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Abstract: 3D measurements can be recovered from several views by trian-
gulation. This paper deals with the problem of where to place the cameras in
order to obtain a minimal error in the 3D measurements, also called camera
network design in photogrammetry. We pose the problem in terms of an opti-
mization design, dividing it into two main components: 1) an analytical part
dedicated to the analysis of error propagation from which a criterion is derived,
2) a global optimization process to minimizes this criterion. In this way, the
approach consists of an uncertainty analysis applied to the reconstruction pro-
cess from which a covariance matrix is computed. This matrix represents the
uncertainty of the detection from which the criterion is derived. Moreover, the
optimization has discontinuities mainly due to the unobservability of points,
which leads to a combinatorial optimization process. These aspects are solved
using a multicellular genetic algorithm. Experimental results are provided to
illustrate the e�ectiveness and e�ciency of the solution.
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Placement Optimal de Cam�eras pour une

reconstruction pr�ecise

R�esum�e : Les mesures tridimensionelles peuvent être obtenues �a partir
de plusieurs images par la m�ethode de triangulation. Cet article �evoque le
probl�eme du placement des cam�eras de fa�con �a obtenir une erreur minimale
lors des mesures tridimensionelles. En photogramm�etrie, on parlera du concept
du r�eseau de cam�eras. Nous poserons le probl�eme en termes d'optimisation et
nous le diviserons en deux parties: 1) Une partie analytique d�edi�ee �a l'analyse
de l'erreur de propagation d'o�u d�ecoulera un crit�ere. 2) Un processus global
d'optimisation minimisera ce crit�ere. De ce côt�e-l�a, l'approche consiste en une
analyse d'incertitude appliqu�ee au processus de reconstruction d'o�u une ma-
trice de covariance sera calcul�ee. Cette matrice repr�esente l'incertitude de la
detection pour lequel le crit�ere est d�eriv�e. Par ailleurs, l'optimisation a des as-
pects discontinus essentiellement dû �a l'inobservabilit�e des points. Ce facteur
va nous amener �a utiliser un processus d'optimisation combinatoire que nous
avons r�esolu en utilisant un algorithme g�en�etique multicellulaire. Des resultats
exp�erimentaux sont inclus pour illustrer l'e�cacit�e et la rapidit�e de la solution.

Mots-cl�es: Concept de r�eseau de cam�eras, analyse d'incertitude, optimisa-
tion globale, matrice de covariance, algoritmes g�en�etiques.
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1 Introduction

Visual measurements can be made signi�cantly more accurate by selecting a
well designed convergent camera con�guration and a suitable mathematical
model of the process. As an example see the work of Fraser [Fra92] in which
he reports highly accurate measurements employing a strong (hand-designed)
photogrammetric network using 36 photographs taken by 18 well disposed
cameras with high convergence angles. Another example is the work of Beyer
[Bey92] in which he reports accuracies of 1/100th of a pixel using CCD cam-
eras. Despite achievements like these, and due to the complexity of designing
the convergent multistation networks, the photogrammetric measurement tech-
nique has rarely been applied by other than experienced photogrammetrists.

The problem of automating the camera network design process in order
to attain highly accurate measurements has received comparatively little at-
tention given its practical importance. This paper deals with the problem of
determining the attitude of several cameras observing some targets placed on a
3D object with the goal of achieving highly accurate measurements. The input
data would be the a priori approximatively known set of target points to be
measured in order to obtain the best accuracy in the �nal measurements. Sev-
eral additional constraints like the upper bound on the number of cameras and
placement limitation due to the incidence angle must be taken into account in
the exploration of the search space. Automating such a camera placement pro-
cess reaches a high complexity due to the competing nature of the constraints
and numerous design decisions that need to be made. The mathematical model
of triangulation plays a role as it leads to the uncertainty model and therefore
to the error criterion to be optimized. This paper presents a prototype system
called EPOCA (an acronym for \Evolving POsitions of CAmeras") which we
have implemented to test the validity of our approach.

The paper is divided as follows: �rstly, we pose the problem isolating
several key issues and review the literature related to sensor planning. We
describe our approach into two main sections. The �rst section is divided into
three subsections: the reconstruction process, 3D error estimation and image
error estimation. All are used in the development of a criterion. The second
section presents our method of camera placement implemented as a multicellu-
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lar genetic algorithm which optimizes this criterion. Finally, we present some
experimental results followed by a discussion.

1.1 Statement of the Problem

Figure 1: Two convergent cameras. The cones illustrate the camera attitudes
and the ellipsoids represent the uncertainty of the observed targets.

