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Abstract

This paper presents a novel minutiae matching method that describes elastic distortions in fingerprints by means of a
thin-plate spline model, which is estimated using a local and a global matching stage. After registration of the fingerprints
according to the estimated model, the number of matching minutiae can be counted using very tight matching thresholds. For
deformed fingerprints, the algorithm gives considerably higher matching scores compared to rigid matching algorithms, while
only taking 100 ms on a 1 GHz P-III machine. Furthermore, it is shown that the observed deformations are different from

those described by theoretical models proposed in the literature.
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1. Introduction

Recognition of persons by means of biometric character-
istics is an emerging phenomenon in our society. It has re-
ceived more and more attention during the last years due
to the need for security in a large range of applications.
Among the many biometric features, the fingerprint is con-
sidered one of the most practical ones. Fingerprint recogni-
tion requires a minimal effort from the user, does not capture
other information than strictly necessary for the recognition
process and provides relatively good performance. Another
reason for the popularity of fingerprints is the relatively low
price of fingerprint sensors, which enables easy integration
into PC keyboards, smart cards and wireless hardware.

Even when many academic and commercial systems for
fingerprint recognition exist, there is a necessity for further
research in the topic in order to improve the reliability and

* Corresponding author. Tel.: +31-53-489-3156; fax: +31-53-
489-1060.
E-mail addresses: a.m.bazen@el.utwente.nl (A.M. Bazen),
s.h.gerez@el.utwente.nl (S.H. Gerez).
URL: http://www.sens.el.utwente.nl

performance of the systems. Noise in the captured finger-
print image, plastic distortion of the skin when pushing the
finger onto the sensor, the partial image of a finger that is
obtained, large fingerprint databases, etc. make it difficult to
achieve high performance figures for fingerprint recognition
systems. The development of better algorithms can reduce
the error rates to levels that are acceptable for a wide range
of applications.

The topic of this paper is fingerprint matching, which
is the task of comparing a test fingerprint that is actually
provided, to a template fingerprint that is provided earlier,
during enrollment. Most fingerprint matching systems are
based on the minutiae, which are the endpoints and bifurca-
tions of the elevated line structures in the fingerprint that are
called ridges. A minutiae-based fingerprint matching system
roughly consists of two stages. In the minutiae extraction
stage, the minutiae are extracted from the gray-scale fin-
gerprint, while in the minutiae matching stage, two sets of
minutiae are compared in order to decide whether the fin-
gerprints match. This paper deals with the compensation of
elastic distortions for the sake of improving the performance
of minutiae matching.

In minutiae matching, two stages can be distinguished.
First, registration aligns both fingerprints as well as
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possible. Most algorithms use a combination of translation,
rotation and scaling for this task. In the rest of this paper,
a transformation that is based on rotation, translation and
scaling only will be called rigid. A non-rigid transformation
for registration will be called elastic. After registration, the
matching score is determined by counting the correspond-
ing minutiae pairs between both fingerprints. Two minutiae
correspond if a minutia from the test set is located within a
bounding box or tolerance zone around a minutia from the
template set. The matching score, which is a number in the
range from 0 to 1, is calculated as the number of matched
minutiae divided by the total number of minutiae.

Unfortunately, there are a lot of complicating factors in
minutiae matching. First of all, both sets may suffer from
false, missed and displaced minutiae, caused by imperfec-
tions in the minutiae extraction stage. Second, the two fin-
gerprints to be compared may originate from a different part
of the same finger, which means that both sets overlap only
partially. Third, the two prints may be translated, rotated and
scaled with respect to each other. The fourth problem is the
presence of non-linear plastic distortions or elastic deforma-
tions in the fingerprints, which is the most difficult problem
to solve. This problem is addressed in this paper.

This paper is organized as follows. First, in Section 2,
elastic deformations are discussed and an overview is given
of other matching methods that try to deal with them. Next,
in Section 3, an elastic minutiae matching algorithm is pro-
posed that estimates a deformation model and uses this
model for improved minutiae matching. Finally, in Section
4, experimental results of the elastic minutiae matching al-
gorithm are given.

