
�This work was supported by the National Natural Science
Foundation of China (69675007) and BeijingMunicipal Natural
Science Foundation (4972008).

*Corresponding author. Tel.: #86-10 68907155.
E-mail address: zhb@public.bta.net.cn (H. Zhang).

Pattern Recognition 35 (2002) 701}711

Feature selection using tabu search method

Hongbin Zhang*��, Guangyu Sun

Computer Institute of Beijing Polytechnic University, West San Huan North Road 56, 6�9 Beijing 100044, People's Republic of China

Received 9 February 1999; received in revised form 6 July 2000; accepted 5 December 2000

Abstract

Selecting an optimal subset from original large feature set in the design of pattern classi"er is an important and di$cult
problem. In this paper, we use tabu search to solve this feature selection problem and compare it with classic algorithms,
such as sequential methods, branch and boundmethod, etc., and most other suboptimal methods proposed recently, such
as genetic algorithm and sequential forward (backward) #oating search methods. Based on the results of experiments,
tabu search is shown to be a promising tool for feature selection in respect of the quality of obtained feature subset and
computation e$ciency. The e!ects of parameters in tabu search are also analyzed by experiments. � 2001 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Feature selection; Tabu search; Pattern classi"er; Search methods; Curse of dimensionality

1. Introduction

The problem of feature selection is important in de-
signing pattern classi"er, whose goal is to acquire an
e$cient subset so as to reduce the dimension of the
feature set. When the number of initial features becomes
too large, not only the cost of collecting features in-
creases, but the performance of designed classi"er will
not be guaranteed in the case of small sample size. From
the standpoint of Bayesian decision rules there are no
`bada features, i.e., the performance of a Bayes classi"er
cannot be improved by eliminating a feature. But in
practice, the assumptions in designing Bayes classi"er
are usually not satis"ed. As a consequence, for a given
amount of samples, reducing the number of features may
result in improving a non-ideal classi"er's performance.
In applications, there are two forms of feature selec-

tion, each form addresses a speci"c objective and leads to
a distinct type of optimization. The "rst form is to "nd an
optimal subset having a prede"ned number of features

and yield the lowest error rate of a classi"er. This is
a non-constrained combinatorial optimal problem. An-
other form of feature selection is aimed at seeking the
smallest subset of features for which error rate is below
a given threshold. This is a constrained combinatorial
optimal problem, in which the error rate serves as a con-
straint and the smallest subset of features is the primary
search criterion.
Let F"� f1 , f2 ,2, f

�
� be the initial set of features with

cardinality n. S is a subset of F. �S� represents subset size,
i.e., the number of inclusive features in the subset. Let
m denote the required subset size in the 1st-form of
feature selection problem and t the tolerable threshold in
the 2nd-form of feature selection problem. Let error(S) be
the relevant error rate or some other measures of perfor-
mance such as class separability (e.g., Mahalanobis dis-
tance), when S is used to design the classi"er. The two
forms of feature selection problem can be represented as
follows:

1st-form of feature selection:
min J(S)"error(S)
s.t. SLF, �S�"m, m(n.

2nd-form of feature selection:
min J(S)"�S�
s.t. S-F, error(S)(t.

0031-3203/01/$22.00 � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S 0 0 3 1 - 3 2 0 3 (0 1) 0 0 0 4 6 - 2

Theoretically, both forms of feature selection are
NP-hard problems. So the optimal solution cannot be
guaranteed to be acquired except for doing exhaustive
search in the solution space [1]. But exhaustive search is
feasible only for small n. For a bigger n, the explosive
computational cost makes the exhaustive search imprac-
ticable. The branch and bound search scheme (BB) intro-
duced by Narendra and Fukunaga is more e$cient by
means of pruning a lot of `infeasiblea solutions [2]. On
the assumption that the objective function is monotonic,
this algorithm is potentially capable of examining all
feasible solutions so that it is an optimal method. Unfor-
tunately, monotonic condition is seldom satis"ed. More-
over, even if 99.9% computational cost saving is done by
BB, the computational complexity remains exponential.
Thus, BB or its improved version*relaxed BB (by intro-
ducing the concept of approximate monotonicity)
[3]*are still unavailable for a large n.
The need of trade-o! between the optimality and e$-

ciency of algorithms for NP-problems was recognized
early, and the main stream of feature selection research
was thus directed toward suboptimal but e$cient and
robust methods. The preliminary works on feature selec-
tion was started in the early 60s. The approaches of
feature selection at that time were based on probabilistic
measures of class separability and on entropies. In some
methods the independence of features was assumed and
the features were selected on the basis of their individual
merits. Such methods ignore the interactions among fea-
tures. As a result, the selected subsets are not satisfactory.
As was pointed out by Cover, the best two independent
features do not have to be the two best [4]. The sequen-
tial forward selection method (SFS), sequential backward
selection method (SBS), and their generalized versions
GSFS, GSBS invented later belong to greedy algorithms
in essence. These algorithms begin with a feature subset
and sequentially add or remove features until some ter-
mination criterion is met. But these methods su!er from
the so-called `nesting e!ecta. It means that the features
discarded cannot be re-selected, and the features selected
cannot be removed later. Since these algorithms do not
examine all possible feature subsets, they are not guaran-
teed to produce the optimal result. The plus l take away
r (PTA) methods was proposed to prevent the `nestinga
e!ect. But there is no theoretical guidance to determine
the appropriate value of l and r. Max}min (MM) method
proposed by Backer and Shipper is a computationally
e$cient method [5]. It only evaluates the individual and
pairwise merits of features. The experiments made by
many researchers show that this method gives the poor-
est results [6,7]. This con"rms that it is not possible to
select a feature subset in a high-dimensional space based
on only two-dimensional information measures without
a substantial information loss.
In recent years, there have been some developments in