The problem we would like to approach is the automation of the camera
network design process in order to obtain accurate 3D measurements. We
restrict ourselves to the problem where there are no limitation on the cam-
era positions (the only exception is the incidence angle constraint.), and it is
simpli�ed to the case where the cameras remain at a �xed distance to the set
of target points to be measured. Imagine that we would like to accurately
measure some �ducial marks distributed over a planar surface, and that we
would like to place the cameras to obtain a minimal error. Figure 1 shows two
cameras observing �ve target points, represented by error ellipsoids describing
their position uncertainty. Changing the camera attitudes (position and ori-
entation) changes the orientation and size of the ellipsoids. The main question
we would like to answer is given in Table 1. From these initial questions the
choice of a criterion combined with an optimization process will be the key
concepts.

INRIA
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� Where should we place the cameras in order to obtain the minimal 3D
error?

From this question several subproblems arise:

1. How can we develop a good criterion to judge our con�guration?

2. What conditions are needed for our system to work?

3. Which are the interrelated aspects involved in the development of
the system?

4. What would be a good method to optimize the placement of the
camera?

Table 1: Some initial questions.

1.2 Related Work

Researchers in the computer vision and photogrammetric communities have
recognized the need to automate the process of camera network design. The
literature devoted to this problem is however limited due to di�erent com-
plex aspects that are involved. This section surveys the existing literature on
automated single and multiple camera placement.

Single camera systems include the following. The HEAVEN system devel-
oped by Sakane et al. [SS91] is an example of a system that �nds possible
sensor positions using a generate-and-test strategy, for the inspection of an ob-
ject tessellated by a sphere of a given radius. The object is unoccluded but an
analysis of light source placement is incorporated. This study was extended
to the VIO system developed by Sakane and Niepold [SNSS92]. Another ex-
ample of the generate-and-test approach for camera and light positions is ICE
[YHS95]. This places emphasis on the illumination planning component of
the problem. For camera placement the main task constraint considered is
edge visibility. The sensor is positioned to minimize the occlusion of selected
feature edges. The evaluation of this criterion is based on an aspect graph
representation of the object.

RR n�3338
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Other works have adopted a synthesis approach. Instead of taking a dis-
crete approach, the idea is to model constraints as analytical functions. The
Automatic Sensor and Illuminator Positioning Work of SRI carried out by
Cowan et al. [CK88] optimizes the camera locations to satisfy several geomet-
ric constraints like: visibility, polyhedral objects in focus, within the sensor
�eld of view, at su�cient resolution and incidence angle, and unoccluded by
the object itself or other objects in the working environment. The MVP system
developed by Tarabanis et al. [TTA91] determines an optimal sensor location
and sensor parameters (focal length, focus setting and aperture) for viewing
a set of surfaces and avoiding occlusion. MVP is currently being extended to
work in dynamic environments [AAT]. The placement of illumination sources
for inspecting edge features has also been investigated by Cowan et al. While
all of these systems provide solutions to the task of viewing an object, they
do not address the task of deriving accurate object dimensions. They are also
inadequate for complex objects on which not all features will be visible from
a single viewpoint.

Tarbox and Gottschlich [TG93] have recognised the need for multistation
solutions to overcome object occlusion problems. They have implemented a
solution in the IVIS system for an active triangulation sensor. Cowan has
also experimented methods to place multiple sensors overcoming the occlu-
sion problem associated with 3D objects. Fritsch and Crosilla [FC90] have
investigated the potential of optimizing multi-station con�gurations using an
analytical �rst order design (FOD) approach by iteratively shifting the sensor
stations until the covariance matrix of the estimated object feature coordi-
nates is better than a criterion matrix. However their approach is limited to
the optimization of existing con�gurations. Critical decisions, for example the
number of camera stations and their positioning for a good approximation
to a strong con�guration, are expected to be made by the user prior to the
optimization. An in�nite number of possible camera station poses exists just
limited by the set of competing constraints. The complexity of camera place-
ment belongs to the class of NP-complete1 problems [Mas97]. Consequently,
it can be concluded that a trial and error approach to FOD is unsatisfactory

1All known exact algorithms for NP-complete problems run, in the worst case, in a time
exponential in the size of the input data. It is widely conjectured that this will not change
in the future.
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and not tractable. Finally, a work called CONSENS which follows the expert
system approach and uses multiple cameras in combination with optical tri-
angulation, was developed by Mason et al. [MG95]. It outlines a method of
overcoming these limitations. The method is based on the theory of generic
networks, which constitutes compiled expertise, describing an ideal con�gura-
tion of four camera stations that can be employed to provide a strong imaging
geometry for the class of planar network design problems. Complex objects
are divided into planes, each one is evaluated through one of these networks
and then connected with some extra cameras with the purpose to establish
just one common datum.

Unlike all other approaches, our idea is to pose the problem in terms of
a global optimization design which is capable of managing the problem using
an adaptive strategy. It explores the solution space using both non continous
optimization and combinatorial search.

2 The Approach

This section presents a method to approach the problem of optimal camera
placement in order to obtain accurate positions of 3D target points. This
approach can be divided into two main components. Firstly, we will develop an
analytic uncertainty analysis based on error propagation phenomenon. This
will allow us to express an error criterion to be minimized. Secondly, we
will present an evolutionary optimization method similar to genetic algorithm
[Gol89], which optimizes this criterion.