2. Elastic deformations

Elastic distortions are caused by the acquisition process
itself. During capturing, the three-dimensional (3D) elastic
surface of a finger is pressed onto a flat sensor surface. This
3D-2D mapping of the finger skin introduces non-linear
distortions, especially when forces are applied that are not
orthogonal to the sensor surface. This is a realistic situation
when dealing with non-cooperative users that deliberately
apply excessive force in order to create intentional elastic
deformations. The effect is that the sets of minutiac of two
prints of the same finger no longer fit exactly after rigid
registration. This is illustrated in the leftmost part of Fig. 3
where the ridge skeletons of two prints of the same finger
have been registered optimally and displayed in one figure.

In order to tolerate minutiae pairs that are further apart
because of plastic distortions, and therefore to decrease the
false rejection rate (FRR), most algorithms increase the size
of the bounding boxes [1]. However, as a side effect, this
gives non-matching minutiae pairs a higher probability to get
paired, resulting in a higher false acceptance rate (FAR).
Therefore, changing the size of the bounding box around
minutiae only has the effect of exchanging FRR for FAR,

while it does not solve the problem of plastic distortions. An
alternative approach is to use only local similarity measures,
as addressed in Section 3.1, since those are less affected by
plastic distortions [2,3]. However, this also decreases the
required amount of similarity, and therefore also exchanges
FRR for FAR.

Recently, some methods were presented that deal with
the problem of matching elastically distorted fingerprints
more explicitly, thus avoiding the exchange of error rates.
The ideal way to deal with distortions would be to invert
the 3D-2D mapping and compare the minutiae positions in
3D. Unfortunately, there is no unique way of inverting this
mapping. It is therefore reasonable to consider methods that
explicitly attempt to model and eliminate the 2D distortion
in the fingerprint image. In Ref. [4], a method is proposed
that first estimates the local ridge frequency in the entire
fingerprint and then adapts the extracted minutiae positions
in such a way that the ridge distances are normalized all
over the image. Although the stricter matching conditions
slightly increase the performance of the matching algorithm,
this method only solves some specific part of the non-linear
deformations.

Since it is not known in advance whether captured fin-
gerprints contain any distortion, true normalization of the
fingerprints to their genuine shape is not possible. The fact
that no reference without distortion is available makes nor-
malization in 2D a relative rather than an absolute mat-
ter. Instead of normalizing each fingerprint on its own, the
non-linear distortions of one fingerprint with respect to the
other have to be estimated and eliminated.

In Ref. [5], the physical cause of the distortions is mod-
elled by distinguishing three distinct concentric regions in a
fingerprint. In the center region, it is assumed that no distor-
tions are present, since this region tightly touches the sensor.
The outer, or external, region is not distorted either, since
it does not touch the sensor. The outer region may be dis-
placed and rotated with respect to the inner region, due to
the application of forces while pressing the finger at the sen-
sor. The region in between is distorted in order to fit both
regions to each other, as shown in Fig. 1. Experiments have
shown that this model provides an accurate description of
the plastic distortions in some cases. The technique has suc-
cessfully been applied to the generation of many synthetic
fingerprints of the same finger [6]. However, the model has
not yet been used in an algorithm for matching fingerprints.
Accurate estimation of the distortion parameters is still a
topic of research.

Furthermore, a number of non-rigid registration methods
have been proposed in other fields than fingerprint match-
ing, see e.g. Refs. [7,8]. Most of these methods, however,
suffer from two problems. First, they assume that the cor-
respondences between two sets of points are known from
the local image structure around these points, which is not
a realistic assumption in fingerprint matching where all
minutiae points look similar. In addition, they require much
processing time, ranging from 1 to several minutes. In
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Fig. 1. Elastic deformation model of Ref. [5].

fingerprint matching the available time is limited to only a
few seconds. Therefore, these methods cannot be applied
to the fingerprint matching problem.