the problem of feature selection. Siedlecki and Sklansky

introduced the use of genetic algorithm (GA) for this
problem and obtained good results [8,9]. But the prema-
ture phenomena in GA seem to be di$cult to avoid
and it needs to carefully select and test the parameters
in GA. Pudil et al. improved the sequential methods
by introducing sequential forward #oating selection
(SFFS) and sequential backward #oating selection
(SBFS) [10]. These two methods can be understood
as plus 1-minus x and minus 1-plus x, where x is dynam-
ically changed according to the backtrack e!ect. SFFS
and SBFS avoid the problem of prede"ning l and r
in PTA, and have a mechanics to control the depth of
backtrack. According to the experimental results of
Jain and Zongker [7], SFFS and SBFS achieve results
comparable to the optimal algorithm (BB) but are
faster than BB.
To conclude, despite some progress has been obtained,

the available feature selection techniques for large feature
set are not yet completely satisfactory. They are either
computationally feasible but far from optimal, or they
are optimal or almost optimal but cannot cope with the
computational complexity of feature selection problems
of realistic size. Recently, there has been a resurgence of
interest in applying feature selection methods due to the
application needs. In the application of information
fusion of multiple sensors' data, integration of multiple
models and data mining, the number of features is usu-
ally quite large. In some cases, it may be over 100 [7]. It is
necessary to research more powerful methods for feature
selection, which should give very good results and should
be computationally more e$cient. In Ref. [11], Sklansky
stated that when the initial set contains 20 or more
features and the selected subset contains 10 or fewer
features, the problem of selecting a best or near-best
subset can be quite di$cult because we must search a
large*often astronomically large*space of subsets of
candidate features, and determine a "gure of merit for an
optimum or near-optimum classi"er operating on each
subset in this space. He referred to such problems as
large-scale feature selection. Nowadays along with the
upgrading of computer performance, the feature selection
containing about 20 features has become easier, and the
feature selection problem including 20}49 features has
changed to so-called `medium-sizeda problem. But for a
classi"er based on personal computer, the feature selec-
tion including a few dozens or over 100 of features is still
a di$cult and challenging problem.
It has been argued that since feature selection is typi-

cally done in an o!-line manner, the execution time of
a particular algorithm is of much less important than its
ultimate classi"cation. While this is generally true for
feature sets of appropriate size. However, if the number of
features reaches a few dozen or even more, the execution
time becomes extremely important as it may be impracti-
cal to run some algorithms even once on such large data
sets.

702 H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711

In a recent paper [12], Kudo and Sklansky carried out
a comparative study of algorithms for large-scale feature
selection (where the number of features is over 50). Un-
fortunately, their comparative study does not include
tabu search method. In this paper, we introduce the use
of tabu search method for feature selection, and compare
the performance of tabu search with some other algo-
rithms. In the following section, a brief description of
tabu search is presented. In Section 3, experimental re-
sults of tabu search are shown, providing also compari-
sons to other methods. The parameters in tabu search
will be discussed in Section 4, and a short conclusion
follows in Section 5.

2. Tabu search

The tabu search, proposed by Glover [13,14], is a meta
heuristic method that can be used to solve combinatorial
optimization problem. It has received widespread atten-
tion recently. Its #exible control framework and several
spectacular successes in solving NP-hard problems
caused rapid growth in its application. It di!ers from the
local search technique in the sense that tabu search
allows moving to a new solution which makes the objec-
tive function worse in the hope that it will not trap in
local optimal solutions. Tabu search uses a short-term
memory, called tabu list, to record and guide the process
of the search. In addition to the tabu list, we can also use
a long-term memories and other prior information about
the solutions to improve the intensi"cation and/or diver-
si"cation of the search.
The tabu search scheme can be outlined as follows:

start with an initial (current) solution x, called a con"g-
uration, evaluate the criterion function for that solution.
Then, follow a certain set of candidate moves, called the
neighborhoodN(x) of the current solution x. If the best of
these moves is not tabu (i.e., not in the tabu list) or if the
best is tabu, but satis"es the aspiration criterion, which
will be explained below, then pick that move and con-
sider it to be the new current solution. Repeat the proced-
ure for a certain number of iterations. On termination,
the best solution obtained so far is the solution of the
tabu search. Note that the solution that is picked at
certain iteration is put in the tabu list (¹¸) so that it is
not allowed to be reversed in the next l iterations, i.e., this
solution is tabu. The l is the size of ¹¸. When the length
of tabu list reaches that size, then the "rst solution on the
¹¸ is freed from being tabu and the new solution enters
that list. The process continues. The ¹¸ acts as a short-
term memory. By recording the history of searches, tabu
search can control the direction of the following searches.
The aspiration criterion could re#ect the value of the
criterion function, i.e., if the tabu solution results in
a value of the criterion function that is better than the
best known so far, then the aspiration criterion is satis-