2.1 Three Dimensional Reconstruction

The problem involves a set of M cameras viewing P points placed over N

surfaces. We want to know the best camera network in order to reduce the
uncertainty of the reconstructed points. Given the camera matricesM , we can
reconstruct the 3D points in a least square sense. We assume here that cameras
have no distortion or, as usually in high accurate measurement, that distortion
has been cancelled out after having been estimated. So, a camera can be
considered as a system that performs a known linear projective transformation
from the projective space P3 into the projective plane P2.

RR n�3338
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pij �MiPj : (1)

This mapping is represented by a matrix M3�4

M = K(R j T ) ; (2)

where K is the matrix of intrinsic parameters, R is a rotation matrix and T a
translation vector. Equation (1) can be rewritten as

A(pi;Mi)P = b(pi;Mi) ; (3)

where A is a 2i� 3 matrix and b is a 2i� 1 vector. If matrix AtA is invertible
we can �nd the least squares solution

P = (AtA)�1Atb ; (4)

which minimizes kAP � bk2.

2.2 3D Error Estimation

Until now, we have studied the function to transform a point in space into an
image point

P = f(p) ; (5)

given by Equation (4) which is going to be useful to develop an analysis of
error propagation [Fau93]. The key of manipulating geometric uncertainty
is to be able to transform the information or probability density function on
a feature available in one form (image point) into another form of interest
(point in space). This transformation of information can be grouped into a
family of transformations which we approximate to the exact transformation
by a �rst-order relation using Taylor series. Successive moments can be found
by equating higher order terms; however, using higher order terms is neither
viable nor desirable, as any computational simplicity will be lost. In this
way, a linear approximation is to be used in which we assume a Gaussian
distribution. Then the mean E[P ] and covariance �P are su�cient information
to completely de�ne the feature density function. All this is given by the
following proposition (see [Fau93, chapter V]):

INRIA
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Proposition 1 Given a random variable p 2 Rm , of Gaussian distribution,
mean E[p],and covariance �p, and P 2 Rn , the random vector given by P =
f(p), where f is a function of class C1, the mean of P can be approximated to
a �rst-order Taylor expansion by f(E[p]) and its covariance by:

�P =
@f(E[p])

@p
�p

@f(E[p])

@p

t

: (6)

Therefore, �P is a symmetric positive de�nite matrix, which describes the
bounds on P = f(p) in the vicinity of E[P ] = f(E[p]) given those of p in
the vicinity of E[p]. This proposition lets us compute the uncertainty of the
three-dimensional point knowing the uncertainty in the image points. Another
model is needed to give an interpretation of matrix �p, which describes bounds
on the possible values of the coordinates of p. This implies the necessity of an
image error model.

2.3 Image Error Estimation

In order to estimate the covariance matrix �p of our 2D measured points, we
will use Proposition 1. Therefore, we must have a function to relate image
point errors taken from several photographs over di�erent angles. The relation
will be established using the cross-ratio [Moh93]:

f(k) = k(x1; x2; x3; x4) =
(x3 � x1)(x4 � x2)

(x4 � x1)(x3 � x2)
; (7)

which is a projective invariant. In this way

�k = @f(k) �p @f(k)t ; (8)

computes the uncertainty of the cross-ratio with respect to the uncertainty of
the image points. It can be rewritten as

�p = �k
�

kJkk2 ; (9)
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where �k represents the standard deviation of the cross-ratio, � is the average
distance between the targets, and Jk is the Jacobian of k. We assume that the
image errors are Gaussian and identical (similar targets) along their alignment
direction, and constant during the experiment (similar distance of observation
and viewing angle). We used a subpixel target detector, on the calibration grid
of Figure 3, similar to one presented by Gruen [Gru85]. From hundred of retro-
measures of four approximatively equidistant points along each direction, we
compute the uncertainty in the image points �p from the measured uncertainty
of the cross-ratio �k, using Equation (9). �k is a function of the observation
angle � along their alignment direction. As the targets are circular and viewed
as an ellipse, it can be assumed that the covariance of its two dimensional
location can be considered as a diagonal matrix within the reference frame
of the two axes of the ellipse, and that the associate variances are the one
corresponding to the viewing angle in the two corresponding directions. The
graphs, in Figure 2, show �nal results of our experiments along the x and y

directions. These graphs can be approximated to a model using the Levenberg-
Marquardt method [PFTV88] and the merit function2

y = �(e(
�

90�x
) + e(

�

90+x
)) + 
 ; (10)

yielding the best �t parameters: � = 79:74, � = 1:31� 10�3 and 
 = 8� 10�3

for both experiments. This model corresponds to the incidence angle constraint
in camera network design. Notice that for an angle longer than 80 degrees,
we have no more measurements and approaching this value leads to an in�nite
uncertainty. �p model is useful to compute the covariance matrix �P of the
3D points.