In this paper, a minutiaec matching algorithm is presented
that models elastic distortions by means of a thin-plate spline
model, based on the locations and orientations of the ex-
tracted minutiae. This model is used to normalize the shape
of the test fingerprint with respect to the template. It is
therefore able to deal with elastically distorted fingerprints.
As a consequence, the distances between the corresponding
minutiae are much smaller and tighter bounding boxes can
be used in the counting stage. This results in an algorithm
that is able to decrease FAR and FRR simultaneously.

3. The matching algorithm

The elastic minutiae matching algorithm estimates the
non-linear transformation model in two stages. First, the lo-
cal matching that is presented in Section 3.1, determines
which minutiae possibly match, based on local similarity
measures. Without this stage, a problem with too many de-
grees of freedom would have to be solved. Next, the global
matching that is presented in Section 3.2, uses the possi-
ble correspondences to estimate a global non-rigid transfor-
mation. After registration, the corresponding minutiae are
counted using bounding boxes that can be chosen rather
strictly since the distance between corresponding minutiae
after elastic registration is small.

3.1. Local matching

The first step in the proposed matching algorithm is the
comparison of local structures. These structures can be com-

Trace 3

Orientation

Fig. 2. Estimation of the minutiae orientation.

pared easily since they contain few minutiae in a small area.
In addition, since the structures originate from only a small
area in a fingerprint, they are unlikely to be seriously de-
formed by plastic distortions. The local matching algorithm
was inspired by the approach that was described in Ref. [9].

Each minutia m in the template and test fingerprints is
described by parameters (x, y, 0), where (x, y) are the pixel
coordinates of the minutia and 0 is the orientation of the
minutia. The orientation is estimated by tracing the all ridges
from the minutia over some distance (1 ridge for an endpoint
and 3 ridges for a bifurcation) and quantizing the obtained
ridge directions to the directional field [10] or the opposite
direction. For an endpoint, this directly gives the orientation
and for a bifurcation, the orientation that occurs twice is
selected. This is illustrated in Fig. 2. The matching algorithm
does not distinguish endpoints from bifurcations since the
type of a minutia can be easily interchanged by acquisition
noise or pressure differences during acquisition. However,
the orientation remains the same when this occurs.

Each minutia defines a number of local structures, which
are called minutia neighborhoods. A minutia neighbor-
hood consists of the minutia itself and two neighboring
minutiae. When the reference minutia is called mo and
its closest neighbors with increasing distance from my are
mi,ma,...,my—1, with n the number of minutiae, the neigh-
borhoods {mo, mi,mz}, {mo,mi,ms} and {mo,m,ms} are
selected for each minutiae. Compared to selecting only one
neighborhood, this provides more robustness in the local
matching stage with respect to false and missing minutiae.

The local matching algorithm compares each minutia
neighborhood in the test fingerprint to each minutia neigh-
borhood in the template fingerprint. First, the two structures
are aligned using a least squares algorithm that determines
the optimal rotation, translation and scaling. Next, a local
matching decision is made by comparing the scaling, the
sum of the squared distances between the corresponding
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Fig. 3. Ridge skeletons of elastically distorted fingerprints that are registered by means of rigid (a) and thin-plate spline (b) algorithms.

minutiae, and the differences of orientation to a thresh-
old. If the structures are considered to match, the pair of
minutia neighborhoods and the transformation (7,7, s), con-
sisting of translation ¢ = (#, ¢, ), rotation » and scaling s, is
stored.

After each minutia neighborhood in the test fingerprint has
been compared to each minutia neighborhood in the template
fingerprint, a list of corresponding minutia neighborhood
pairs is obtained. Note that this list does not contain all
true correspondences and that inclusion in this list does not
necessarily indicate a true correspondence. However, its size
gives a first indication of the degree of similarity of the two
fingerprints.

3.2. Global matching

The next step is the determination of the global transfor-
mation that optimally registers the two fingerprints. This is
called the global matching stage. From the list of local cor-
respondences, the global transformation is determined that
is consistent with the largest number of matching minutia
neighborhood pairs. It is expected that this transformation
explicitly selects the largest number of matching minutiae
pairs from the entire minutiae sets.