"ed and the tabu restriction is relieved, and move to this
solution is allowed.
Let S

�
denote the best solution obtained so far, ¹¸ the

tabu list. The algorithmic description of the tabu search
can be summarized as follows:

(1) Initialize. Generate an initial solution x. And let
S
�
"x. k"1, ¹¸"�.
(2) Generate candidate set. Randomly pick out a cer-

tain number of solutions from the neighborhood of x to
form the candidate set N(x).
(3)Move. (a) If N(x)"�, Go back to step 2 to regener-

ate the candidate set. Otherwise, "nd out the best solu-
tion y in N(x). (b) If y3TL, i.e., it is tabu, and y does not
satisfy the aspiration criterion, let N(x)"N(x)!�y�.
Then go to 3(a). Otherwise, let x"y. And let S

�
"y if y is

better than S
�
.

(4) Output. If termination condition is satis"ed, stop
and output the S

�
. Otherwise, let TL"TL��x�. (Add the

new solution to the tail of TL. And if the length of TL
exceeds a prede"ned size, remove the head item of the
list.). Let k"k#1 and go back to step 2.

The above paragraph has outlined the basic steps of
the tabu search for solving combinatorial optimization
problems. For more details on the tabu search as well as
a list of successful application, the reader is encouraged
to refer to Glover [13}15]. In the next section, we devel-
op a new method for feature selection based on tabu
search technique.

3. Application of tabu search to feature selection

In this section, we present our tabu search-based algo-
rithms for the two forms of feature selection problem,
compare the performance of tabu search with that of
other algorithms, such as classical sequential methods,
branch and bound method, genetic method and sequen-
tial #oating methods by experiments.

3.1. Feature selection based on misclassixcation error rate

The 2nd-form feature selection stated in Section 1 is
a constrained optimization problem. Generally, a con-
strained optimization problem can be converted into
a relevant non-constrained optimization problem by
transforming the constraint into a penalty function. The
optimization problem of the 2nd-form feature selection
can be converted into the following forms:

Min J(S)"�S�#p(e(S))

s.t. S-F,

where p(e(S)) is the penalty function. We adopt
the penalty function used by Siedlicki and Sklansky

H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711 703

[9], i.e.,

p(e)"
exp((e!t)/m)!1

exp(1)!1
,

where e is the error rate, t the tolerant error rate, and m
a scale factor. This penalty function is monotonic with
respect to e. p(e) is negative when e(t, and p(t)"0,
p(t#m)"1. As e approaches to zero, p(e) slowly
approaches its minimal value:

p(0)"
exp(!t/m)!1

exp(1)!1
'!

1

exp(1)!1
.

For greater value of e than t#m, the penalty function
quickly rises toward in"nity. According to the above
properties, this penalty function is suitable for the
2nd-form feature selection problem. In the following ex-
periments, we prefer to use t"0.20 and m"0.01 after
several di!erent settings were tested.
In an ideal experimental situation, it would be desir-

able to test tabu search-based feature selection procedure
on a group of real data sets derived from various applica-
tions, because that would give the results of such testing
credibility and statistical validity. However, for practical
reasons any extensive testing involving real data is pro-
hibitive. Therefore, we follow the path used by Siedlecki
and Sklansky [9]. To simulate the conditions encoun-
tered by feature selection in practice, they replaced the
true error rate function with a model of the classi"er's
error rate which is a function of the feature selection
vector, accounting for various interactions among the
features and various defects of the classi"er training pro-
cedures, but without assuming any forms of underlying
distributions in the data. The error rate model is as
follows:

e"e
�
�

�� �2���

w
���2���

��
��

2��
��

#�#
�
�
���

v
�
�(
��

2�(
��
,

where �"(�
�
, �

�
,2, �

�
) denotes a feature selection

vector which represents a feature subset in a n-dimension
feature space. �

�
"1 means that the ith feature belongs to

the subset and �
�
"0 means that the ith feature is not

included in the subset. e
�
is a constant representing base

error rate. w
�� �2���

is a value re#ecting the error for
eliminating features i1 ,2, i

�
. � is used to simulate the

training defects, which has a normal distribution N(0, �
�
).

The last item in the above model is called local defect,
which is associated with speci"c subsets of features. In
this item �(

�
can stand for �

�
, ��

�
, or a `don't care casea. For

more details refer to Ref. [9].
For the 2nd-form feature selection problem, we imple-

mented tabu search as follows:

(1) Feature selection vector is represented by a 0/1 bit
string. Initial solution is randomly generated.

(2) The neighborhood of a solution vector x is a set of
solutions, which are generated through adding or
deleting a feature on x.

(3) Use all or randomly selected part of the neighbor-
hood of the current solution as candidate solutions.

(4) Termination condition is a prede"ned number of
iterations.

