax

2.1. Computational Considerations

Although the scheme above gives an exact solution
for Fisher’s criterion, we haven’t addressed the com-
putational difficulty that both scatter matrices are too
big to be held in memory, let alone their eigen-analysis.

Fortunately, the method presented by Turk and
Pentland [5] for the eigenface problem is still applica-
ble. The key observation is that scatter matrices can
be represented in a way that both saves memory, and
facilitates eigen-analysis. For example,

Sb =

J∑

i=1

ni(µi − µ)(µi − µ)T = ΦbΦ
T
b (n× n)

where

Φb = [
√
n1(µ1 − µ),

√
n2(µ2 − µ), · · ·] (n× J)

J is the number of classes, ni is the number of training
images for class i. Thus, instead of storing an n × n
matrix, we need only to store Φb which is n× J . The
eigen-analysis is simplified by virtue of the following
lemma:
Lemma 1 For any n × m matrix L, mapping x →
Lx is a one-to-one mapping that maps eigenvectors of
LTL (m×m) onto those of LLT (n× n).

As ΦTb Φb is an J×J matrix, eigen-analysis is afford-
able. In Step 2 of our algorithm, to compute eigenval-
ues for ZTSwZ, simply notice

Sw =
∑

i

(xi − µki)(xi − µki)T = ΦwΦTw

where

Φw = [x1 − µk1
, x2 − µk2

, · · ·] (n× nt)

nt is the total number of images in the training set.
Thus

ZTSwZ = ZTΦwΦTwZ = (ΦTwZ)TΦTwZ

We can again use the Lemma 1 to compute eigenval-
ues.

2.2. Discussions

Null space of Sw The traditional simultaneous di-
agonalization begins by diagonalizing Sw. If Sw is
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Fig. 1. Thumbnail of the Direct LDA Algorithm

not degenerate, it gives the same result as our ap-
proach. If Sw is singular, however, the traditional
approach runs into a dilemma: to proceed, it has to
discard those eigenvalues equal to 0; but those dis-
carded eigenvectors are the most important dimen-
sions!

As Chen et al. pointed out [2], the null space
of Sw

2 carries most of the discriminative informa-
tion. More precisely, for a projection direction a, if

Swa = 0, and Sba 6= 0, aSba
T

aSwaT
is maximized. The

intuitive explanation is that, when projected onto
direction a, within-class scatter is 0 but between-
class scatter is not. Obviously perfect classification
can be achieved in this direction.

Different from the algorithm proposed in [2],
which operates solely in the null space, our algo-
rithm can take advantage of all the information,
both within and outside of Sw’s null space. Our
algorithm can still be used in cases where Sw is
not singular, which is common in tasks like speech
recognition.

Equivalence to PCA+LDA As Fukunaga pointed
out [3], there are other variants of Fisher’s criterion:

arg max
A

|ATStA|
|ATSwA|

or arg max
A

|ATSbA|
|ATStA|

where St = Sb + Sw is the total scatter matrix.
Interestingly, if we use the first variant (with

St in the numerator), Step 1 of our algorithm be-
comes exactly PCA. Discarding St’s eigenvectors
with 0 eigenvalues reduces dimensionality, just
as Belhumeur et al. proposed in their two-stage
PCA+LDA method [1]. If their LDA step han-
dled Sw’s null space properly, the two approaches
would give the same performance. In a sense our
method can be called “unified PCA+LDA”, since
there is no separate PCA step. It not only leads to
a clean presentation, but also results in an efficient
implementation.

3. Face Recognition Experiments

We tested the direct LDA algorithm on face
images from Olivetti-Oracle Research Lab (ORL,
http://www.cam-orl.co.uk). The ORL dataset con-
sists of 400 frontal faces: 10 tightly-cropped images of

2 Null space of Sw = {x|Swx = 0, x ∈ Rn}.

40 individuals with variations in pose, illumination,
facial expression (open/closed eyes, smiling/not smil-
ing) and facial details (glasses/no glasses). The size
of each image is 92 × 112 pixels, with 256 grey levels
per pixel.

Three sets of experiments are conducted. In all cases
we randomly choose 5 images per person for training,
the other 5 for testing. To reduce variation, each ex-
periment is repeated at least 10 times.

Without dimensionality reduction in Step 2, aver-
age recognition accuracy is 90.8%. With dimension-
ality reduction, where everything outside of Sw’s null
space is discarded, average recognition accuracy be-
comes 86.6%. This verifies that while Sw’s null space is
important, discriminative information does exist out-
side of it.

4. Conclusions

In this paper, we proposed a direct LDA algorithm
for high-dimensional data classification, with applica-
tion to face recognition in particular. Since the number
of samples is typically smaller than the dimensionality
of the samples, both Sb and Sw are singular. By modi-
fying the simultaneous diagonalization procedure, we
are able to discard the null space of Sb – which carries
no discriminative information – and to keep the null
space of Sw, which is very important for classification.
In addition, computational techniques are introduced
to handle large scatter matrices efficiently. The result
is a unified LDA algorithm that gives an exact solution
to Fisher’s criterion whether or not Sw is singular.
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