2.4 The Criteria

Once we have computed the covariance matrix �P , it is necessary to choose
a criterion useful to the optimization process. In this sense, we need to select
a metric to compare symmetric positive de�nite matrices. The comparison
of covariance matrices is interpreted as the required standard deviation of
function P = f(p) to be better when it is computed with covariance matrix

2Note that these observations are better approximated to a hyperbolic function.
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a) Best �t along x axis direction.
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b) Best �t along y axis direction.
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Graphs showing the best �t curve .

Figure 2: The following graphs show the best �t curve along both axes. The X
axis corresponds to the incidence angle constraint (in degrees) and the Y axis
to the image error.

Figure 3: The calibration grid, this grid is composed of retro-re
ective targets.
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�P1 than with �P2.

�P1 � �P2 ; ��P1f � ��P2f : (11)

The maximum eigenvalue �max can also be determined from

�Pq = �q : (12)

The square root
p
�max is related to the maximum standard deviation. Another

metric for comparing covariance matrices �P and �Q (an ideal matrix) can
be achieved by using the sum of the squared logarithms of the eigenvalues (see
F�orstner [F�or95]):

d(�P;�Q) =

vuut 3X
i=1

ln2 �i(�P;�Q) : (13)

However, this metric requires a criterion matrix and due to the methodology,
we cannot establish an ideal matrix, because we do not know the answer in
advance. In this way, the maximum eigenvalue of �P may be replaced by a
less tight norm in order to avoid the rigorous determination of the maximum
eigenvalue, e. g. the trace

tr(�P ) =
3X

i=1

�Pii =
3X

i=1

�i(�P ) : (14)

However, due to the fact that the maximum eigenvalue is in relation to the
maximum standard deviation. Instead of the trace of �P we propose to use as a
measure �(P ) the maximum element in the diagonal of �P which corresponds
to the worst variance among the individual components

�(P ) = max
j=1:::3

�Pjj : (15)

This measure is easy to compute and gives a good uniformity of network pre-
cision in each coordinate axis of the error ellipsoid represented by �P .

INRIA
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Figure 4: The adaptive system.

2.5 The Optimization Process

The problem of camera network design presents discontinuitie aspects mainly
due to the unobservability of points which leads to a combinatorial optimiza-
tion process which we have approached using a multicellular genetic algorithm.
Genetic algorithms are probabilistic parallel search techniques based on the
mechanism of natural selection and natural genetics [Gol89]. Since their de-
velopment in the late 1960s [Hol92], genetic algorithms have been proven ef-
fective in searching large, non-linear, complex and poorly-understood search
spaces, where expert knowledge is scarce or di�cult to encode and where tra-
ditional optimization techniques fail. They are capable of solving non-linear
problems. Because they do not require derivative information to direct their
search, they are not limited to problems that are continuous. Instead of pro-
gressing from point to point, like other techniques, genetic algorithms search
from a set of problem solutions to another. This feature allows them to escape
local optimum, making their search more global in nature.

2.5.1 The Adaptive System

The camera network design can be achieved following genetic algorithmmethod-
ology. This methodology is composed of �ve major components, see Figure 4.
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 eval(Λ  eval(Λ

Cam_1 Cam_2

P_1)

α α α α αβ β β_1 _1 _2 _1 β_1 _2 _2αβ _2

P_N)

Cam_M

_M _M _M _Mβ

Cam_1 Cam_2 Cam_M

9 bits

0 --> 511

1 0 1 0 0 1 0 1 0

Figure 5: The multicellular genetic algorithm is represented by a tree structure
composed of a main node where the evaluation process is stored and several
leaves corresponding to each camera. All cameras are codi�ed in two parame-
ters (�; �) which corresponds to the cells of an arti�cial being.

1. The de�nition of a structure, A 2 �, which represents a tentative solution
to the problem. It is represented here as a set of variables which are
grouped into just one common structure, see Figure 5.

2. The environment, E 2 ", which limits the structure. It is represented
here as the set of geometrical and optical constraints.

3. A measure �E of performance, i. e., the �tness of the structures for the
environment. It is represented here as the value �(P )

4. The adaptive plan, � 2 � , whereby the system's structure is modi�ed to
e�ect improvements. This is the genetic algorithm detailed later on.

5. The operator's set, 
 2 !, which are used by the adaptive plan. This is
represented here by the crossover and mutation operations.