We implemented and tested the tabu search described
above to solve a 30-dimension feature selection problem
based on the above error rate model. The experimental
results are shown in Table 1. Results of other algorithms
such as SFS, SBS, GSFS, GSBS, PTA, SFFS, SBFS, GA,
etc. are also shown in the same table for comparison.
The GA used in the experiments is implemented as

follows:

(1) Randomly generate a certain number of chromo-
somes to construct an initial population set.
(2) The calculation method of "tness function is the

same as that used in Ref. [9], that is

f (x
�
)"(1#�)max

����
J(x

�
)!J(x

�
),

where x
�
is a feature selection vector,� is the population

of feature selection vectors, � is a small positive constant
which assures that min f (x

�
)'0, i.e., even the least "t

solution is given a chance to reproduce.
(3) Crossover. Select chromosomes with a probability

proportional to their "tness value, respectively, to build-
up a mating set. Each chromosome can be selected more
than once. Pair the chromosomes in the mating set
stochastically, then exchange their genetic information at
a randomly selected point called crossover point. The
two produced o!spring are accepted with a prede"ned
probability called crossover rate.
(4) Mutation. Change at random each bit in each

o!spring with another prede"ned probability called
mutation rate.
(5) Select the best chromosomes of the population size

among the old population and the o!spring to form the
new population of the next generation.
The following conclusions can be drawn based on the

empirical results:

(1) The computation cost of the SFS or SBS algorithms
is much lower than that of other algorithms. How-
ever, the obtained feature subset is poor compared
to other algorithms' results. GSFS(n) and GSBS(n)
give more attractive results while n increases. Mean-
while, the computation cost increases exponentially
to n. Moreover, the nesting e!ect remains in GSFS(n)
and GSBS(n) as in SFS and SBS.

(2) The PTA method outperforms the SFS and SBS
methods, but the results are still far from satisfac-
tory.

704 H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711

Table 1
Performance of various algorithms on a 30-dimension data set�

Algorithm Experiment
times

Criterion function Error rate Number of
selected features

Computation
cost�

Best Mean Worst
(mean)

SFS 1 13.89 0.214 12 465
GSFS(2) 1 13.76 0.195 14 2600
GSFS(3) 1 13.16 0.211 12 12,255
GSFS(4) 1 12.74 0.208 12 54,280
SBS 1 14.02 0.200 14 465
GSBS(2) 1 13.96 0.199 14 2600
GSBS(3) 1 13.52 0.182 14 12,255
GSBS(4) 1 12.93 0.199 13 54,280
PTA(2,1) 1 12.98 0.200 13 1333
PTA(3,1) 1 13.89 0.214 12 885
PTA(3,2) 1 12.98 0.200 13 2139
PTA(1,2) 1 13.03 0.210 12 1333
PTA(1,3) 1 13.03 0.210 12 885
PTA(2,3) 1 12.95 0.199 13 2139
SFFS 1 12.98 0.200 13 3063
SBFS 1 12.75 0.195 13 3345
GA� 20 12.41 12.88 13.24 0.198 12&13 3000
Tabu� 20 12.22 12.69 13.11 0.201 12&13 1800

�We tested a number of settings of parameters in GA and tabu search. The results listed above are comparatively good ones. In the
Section 4 of this paper, the relationship between the parameters and the performance of tabu search will be discussed.
�The computation cost is measured by the number of evaluation times of the criterion function, since the cost of designing a classi"er
and estimating the relevant error rate is far more than that of a particular feature selection algorithm.
�The parameters in GA: population 60, crossover rate 100%, mutation rate 5%, generations 50.
�The parameters in tabu search: tabu list length 30, candidate set size 30, iteration 60.

(3) The #oating methods SFFS and SBFS yield rather
good results. Additionally, the e$ciency of these
algorithms is rather high. Note that the computa-
tion cost varies in di!erent particular problem.
However, each backtrack will contribute to give
more attractive feature subset in certain level. The
defect of these sequential #oating methods is that
they are still likely to trap into a local optimal
solution even if the criterion function is monotonic
and the scale of the problem is quite small. Fig. 1
shows an example of this defect, where SFFS will
search along the path: 0001P0011P0111P1111
(shown by bold arrows), which is the same as the
result of SFS. But `0011a is merely the third one of
the best solutions with subset size 2.

(4) Under the condition of approximately equal com-
putational cost with SFFS and SBFS, running GA
20 times, the best result is superior to SFFS and
SBFS, and the average value of the criterion func-
tions is near to that of SFFS and SBFS.

(5) During 20 times of running, the tabu search algo-
rithm obtained the best solution among all algo-
rithms tested (the criterion function value is 12.22).
The average criterion function value is better as well.

And the computational cost is much lower than that
of GA, SFFS and SBFS.

Fig. 2 shows the variations of the criterion function
value, the number of selected features and error rate in one
run of tabu search. From the curves, it can be seen that the
tabu search rapidly converged to the feasible/infeasible
region border, where the size of feature vectors is between
13 and 15, error rate between 0.18 and 0.22, and intensi"-
cation search are concentrated on the region where the
optimal solution most likely exists. Therefore, tabu search
is more e$cient and shows good performance.
In order to test the performance of tabu search for

large-scale feature selection, we also implemented the
proposed tabu search method on a 60- and a 100-dimen-
sion feature selection problems based on the above error
rate model. The experimental results are shown in
Tables 2 and 3, respectively.
From Tables 2 and 3, we see that for 60- and 100-

dimension feature selection problems, tabu search also
obtained satisfactory results. During a few runs, tabu
search method generally has a high possibility to "nd
better solutions that cannot be found by other selection
algorithms.