Several strategies to determine the optimal global trans-
formation from the list of local transformations exist. Those
methods mainly differ in handling the difficulty of false and
contradictory local matches. In Ref. [9], the transformation
of the single minutia neighborhood pair that matches best,
is taken. However, using more information of other local
matches will certainly improve the accuracy of the registra-
tion. Another possibility is to quantize the local registration
parameters into bins and construct an accumulator array that
counts all occurrences of each quantized registration. Next,
the bin that occurs most is selected, and the average of all
registrations in that bin is taken. This strategy roughly cor-
responds to the work of Ref. [11], although that method is
not based on matching local minutia neighborhoods.

The method that is proposed here, achieves further im-
provement by determining the optimal registration param-
eters from the positions of the matching minutia neighbor-
hoods instead of averaging the individual registration pa-
rameters. First, the largest group of pairs that share approx-
imately the same registration parameters is selected. This is
achieved by determining for each matching pair the num-
ber of pairs of which the registration parameters differ less
than a certain threshold. Next, the transformation (¢, 7, s) that
optimally registers the selected minutiae in the test set to
the corresponding minutiae in template set is calculated in
a least squares sense.

However, when applying this registration, elastically de-
formed fingerprints will not be registered well, as shown in
Fig. 3, simply because an accurate registration (z,7,s) does
not exist. Most matching algorithms compensate this in the
counting stage. It has been reported in Ref. [1] that for 97.5%
of the minutiae to match, a threshold on the Euclidean dis-
tance of two minutiae of ro = 15 pixels has to be used in
500 dpi fingerprints. As a consequence, minutiae in a rather
large part of the image (25% of the image for 30 minutiae
in a 300 x 300 image) are considered to match even when
they actually do not match.

In order to allow stricter matching, i.e. a smaller value
of ry, elastic registration has to be used to compensate for
plastic distortions. A transformation that is able to represent
elastic deformations is the thin-plate spline (TPS) model
[12]. To our knowledge, it has not been applied earlier to
fingerprint recognition. The TPS model describes the trans-
formed coordinates (x’, ) both independently as a function
of the original coordinates (x, y):

x' = fix, ), (1)

V=1 p). (2)

Given the displacements of a number of landmark points,
the TPS model interpolates those points, while maintaining
maximal smoothness. The smoothness is represented by the
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bending energy of a thin metal plate. At each landmark
point (x, ), the displacement is represented by an additional
z-coordinate, and, for each point, the thin metal plate is
fixed at position (x, y,z). The bending energy is given by
the integral of the second-order partial derivatives over the
entire surface and can be minimized by solving a set of
linear equations. Therefore, the TPS parameters can be found
very efficiently. The TPS model for one of the transformed
coordinates is given by parameter vectors a and w:

Sy =a+ax+ay+y wU(P— &), ()

i=1

where U(r) = r*logr is the basis function, a defines the
affine part of the transformation, w gives an additional
non-linear deformation, P; are the landmarks that the TPS
interpolates, and #n is the number of landmarks.

The TPS parameters that minimize the bending energy
can be found by solving a set of linear equations:

Kw + Pa =y, )
P'w=0, %)
where
w=[w(1)  wi(2) we(m)]', (6)
v=[g(1) ¢x(2) g(m]", (7)
a=[a(l) a(2) a3)". (8)
1L p(l)  py(D)
1 pd2) py(2)

P=1 . e ©)

L p(n)  py(n)

[U(IPr = Pi]) U(|Py = P2]) -+ U(|P1 = Pu|) ]
U(|P> — P1))
K= 5
L U(|P» — P1]) U(|Py — Pal) |
(10)

P; = (p«(i), py(i)) is the set of landmark points in the first
image, p.(i) is the x-coordinate of point i in set P;, Q; =
(gx(i), q,(7)) is the set of corresponding points in the second
image, and # is the number of landmark points.

In Ref. [13], a method is presented to estimate approxi-
mating thin-plate splines. These splines do not exactly in-
terpolate all given points, but are allowed to approximate
them in favor of a smoother transformation. The smoothness

is controlled by a parameter 4, which weights the optimiza-
tion of landmark distance and smoothness. For A = 0, there
is full interpolation, while for very large /, there is only an
affine transformation left.