These �ve main points are fundamental to establish a strategy for the camera
network design problem. This section describes a multicellular genetic algo-
rithm (MGA) used to solve the camera position and orientation problem in
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order to obtain the minimal 3D error. The idea is to create a computational
model to optimize a set of convergent camera networks using an evolutionary
technique. This model permits to implement the design as a problem of op-
timization. We propose a specialized implementation of the standard genetic
algorithm approach, following the tree-based genetic programming represen-
tation [Koz92], [Kin94] which we assume here as known and �xed, see �gure
5. This representation partitions the parameters into several distinct parts or
\cells", each one corresponds to one camera variable. Each camera evolves
only with cameras of the same class. This partition allows the emergence of
subpopulations of good individuals as we will see in the experiments. As an ex-
ample, all the variables of camera 1 of each tree structure are combined among
them, and so on for the other cameras. As a matter of fact, some of these cells
are then concatenated to form one long binary string. Binary representation
is prefered here to 
oat due to the fact that two points close to each other
in the representation space are not close to each other in the solution space.
This allows a random search in the whole space. In the other side, the prob-
ability to have a very large change in the value of the parameters, when you
have changed a single bit, is rather small only in some high-order bits. In this
way, a robust structure is obtained which performs well to the changes of the
environment constraints. Our algorithm does not measure the �tness of each
cell individually. Instead a global evaluation, before applying the geometrical
and optical constraints, of a well designed criterion using derivatives is imple-
mented. A tree structure represents a camera network con�guration which is
observing several parts of the object, groups of targets. This camera network
can be divided into several subnetworks, each one is observing one group of
targets. Then a genetic algorithm for each variable is executed, with just one
general evaluation �(P ) among all the camera subnetworks. The �tness will
be then the worst among these measures for a given object. Thus, we can see
the algorithm as an idealized genetic algorithm IGA [Mit96, page 132] where
each partition is sampled independently and the best schema, set of bits, in
each partition tends to be selected.

To keep the search space reasonably small, we use the viewing sphere model,
where the cameras move on a sphere looking inwards towards a central point.
This model provides convergent con�gurations which give improved object
measurement precision compared to other network con�gurations [Fra96]. In
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this way, cameras move in the space to achieve the design goals. The di-
rect relationship between the spherical coordinates of the viewing sphere and
the components of imaging geometry permits the heuristic search of the ge-
netic algorithm to be exploited. Consequently, the spherical coordinate system
(�; �; r) is well suited to the representation of the search space. All cameras are
codi�ed by the two parameters � and �, as r, the distance between the central
point and the cameras, is considered as a constant here. If the environment
constraints as �eld of view and resolution are taken into account, the variable
r, will change. However, this do not change the �nal network con�guration
found by our system. Thus, the MGA is represented by a �xed tree structure
composed of a main node where the evaluation process (the maximum value in
the diagonal of �P ) is stored and several leaves corresponding to each camera.

2.5.2 The Multicellular Genetic Algorithm

The multicellular genetic algorithm then proceeds as follows:

1. an initial random population of N convergent networks that satisfy the
environment constraints is chosen and it is represented by (�n; �n) coded
into a binary string representation.

2. next, we evaluate each network, and store the corresponding maximum
value of the diagonal of �Pn for each tree structure. This corresponds
to the �tness value which says how good the network is, compared with
other solutions in the population P (t).

3. then, we select a population of \good" networks by tournament selection
[BT95]: two networks are selected from P (t) and are compared selecting
the best individual according to its �tness yielding the population P (t+
1).

4. from this population, we recombine the binary strings (�n; �n) for each
camera using the following operations.

INRIA



Optimal Camera Placement for Accurate Reconstruction 21

� Crossover, with a probability3 Pc = 0.7, this operation was imple-
mented using one-cut-point4. Let the two parents be:

�x = [�x1 �x2 �x3 �x4 �x5 �x6 �x7 �x8 �x9] ;

�y = [�y1 �y2 �y3 �y4 �y5 �y6 �y7 �y8 �y9] ;

if they are crossed after the random kth position = 4, the resulting
o�springs are:

�0x = [�x1 �x2 �x3 �x4 �y5 �y6 �y7 �y8 �y9] ;

�0y = [�y1 �y2 �y3 �y4 �x5 �x6 �x7 �x8 �x9] :

� Mutation; with a probability Pm = 0.005, this operation alters one
or more genes. Assume that (�y5 = 1) gene of the chromosome �0x
is selected for a mutation. Since the gene is 1, it would be 
ipped
into 0.

These operations yields a new population which we copy into P (t).

5. Steps 2,3, and 4 are repeated until the optimization criterion stabilizes.

Finally, this algorithm minimizes the maximum value in the diagonal of �P

min
i=1:::N

(�(P )) : (16)

Thereby, the camera placement Mi relative to the world coordinate frame is
optimized. Geometrically, each �Pi represents a hyper-ellipsoid, which changes
its orientation and size as each sensor placement Mi does. Thus, an optimal
placement solution is proposed, where the combined uncertainty of all points
is minimal.

3For a discussion of the threshold values associated to Pc and Pm see [Mit96].
4due to the classi�cation of the MGA this operation works like a multiple-cut-point.
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3 Experiments

We have run a series of experiments to test the validity of our approach.
We present some results in Figure 11 which shows six cases of con�gurations
designed by EPOCA in which several cameras are looking at several targets
represented by their error ellipsoids aligned in one, two, or three planes. These
con�gurations are product of our evolutionary system.