H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711 705

Fig. 1. An example showing that SFFS traps into local optimal
solution. Each node represents a solution vector, and the 0/1 bit
strings represent the solutions. Each digit within the circles
represents the rank of the error rate in the same subset size level.
SFFS will search along the path emphasized by bold arrows.
SBFS's search path is the reverse of that of SFFS.

Fig. 2. Criterion function value, number of features selected and error rate in 1 run of tabu search.

3.2. Feature selection based on Mahalanobis distance

In this section we use Mahalanobis distance as the
objective function to solve the 1st-form feature selection
problem. We have taken the same experiments as Kittler
[6], Pudil [10] and Jain [7], in order to compare the

performance of tabu search with that of sequential
methods, sequential #oating methods, GA, etc. The data
set used is a 20-dimensional, 2-class set, and the 2-class
conditional densities are Gaussian, with mean vectors
�
�
and �

�
, respectively and a common covariance matrix

�. Under Gaussian class conditional densities, the
probability of error is inversely proportional to the
Mahalanobis distance. So the Mahalanobis distance can
be used to assess the `goodnessa of a feature subset. That
is,

J
	

"(�
�
!�

�
)����(�

�
!�

�
).

The Mahalanobis distance is monotonically with the
feature subset, i.e.,

J
	
(A�B)'J

	
(A),

where J
	
(A) is the Mahalanobis distance of the two

classes under feature subset A. The monotonic relation
between Mahalanobis distance and the probability of
error can be represented as

J
	
(A)'J

	
(B)=Nerror(A)(error(B),

where error(A), error(B) denote the classi"er's error rates
using subset A and B, respectively.
TakingMahalanobis distance as the criterion function,

we use tabu search to solve the 1st-form feature selection
problem, i.e., select an optimal feature subset of a certain
number of features that yields the lowest error rate of
a classi"er. To make tabu search and GA suitable for this
problem, we need some modi"cation to them.

706 H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711

Table 2
Performance of various algorithms on a 60-dimension data set

Algorithm Experiment
times

Criterion function Error rate
(mean)

Number of selected
features

Computation
cost�

Best Mean Worst

SFS 1 20.72 0.197 21 1830
GSFS(2) 1 18.90 0.199 19 19,375
SBS 1 20.52 0.193 21 1830
GSBS(2) 1 20.51 0.203 21 19,375
PTA(2,1) 1 18.58 0.195 19 37,820
PTA(1,2) 1 19.65 0.196 20 37,820
SFFS 1 18.03 0.200 18 11,225
SBFS 1 18.63 0.196 19 17,240
GA� 20 18.73 19.25 20.08 0.198 19&20 7200
Tabu� 20 18.19 19.09 19.55 0.200 18&20 7200

�The computation cost is measured by the number of evaluation times of the criterion function, since the cost of designing a classi"er
and estimating the relevant error rate is far more than that of a particular feature selection algorithm.
�The parameters in GA: population 120, crossover rate 100%, mutation rate 5%, generations 60 (without local search).
�The parameters in tabu search: tabu list length 120, candidate set size 60, iteration 120. Among 20 runs, the initial feature subsets are:
one time is null set, one time the full feature set, and the others are randomly selected subsets.

Table 3
Performance of various algorithms on a 100-dimension data set

Algorithm Experiment
times

Criterion function Error rate
(mean)

Number of selected
features

Computation
cost�

Best Mean Worst

SFS 1 40.82 0.196 41 5050
GSFS(2) 1 38.97 0.199 39 87125
SBS 1 44.34 0.201 44 5050
GSBS(2) 1 38.85 0.197 39 87125
PTA(2,1) 1 38.89 0.200 39 171700
PTA(1,2) 1 39.05 0.200 40 171700
SFFS 1 38.58 0.197 39 31950
SBFS 1 38.49 0.196 39 43045
GA� 20 38.61 39.73 41.75 0.199 39&42 20000
Tabu� 20 38.24 39.39 40.10 0.200 38&40 20000

�The computation cost is measured by the number of evaluation times of the criterion function, since the cost of designing a classi"er
and estimating the relevant error rate is far more than that of a particular feature selection algorithm.
�The parameters in GA: population 200, crossover rate 100%, mutation rate 5%, generations 100 (without local search).
�The parameters in tabu search: tabu list length 200, candidate set size 100, iteration 200. Among 20 runs, the initial feature subsets are:
one time is null set, one time the full feature set, and the others are randomly selected subsets.

Tabu search's implementation is modi"ed as
follows.

(1) The initial solution remains being generated ran-
domly, but it must have exactly the required number
of features.

(2) The objective function value of a feature subset
equals to the Mahalanobis distance for this feature
subset.

(3) The neighborhood of a solution is generated by
removing a feature meanwhile adding another fea-
ture randomly.

Other steps are the same as that in Section 3.1.
The modi"cation to GA is as below:

(1) All the initial solutions should have the required
subset size.

(2) The Mahalanobis distance is used as the "tness
function of the feature subsets.