For equal isotropic errors at all landmarks, the optimal
TPS parameters can be found by solving the following sys-
tem of equations:

(K + Aw + Pa=v, (11)

P'w=0, (12)

where I is the n X n identity matrix.

In fingerprint matching, it is essential to use approximat-
ing thin-plate splines, since this introduces some insensitiv-
ity to errors. For instance, minutiae may be displaced a few
pixels by the minutiae extraction algorithm or false local
matches may be included into the global matching stage.
Interpolating TPS will include these displacement errors
into the registration exactly, resulting in strange un-smooth
transformations and incorrect extrapolations. Obviously, a
smoother transformation that does not take all small details
into account is much more robust. In that case, the TPS
registration represents the elastic distortions, while in the
counting stage, the threshold ry takes care of local minutiae
displacements.

The TPS model is fitted in a number of iterations. First,
an initial model is fitted to the minutiae in the minutia neigh-
borhood pairs that were found in the local matching stage.
Next, the corresponding minutiae in both sets, differing in
location and orientation less than a threshold, are determined
and a new model is fitted to those corresponding minutiae.
This is repeated with a decreasing threshold 7y until the
model has converged to its final state. This iterative process
improves the quality of the non-linear registration consider-
ably and increases the matching score significantly. Finally,
the matching score S is calculated by

S = Mo (13)

o’
where Zmaen i the number of matching minutiae, n; the
number of minutiae in the test fingerprint and 7, the number
of minutiae in the template fingerprint. This expression pro-
vides the most consistent matching scores when the numbers
of minutiae in both fingerprints n; and n, are significantly
different, as illustrated in the next paragraph. The match or
non-match decision is then taken by comparing the match-
ing score to a threshold.

The difference between the traditional and proposed ex-
pressions for determination of the matching score is illus-
trated by considering the two cases that are given in Table 1.
Clearly, case 2 represents a better match, since the algorithm
was able to match every minutia of fingerprint 2. However,
the traditional matching score is equal to the score in case
1. The proposed matching score expression is able to give
case 2 a higher matching score than case 1.
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Table 1
Comparison of matching score expressions

2
ni ny Nmatch n,?;a,:czh Z,ZIT:,C;
Case 1 40 40 20 0.25 0.5
Case 2 60 20 20 0.33 0.5

The rightmost part Fig. 3 shows the two deformed fin-
gerprints after registration by means of thin-plate splines.
The figure clearly shows the much more accurate regis-
tration with respect to the leftmost part. This means that
a much lower threshold ry can be used in the counting

stage, leading to a considerably lower false acceptance
rate.
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4. Results

The proposed algorithm has been evaluated by applying
it to Database 2 of FVC2000 [14] and training Database 1 of
FVC2002. The FVC2000 database consists of 880 capaci-
tive 8-bit gray-scale fingerprints, 8 prints of each of 110 dis-
tinct fingers. The images are captured at 500 dpi, resulting
in image sizes of 364 x 256 pixels. The FVC2002 database
contains 80 8-bit gray-scale fingerprints, 8 prints of 10 fin-
gers, captured with an optical sensor at 500 dpi.

Unfortunately no benchmark results are available in the
literature to measure the performance of minutiae-based
matching for given fixed sets of minutiae. Any result re-
ported on databases such as the ones of FVC2000 incorpo-
rate the performance of a minutiae extraction stage, which
is not a topic of this paper. However, for the sake of the
experiments, a straightforward method was implemented
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Fig. 4. Registration results for the elastic matching algorithm: the superposition of both minutiae sets (indicated by ‘%’ and ‘o’) and a grid
that visualizes the deformations. Top row: typical distortions, bottom row: heavy distortions, left column: rigid registration, right column:

TPS registration.
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consisting of segmentation, Gabor filtering, binarization,
thinning and postprocessing [15].