As an example the graphs of Figure 6 were produced with a population of
30 networks composed of four cameras which converged in no more than 150
generations. These graphs show the maximal, average and best �tness for one
run of the algorithm. These results are similar to the four-camera network
of Figure 11b. This experiment took a total of 72 generations to converge,
discovering the best con�guration with a �tness value = 4:7�10�3 in generation
59. It has required about 7 seconds of cpu time on an UltraSPARC 200 Mhz.
Figure 6c shows the moment where a minimum appears along the run. Note
also that evolution is terminated near generation 60.
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c) The last best con�guration.
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d) The best con�guration.

a) The plot of best �tness.
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b) Maximal, average and best �tness.
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Results of the evolution process for a single MGA run.

Figure 6: The following graphs show the statistics and convergence time of a
single MGA run composed of 4 convergent cameras.
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c) Angle � of camera 2.
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a) Angle � of camera 1.
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b) Angle � of camera 1.
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Results of the evolution process applied to the camera variables.

Figure 7: The following graphs show the evolution of cameras 1 and 2 repre-
sented by their variable positions (angles � and �). Y axis is in degrees and X
axis shows the number of the considered sample. It is important to notice that
each graph is divided in 72 generations each one containing 30 samples, which
represents 2160 samples.

INRIA



Optimal Camera Placement for Accurate Reconstruction 25

c) Angle � of camera 4.
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a) Angle � of camera 3.
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b) Angle � of camera 3.

0

50

100

150

200

250

300

350

0 500 1000 1500 2000

Results of the evolution process applied to the camera variables.

Figure 8: The following graphs show the evolution of cameras 3 and 4 repre-
sented by their variable positions (angles � and �). Y axis is in degrees and X
axis shows the number of the considered sample. It is important to notice that
each graph is divided in 72 generations each one containing 30 samples, which
represents 2160 samples.
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Landscape graphs of camera 1 and 2.

e) Lateral view of graph a.
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f) Lateral view of graph b.
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c) Frontal view of graph a.
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a) Surface graph of camera 1.
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b) Surface graph of camera 2.
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Final landscape's results of the four-camera network.

Figure 9: The graphs on the left correspond to the landscape of camera 1 while
the graphs on the right correspond to the landscape of camera 2.
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Landscape graphs of camera 3 and 4.

k) Lateral view of graph g.
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l) Lateral view of graph h.
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i) Frontal view of graph g.
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j) Frontal view of graph h.
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g) Surface graph of camera 3.
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h) Surface graph of camera 4.
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Final landscape's results of the four-camera network.

Figure 10: The graphs on the left correspond to the landscape of camera 3 while
the graphs on the right correspond to the landscape of camera 4.
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Camera Angle � Angle �

1 39.02 68.90
2 62.92 308.67
3 0.00 176.48
4 64.33 184.21

Table 2: Final results of the four-camera network.

Table 2 presents the �nal results of the four-camera network con�guration.
Notice the behaviour of the camera population as illustrated in Figures 7 and
8. We see that after a random distribution, emergent coherent con�gurations
appear. For instance, the � angle of camera 1, see Figure 7a, converges towards
two dominating values below and above 40 degrees, while the � angle in the
same camera is about 69 degrees. This last has a second minimum about 250
degrees, see Figure 9c, 180 degrees after the �rst minimum. Other dominating
con�gurations appear too, but disappear before half of the total iteration.
Similar observations can be made on all other parameters.

If we analyse how �(P ) evolves with these parameters, we will observe the
local minima of the dominating con�gurations. Figure 9 displays the graph of
�(P ), after convergence, only with respect of two parameters and for camera
1 and 2. It clearly shows the two minima for the � parameter of camera 1,
while the landscape is quite 
at for the � parameter. Similar observations can
be derived in the graphs of Figure 9. Cameras 2 and 4 have also two local
minima, in contrast to camera 3 which presents just one minimum. The �

angle is about 0 degrees (i. e., camera 3 is orthogonal to the surface plane),
indeed this is a singular con�guration for which the parameter � of camera 3
can have any angle.

In general, the population size must be large enough to let the MGA �nd
the good solutions. A small population (less than 10 networks) discourages
premature convergence to suboptimal solutions5 while a large population re-
quires more evaluations per generation to achieve the same �tness values. The
problem of convergence is usually related to the length of the string [MFH93].

5This is mainly due to the need of niches which are landscapes from which the global or
optimal solution is chosen. Consequently, if these zones are less rich, the opportunities to
obtain a better design are reduced.
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EPOCA network designs.

e) 8 cameras observing 3 opposite faces. f) 8 cameras over 3 adjoining faces.

c) 8 cameras over 2 adjoining planes. d) 16 cameras over 3 adjoining faces.

a) 3 cameras observing a plane. b) 4 cameras over a plane.