(3) The crossover operation is implemented by random-
ly choosing the required number of features from the
union set of the two mating chromosomes.

(4) Mutation should be modi"ed as adding a feature
and eliminating another feature simultaneously.

H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711 707

Table 4
Comparison of various algorithms using Mahalanobis distance
as criterion function

Algorithm Experiment
times

Output Mahalanobis
distance

m"10 m"12

BB 1 38.16 67.23
SFS 1 29.72 42.86
GSFS(2) 1 29.72 47.30
GSFS(3)� 1 29.27 49.62
SBS 1 30.00 41.39
GSBS(2) 1 30.00 62.92
GSBS(3) 1 30.00 41.39
SFFS 1 38.16 54.33
SBFS 1 34.51 62.92
GA� 20 38.06� 56.48�
Tabu� 20 38.16� 58.22�

�GSFS(3) cannot get the solution for m"10 directly. Here
GSFS(3) is "rst used to obtain a solution for m"9, then take
a step of SFS to get the solution for m"10. The situation of
GSBS(3) is similar.
�The parameters of GA: population 40, crossover rate 100%,
mutation rate 25%, generations 30.
�Mean of 20 runs' results: 18 times among the 20 runs get the
optimal solution whose Mahalanobis distance value is 38.16,
1 time obtains Mahalanobis distance of 36.77, another run gets
Mahalanobis distance of 37.55.
�Mean of 20 runs' results; the largest Mahalanobis distance
achieved is 67.23, the smallest value is 43.87. 7 times of the runs
get the optimal value.
�The parameters of tabu search: tabu list length 40, candidate
set size 40, iterations 30.
�All of the 20 runs get the optimal solution whose Mahalanobis
distance value is 38.16.
�Mean of 20 runs' results: 7 times among the runs get the
optimal solution whose Mahalanobis distance is 67.23, 1 time of
the runs outputs Mahalanobis distance of 62.92, 11 times of the
runs output Mahalanobis distance of 52.59, another run outputs
52.44.

In an initial 20-dimensional feature space, we tested 11
algorithms for selecting m"10 and 12 features. The
experimental results are shown in Table 4. We also use
exhaustive search to get the Mahalanobis distance of all
feasible solutions. The distribution of the Mahalanobis
distances of all the solutions that include exactly 12
features is shown in Fig. 3. The positions of several
algorithms' results are pointed out in Fig. 3 as well. Note
that the best and the worst results during 20 runs of TS
and GA are also shown.
The following conclusions can be drawn from the

empirical results:

(1) The SFS and SBS algorithm have comparable per-
formance. But their results are far from the optimal
solution obtained by BB.

(2) At m"10, GSFS(2), GSFS(3), GSBS(2), GSBS(3) do
not outperform SFS and SBS while their computa-
tion cost increases considerably. For m"12,
GSBS(3) get the same solution as SBS. GSFS(2) and
GSFS(3) get little better solutions, but these remain
far from the optimal solution. OnlyGSBS(2) achieves
a near optimal solution for m"12. We can also see
that GSFS(n), GSBS(n) do not always get a better
solution with increasing n. The performance even
degrades in some case.

(3) The SFFS, SBFS algorithms obtained rather satis-
factory results for both m"10 and 12. Specially,
SFFS obtained the optimal solution for m"10.

(4) The GA algorithm performs well for m"10. 18
times of the 20 runs obtained the optimal solution.
In the worst case, it still obtained a near optimal
solution. For m"12, 7 times of the runs GA reach
the global optimal solution. But in the worst case,
the result is comparable to that of SFS.

(5) For m"10, the tabu search algorithm obtained
global optimal feature subset in all 20 runs. For
m"12, the probability that TS obtained the opti-
mal feature subset at each run is approximately
equal to that of GA using the mentioned parameters,
under such setting the two algorithm have compara-
ble computation cost (tabu search is a little more
e$cient). The tabu search algorithm is superior to
GA in that the worst result obtained by TS is notice-
ably better than what is given out by GA, the mean
of the resulted criterion function of tabu search is
higher than that of GA.

4. The e4ect of parameters in tabu search

As mentioned above, we have experimented a number
of di!erent parameter settings in tabu search. In this
section, the e!ect of these parameters on the performance
of tabu search will be discussed, and the best values
obtained for them by our extensive parametric study are
also analyzed.

4.1. Tabu list size

Tabu list embodies the short-term memory function
for tabu search. It forces the algorithm not to reverse to
the last l (tabu list size) moves. Therefore, the size of tabu
list determines how many solutions one would like the
search not to reverse back. A large tabu list size allows
more diversi"cation and forces the new solution to be
a father point. On the contrary, a small tabu list size
makes the search more intensive within the neighbor-
hood of the current solution. In practice, we need to use
an appropriate size of tabu list.
We tested di!erent tabu list lengths varied from 2 to 90

(at interval of 2) for the 2nd-form feature selection

708 H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711

Fig. 3. The distribution of Mahalanobis distance of all the solutions that include 12 features and the positions of several algorithms'
results. A point (x, y) in the curve indicates the number of solutions, whoseMahalanobis distance values are in the interval [x!1, x#1].