First, the estimated elastic deformation models have been
evaluated visually. In Fig. 4, the registration results are de-
picted for typical and heavy distortions in the FVC2000
database. The figure shows the superposition of both minu-
tiae sets (indicated by ‘x” and ‘o’) and a grid that visual-
izes the deformations. The figures clearly shows that elastic
registration makes the minutiae sets fit much better, i.e. the
corresponding ‘x’s and ‘o’s are much closer to each other,
while the fingerprints are not heavily distorted. For the upper
row, the matching scores are 0.42 for the rigid registration
and 0.68 for the TPS registration, while the scores for the
bottom row are 0.04 and 0.25. Furthermore, it is worth notic-
ing that all distortion patterns that we inspected were similar
to the patterns that are shown in Fig. 4, while none of them
resembled the distortion model that was proposed in Ref. [5].

Next, due to the lack of benchmark results for minu-
tiae matching performance, it was decided to compare
TPS-based elastic matching to rigid matching. In both cases,
ro was chosen such that the matching performance was
optimized. With »y = 15 for rigid matching and ro = 5 for
elastic matching the equal-error rates of the ROC turned out
to become 4% and 1.8%, respectively for training Database
1 of FVC2002. In this experiment, 280 matches and 450
non-matches have been evaluated. The distributions of the
matching scores and the ROC for the elastic matching
experiment are shown in Fig. 5.

To evaluate the matching performance of the elastic
matching algorithm on database 2 of FVC2000, two exper-
iments have been done. The first experiment considers all
fingerprints in the database, leading to 3080 matches and
5995 non-matches. In this case, the equal error rate is 6%.
In the second experiment, 10% of the fingers with lowest
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quality fingerprints have been left out. This compensates for
the imperfections in the used minutiae extraction algorithm,
and allows better evaluation of only the elastic match-
ing algorithm. In this case, the equal error rate is 2.5%.
The matching score distributions and ROCs are shown in
Fig. 6.

The combined local and global matching algorithm is able
to keep the matching scores for non-matching fingerprints
very low: values larger than S = 0.1 have never been ob-
served. However, some low matching scores have been ob-
served for matching fingerprints, resulting in a fixed lower
bound for FRR, relatively independent of the chosen FAR.

Analysis of these cases resulted in two possible causes
for the low matching scores. The first cause is due to imper-
fections in the used minutiae extraction stage. Low-quality
regions are discarded by the segmentation that precedes
the minutiae extraction, leading to very few corresponding
minutiae. It is expected that the matching performance in-
creases when combined with better minutiae extraction al-
gorithms. The second cause is a very small overlapping re-
gion between the two fingerprints that are matched. In this
case too, there are only very few corresponding minutiae.
This problem was partially solved by determining the rect-
angular overlapping region from the corresponding minutiae
pairs, and using only the minutiae in that region for calcu-
lation of the matching score, i.e. adjusting n; and n, in Eq.
(13). However, this may also lead to higher non-matching
scores.

Furthermore, it is worth noticing that none of the
low-matching scores is caused by the presence of plastic
deformations. The algorithm correctly resolves these dis-
tortions, while in some cases, the rigid matching algorithm
is not able to do so.

Finally, the proposed elastic matching algorithm is rather
fast. In a C++ implementation on a 1 GHz P-III machine,
the entire elastic minutiac matching algorithm takes less
than 100 ms. Furthermore, it is only marginally more com-
plex than the rigid matching algorithm. The local matching
stage takes approximately 50 ms, rigid matching would take
10 ms and elastic matching takes 30 ms.

5. Conclusions

This paper has proposed a novel minutiae matching al-
gorithm that is able to deal with elastic distortions of fin-
gerprints. Using thin-plate splines, the algorithm handles all
possible non-linear distortions while using very tight bound-
ing boxes. It has been shown that it is able to register dis-
torted fingerprints very well. When applied to elastically de-
formed fingerprints, the elastic matching algorithm provides
considerably better matching scores than rigid matching al-
gorithms. Since a relatively simple minutiae extraction al-
gorithm was used, it is expected that the matching perfor-
mance can be improved by linking the proposed matching
algorithm to better minutiae extraction algorithms.

The algorithm detected only relatively small elastic defor-
mations. Furthermore, it seems that distortion patterns en-
countered in practice do not resemble much the models that
were proposed in Ref. [5].
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