Examples of con�gurations designed by EPOCA.

Figure 11: Between the several designs proposed by EPOCA we have identi�ed
b) like one used by Fraser [Fra82] which is not atypical of an imaging geometry.
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In our implementation strings of 300 or more bits have been optimized thanks
to the tree classi�cation.

Other examples for 2 and 3 adjoining planes are presented in Figure 11.
These examples show how the cameras are positioned at very precise zones of
the space for which the overall uncertainty is minimal. Note that in the cases
of 3 planes, the cameras are not observing all targets at the same time.

Figure 11b illustrates a solution with four cameras looking at a planar
surface. This solution is not the standard one used by the experts: pho-
togrammetrists usually put the four cameras at four corners of a cube whose
center contains the targets to be measured. In fact our con�guration has al-
ready been discussed by Fraser [Fra82]; he noticed that this con�guration is
not atypical. Our experiments con�rm Fraser's statement, we even claim that
this con�guration is slightly better than the classical one.

4 Discussion and Perspectives

In this paper we have set the problem of camera placement with the goal to
achieve accurate 3D measurements in terms of an optimization design. The
problem has been divided into two main parts. The �rst, was dedicated to
an analytical error model from which a criterion was derived. The criterion
we have chosen is the maximum element in the diagonal, extracted from the
covariance matrix which is based in the error propagation phenomenon. This
criterion was chosen in order to speed up the MGA process.

The second part, was dedicated to a global optimization method which
has minimized the criterion. Due to the unobservability of points, caused by
the di�erent constraints, the problem presents discontinuities which leads to
combinatorial aspects in the optimization process. These constraints are nat-
urally incorporated to the genetic algorithm methodology. Our idea was to
create an arti�cial system modelling the uncertainty of the reconstruction pro-
cess. We can see the system like an information processing system, rich in
autonomy and creativity, due to the evolutionary technique we have used. In
this way, the system is able to evolve its own structure autonomously. This
is an adaptive complex system that is similar to living systems. The system
is a dynamic process where the global state emerges by coevolution through

INRIA



Optimal Camera Placement for Accurate Reconstruction 31

the behavior and interaction of the components \cells" which are related by
coadaptation. It is necessary to say that the behavior of these cells is in
u-
enced by the global state. An extrinsic parallelism, together with the intrinsic
parallelism, is executed. A phenomenon of niche is present in each camera
representation. These niches evolve with respect to the others mainly due to
the rules of the system. Our experience con�rms results obtained by other re-
searchers [BATM95]; genetic algorithms are able to solve e�ciently such kind
of optimization problems with high combinatorial aspects.

Our EPOCA system succesfully produces two and three camera networks
designs similar to those used by photogrammetrists. In the case of four cameras
a non-standard design was proposed which should give slightly better results
compared to the more classical networks. Moreover, the system can design
networks for several adjoining planes. All the con�gurations are good in terms
of the camera distribution and ray inclination.

This work has to be considered as an additional step towards automated
camera network design. The strength of our approach is its generality. This
work could easily be extended by considering alternative optimization process
working on a non uniform criterion. However, several simplifying assumptions
were made here that have to be explored in the future. First, we did not
have complex occlusions, nor we had complex constraints on camera position.
This kind of additional constraints will increase the combinatorial complexity
aspect of the optimization and the open questions that arise are: Will such
system converge? How long will it take? A second point is that we assume
the camera external and internal parameters are perfectly known. In fact
the user has good estimates for them, but if high accuracy is needed, the
bundle adjustment would have to re�ne their estimates together with the 3D
measurement estimation. This complicates the criterion computation at each
evaluation step in the optimization. If this might not be a big theoretical
issue, it is a practical one as the computation time could be multiplied by a
huge scale factor. These two aspects are both related to the computational
complexity of the optimization; to explore them is our goal for future research.

AcknowledgmentsGustavo Olague is grateful for research founding of CONA-
CYT M�exico (grant 66291). Figures 1, 6d and 11 were generated with software

RR n�3338



32 Gustavo Olague

written at the Geometry Center, University of Minnesota. We are also grateful
to Dr. Scott Mason for his helpful comments.

References

[AAT] S. Abrams, P.K. Allen, and K.A. Tarabanis. Dynamic sensor plan-
ning. unpublished.

[BATM95] P. Bessi�ere, J.M. Ahuactzin, E. Talbi, and E. Mazer. The ariadn�es
clew algorithm: Global planning with local methods. In Latombe
Goldberg, Halperin and Wilson, editors, Algorithm Foundations of
Robotics, Boston, MA, 1995. A. K. Peters.

[Bey92] H.A. Beyer. Geometric and Radiometric Analysis of a CCD-
Camera Based Photogrammetric Close-Range System. PhD thesis,
ETH-Zurich, 1992.