Table 5
Comparison of di!erent sizes of tabu list

Tabu list length The number of tests
which get the same
solution as when
tabu list size is 90

Criterion func-
tion (mean)

2 10 13.06
4 12 13.00
6 16 12.92
8 19 12.81
10 20 12.74
12 20 12.74
14 20 12.74
16&90 21 12.66

problem. The maximum number of iterations was set to
90. Each search process with di!erent tabu list length
started from a common initial solution. We repeated the
test 21 times for each di!erent initial solution. The results
are listed in Table 5. Note that if the algorithm reverses
to the best solution obtained previously, then stop the
search since that would repeat the previous path.
From Table 5, we observed that as the tabu list size

reaches a certain value, continuously increasing the tabu
list size will not improve the performance further. In our
experiments, the tabu search did not get better result
when the tabu list size exceeds 16. Note that 16 is approx-
imately the half of 30, the initial feature number.
The appropriate length of tabu list should be deter-

mined jointly with other parameters in tabu search.
Additionally, the distribution of feasible solutions in par-
ticular problems should also be considered. Generally, it
is suggested that the region of [n/2, 3n] for tabu list size
would be a good choice, where n is the number of initial
features.

4.2. Candidate set size

This parameter controls the number of trial
solutions to be generated from a current solution.
We tested various values of the candidate set size for
the 2nd-form problem of feature number 30, and tabu
list size 30. The candidate set size was set to vary
from 30 (whole neighborhood) down to 4. To make the
computational cost approximately equal, as the candi-
date set size decreased, the number of iteration should
increase properly. In one test, each search using di!erent
candidate set size started from the same initial solution,
and we repeated this test 20 times with di!erent random-
ly generated initial solutions. The results are given in
Table 6.
From Table 6, we can see that the larger the candidate

set size is, the better the mean objective function value is,
because one has more choices to select from. Table 6 also
shows that the larger the candidate set size is, the more
frequently tabu list takes e!ect and some moves are tabu.
This makes an intensi"cation of the search. On the con-
trary, a small candidate set size makes the tabu list
seldom take e!ect, and the search process becomes too
arbitrary. This will decrease the performance of the tabu
search.

4.3. Initial solution

We have tested the e!ect of di!erent initial solutions
on the resultant solution by parametric study. In the
experiments the tabu list length was 30, the candidate set
size 30, and the maximum number of iterations was 60.
We compared the results obtained from random initial
solutions with those from the better initial solutions,
which are the results of other near optimal algorithms.
The results are shown in Table 7.

H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711 709

Table 6
Comparison of di!erent candidate set sizes

Candidate set size Number of
iterations

Output criterion function Total times tabu list
took e!ect (mean
of 20 runs)

Mean of times tabu
list took e!ect at each
iterationMean Best Worst

30 60 12.69 12.22 13.11 33.8 0.554
15 120 12.73 12.33 13.05 32.6 0.271
8 225 12.87 12.12 13.65 30.3 0.134
4 450 13.13 12.61 13.76 33.6 0.074

Table 7
Comparison of di!erent initial solutions

Initial solution Experiment
times

Criterion
function of
initial
solution

Criterion
function of
resultant
solution

Result of SFS 1 13.89 12.61
Result of SBS 1 14.02 12.12
Result of PTA(2,1) 1 12.98 12.77
Result of PTA(1,2) 1 13.03 12.36
Result of SFFS 1 12.98 12.77
Result of SBFS 1 12.75 12.75
Randomly 20 * 12.69 (mean)
generated

Table 8
Comparison of two types of neighborhood

Neighborhood type Experiment times Output criterion function Times when tabu list take e!ect

Mean Best Worst Mean Most Least

A 20 12.69 12.22 13.11 33.8 49 27
B 20 13.02 12.32 13.64 2.2 4 0

From Table 7 we can see that the tabu search is
not much sensitive to initial solutions in the experiments.
When we took the near optimal solutions (the outputs
of other algorithms) as the initial solutions, the
average value of the criterion function is 12.56, a little
better than that of the random initial solutions. In fact,
when the initial solution is far from the optimal solution,
the tabu search acts more like SFS or SBS at the begin-
ning steps.

4.4. Neighborhood type

Recall that in Section 3.1 we have de"ned the neigh-
borhood of a solution as those generated by alternating

the status (inclusive/exclusive) of exactly one feature. We
call such neighborhood as type A to distinguish from
neighborhood type B de"ned as below.
A B-type neighborhood of a solution x is generated by

reversing one or two features' states of x. The B-type
neighborhood can be divided into following "ve cases.

(1) 0P1: adding a feature.
(2) 1P0: removing a feature.
(3) 00P11: adding two features simultaneously.
(4) 11P00: removing two features simultaneously.
(5) 10P01: adding a feature meanwhile removing an-
other feature.

Note that an A-type neighborhood is included in the
B-type neighborhood.
Suppose the original feature space be n-dimension. The

size of A-type neighborhood is n, and B-type n(n#1)/2.
So when using neighborhood of type B, the computation
cost will increase tremendously if we try to maintain
high-ratio access to the neighborhood. However, de-
creasing the access ratio will make the function of tabu
list degrade and the control over search direction
becomes weak. Extremely, when the neighborhood be-
comes the power set 2�, the tabu search will become
random search. Based on the above analysis, the con-
clusion is naturally that tabu search using B-type neigh-
borhood with low access rate will not perform well. The
following experiments on the 1st-form of feature selection
veri"ed this analysis.
Let the neighborhood type be B, tabu list size 30,

and the number of iterations 60. At each step, the next

710 H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711

move is selected from 30 solutions, which are random-
ly picked out from the B-type neighborhood of the
current solution. Repeat this experiment 20 times. The
results are listed in Table 8. To compare expediently,
we also list the results using neighborhood type A in
Table 8.
From the experimental results it can be seen that

the tabu list seldom takes e!ect when the neighbor-
hood is B-type. In fact, in 2 runs the move is never
tabu. It becomes no di!erent from the random
search, and this makes the performance of tabu search
worse.

5. Conclusion

In this paper, we have used tabu search to solve the
two forms of optimal feature selection problem. The
experimental results are very encouraging and show that
the tabu search not only has a high possibility to obtain
the optimal or a close to the optimal solution, but also
requires less computational time than the branch and
boundmethod andmost other currently used suboptimal
methods.
The branch and bound method is optimal, but the opti-

mality of the results is constrained by the monotonicity
of the feature selection criterion function. Another draw-
back is that, for problems with more features, the branch
and bound method is still impractical, and the size of
features it can tackle depends on the computer's perfor-
mance.
Based on our experimental results, the sequential #oat-

ing methods SFFS and SBFS are e$cient and usually
can "nd fairly good solutions. But they also su!er from
trapping into local optimal solutions. We have demon-
strated an example of this problem.
In this paper, our experiments are done on synthetic

data. It will be a meaningful work to test and compare
the performance and e$ciency of tabu search with GA
and SFFS (SBFS) on real data sets.

References

[1] T.M. Cover, J.M. Van Campenhout, On the possible or-
derings in the measurement selection problem, IEEE
Trans. Systems Man Cybern. 7 (9) (1977) 657}661.

[2] P.M. Narendra, K. Fukunaga, A branch and bound algo-
rithm for feature subset selection, IEEE Trans. Comput.
26 (9) (1977) 917}922.

[3] I. Foroutan, J. Sklansky, Feature selection for automatic
classi"cation of non-Gaussian data, IEEE Trans. Systems
Man Cybernet. 17 (1987) 187}198.

[4] T.M. Cover, The best two independent measurements are
not the two best, IEEE Trans. Systems Man Cybern. 4 (2)
(1974) 116}117.

[5] E. Backer, J.A. Shipper, On the max}min approach for
feature ordering and selection, Proceedings of the Seminar
on Pattern Recognition, Liege, 1977.

[6] J. Kittler, Feature set search algorithms, in: C.H. Chen
(Ed.), Pattern Recognition and Signal Processing, Sijtho!
and Noordho!, Alphen aan den Rijn, The Netherlands,
1978, pp. 41}60.

[7] A. Jain, D. Zongker, Feature selection: evaluation, applica-
tion, and small sample performance, IEEE Trans. Pattern
Anal Mach. Intell. 19 (2) (1997) 153}158.

[8] W. Siedlecki, J. Sklansky, On automatic feature selection,
Int. J. Pattern Recognition Artif. Intell. 2 (2) (1988) 197}220.

[9] W. Siedlecki, J. Sklansky, A note on genetic algorithm for
large-scale feature selection, Pattern Recognition Lett. 10
(11) (1989) 335}347.

[10] P. Pudil, Novovicova, J. Kittler, Floating search methods
in feature selection. Pattern Recognition Lett. 15 (11)
(1994) 1119}1125.

[11] J. Sklansky, W. Siedlecki, Large-scale feature selection, in:
C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.), Handbook of
Pattern Recognition and Computer Vision, World Scient-
i"c, Singapore, 1993, pp. 61}123.

[12] M. Kudo, J. Sklansky, Comparison of algorithms that
select features for pattern classi"ers, Pattern Recognition
33 (1) (2000) 25}41.

[13] F. Glover, Tabu search I. ORSA J. Comput. 1 (1989) 190}206.
[14] F. Glover, Tabu search II. ORSA J. Comput. 2 (1989) 4}32.
[15] F. Glover, M. Laguna, Tabu search, in: R.C. Reeves (Ed.),

Modern Heuristic Techniques for Combinatorial Prob-
lems, McGraw-Hill, Berkshire.

About the Author*HONGBIN ZHANG received the B.S. degree in Automation in 1968, and the M.S. degree in Pattern Recognition
and Intelligent System in 1981, both fromTsinghuaUniversity, China. From 1986 to 1989 he was an invited researcher in Department of
Information Science of Kyoto University, Japan. From 1993 to 1994 he was a visiting scholar of RPI, USA. Since 1993 he has been
a professor of the Computer Institute of Beijing Polytechnic University, China. His current research interests include pattern
recognition, computer vision, image processing and neural networks.

About the Author*GUANGYU SUN received the B.S. degree in Geology from Peking University in 1992, and the M.S. degree in
Pattern Recognition and Computer Vision from Beijing Polytechnic University in 1999. His current interests include pattern
recognition and computer vision.

H. Zhang, G. Sun / Pattern Recognition 35 (2002) 701}711 711