[BT95] T. Blickle and L. Thiele. A mathematical analysis of tournament
selection. In Proceedings of the Sixth International Conference on
GA., pages 9{16. Univ. of Pittsburgh, July 1995.

[CK88] C.K. Cowan and P.D. Kovesi. Automatic sensor placement from
vision task requirements. ieee Transactions on Pattern Analysis
and Machine Intelligence, 10(3):407{416, May 1988.

[F�or95] W. F�orstner. A metric for comparing symmetric positive de�nite
matrices. unpublished, August 1995.

[Fau93] O. Faugeras. Three-Dimensional Computer Vision - A Geometric
Viewpoint. Arti�cial intelligence. The MIT Press, Cambridge, MA,
USA, Cambridge, MA, 1993.

[FC90] D. Fritsch and F. Crosilla. First order design strategies for in-
dustrial photogrammetry. In Close-Range Photogrammetry Meets
Machine Vision., volume 1395, pages 432{438. spie - Society of
Photo-Optical Instrumentation Engineers, 1990.

INRIA



Optimal Camera Placement for Accurate Reconstruction 33

[Fra82] C.S. Fraser. Optimization of precision in close-range photogramme-
try. Photogrammetric Engineering and Remote Sensing, 48(4):561{
570, April 1982.

[Fra92] C.S. Fraser. Photogrammetric measurement to one part in
a million. Photogrammetric Engineering and Remote Sensing,
58(3):305{310, March 1992.

[Fra96] C.S. Fraser. Network design. In K.B. Atkinson, editor, Close Range
Photogrammetry and Machine Vision, chapter 9, pages 256{281.
Whittles Publishing, Roseleigh House, Latheronwheel, Caithness,
KW5 6DW, Scotland, UK, 1996.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley, 1989.

[Gru85] A.W. Gruen. Adaptative least squares correlation: a powerful im-
age matching technique. S. Afr. Journal of Photogrammetry, Re-
mote Sensing and Cartography, 14(3):175{187, 1985.

[Hol92] J.H. Holland. Adaptation in Natural and Arti�cial Systems: An In-
troductory Analisis with Applications to Biology, Control and Ar-
ti�cial Intelligence. The MIT Press, Cambridge, MA, USA, 1992.

[Kin94] K.E. Kinnear. Advances in Genetic Programming. The MIT Press,
Cambridge, MA, USA, 1994.

[Koz92] J.R. Koza. Genetic Programming, On the Programming of Com-
puters by Means of Natural Selection. The MIT Press, Cambridge,
MA, USA, 1992.

[Mas97] S. Mason. Heuristic reasoning strategy for automated sensor
placement. Photogrammetric Engineering and Remote Sensing,
63(9):1093{1102, September 1997.

[MFH93] M. Mitchell, S. Forrest, and J.H. Holland. The royal road for
genetic algorithms: Fitness landscapes and ga performance. In F.J.
Valera and P. Bourgine, editors, Proceedings of the First European

RR n�3338



34 Gustavo Olague

Conference on Arti�cial Life, pages 245{254. MIT Press/Bradford
Books, 1993.

[MG95] S.O. Mason and A. Gruen. Automatic sensor placement for accu-
rate dimensional inspection. Computer Vision and Image Under-
standing, 3(61):454{467, 1995.

[Mit96] M. Mitchell. An Introduction to Genetic Algorithms. The MIT
Press, Cambridge, MA, USA, second printing edition, 1996.

[Moh93] R. Mohr. Projective geometry and computer vision. In C.H. Chen,
L.F.Pau, and S.P. Wang, editors, Handbook of Pattern Recognition
and Computer Vision. World Scienti�c Pub., 1993.

[PFTV88] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling.
Numerical Recipes in C. Cambridge University Press, 1988.

[SNSS92] S. Sakane, R. Niepold, T. Sato, and T. Shirai. Illumination setup
planning for a hand-eye system based on an environmental model.
Advanced Robotics, 6(4):461{482, 1992.

[SS91] S. Sakane and T. Sato. Automatic planning of light source and
camera placement for an active photometric stereo system. In
Proceedings of ieee International Conference on Robotics and Au-
tomation, Sacramento, California, USA, pages 1080{1087. ieee
Robotics and Automation Society, April 1991.

[TG93] G.H. Tarbox and S.N. Gottschlich. Planning for complete sensor
coverage in inspection. Technical Report TR-CAT-93-4, NYS Cen-
ter for Advanced Technology in Automation and Robotics., 1993.

[TTA91] K. Tarabanis, R.Y. Tsai, and P.K. Allen. Automated sensor plan-
ning for robotic vision tasks. In Proceedings of ieee International
Conference on Robotics and Automation, Sacramento, California,
USA, pages 76{82, April 1991.

[YHS95] S. Yi, R.M. Haralick, and L.G. Shapiro. Optimal sensor and light
source positioning for machine vision. Computer Vision and Image
Understanding, 61(1):122{137, 1995.

INRIA
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