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Abstract

We propose to use adaptive wavelet lifting for image retrieval systems that are based on shape detection and multiresolution
structures of objects in a database against a background of texture. To measure the performance of our approach, feature
vectors are computed based on moment invariants of detail coe1cients produced by the adaptive lifting scheme and retrieval
rates are obtained by measuring distances between these vectors. Retrieval rates are compared with the rates obtained when
using non-adaptive wavelet 2ltering as a preprocessing step. A synthetic database is created for this simulation.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Content-based image retrieval (CBIR) is a widely used
term to indicate the process of retrieving desired images
from a large collection on the basis of features. The ex-
traction process should be automatic (i.e. no human inter-
ference) and the features used for retrieval can be either
primitive (color, shape, texture) or semantic (involving iden-
tity and meaning). In this paper, we con2ne ourselves to
grayscale images of objects against a background of texture.
This class of images occurs for example in various databases
created for the combat of crime and holding tyre tracks and
shoe sole impressions [1]. In this paper we restrict ourselves
to the following problem. Given an image of an object (a
so-called query) we want to identify all images in a database
which contain the same object irrespective of translation,
rotation or re-sizing of the object, lighting conditions and
the background texture.

One of the most classical approaches to the problem of
recognition of similar images is by the use of moment
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invariants [2]. This method is based on calculating central-
ized moments in both the x- and y-direction of the image up
to a certain order. Hu [2] has shown that certain homoge-
neous polynomials of these moments can be used as statisti-
cal quantities that attain the same values for images that are
of the same class, i.e., that can be obtained by transforming
one single original image (a1ne transforms and scaling).
However, this method uses the fact that such images con-
sists of a crisp object against a neutral background. If the
background contains “information” (noise, environment in
a picture) the background should be the same for all images
in one class and should also be obtained from one back-
ground using the same transformations. In general this will
not be the case. The kind of databases we consider in this
paper consists of classes of diGerent objects pasted on dif-
ferent background textures.

To deal with the problem of diGerent backgrounds one
may use some 2ltering process as a preprocessing step, e.g.
the wavelet transform was exploited in Ref. [3] by means of
the so-called wavelet modulus maxima method. The aim of
this paper is not to build a new image retrieval system, but
to introduce adaptive 2ltering by means of a lifting scheme
as a new kind of preprocessing. To compare this method
with existing non-adaptive methods we present simulation

0031-3203/03/$30.00 ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/S0031-3203(03)00167-5

mailto:p.j.oonincx@kim.nl


2664 P.J. Oonincx, P.M. de Zeeuw / Pattern Recognition 36 (2003) 2663–2672

results for both the algorithm consisting of wavelet 2ltering
and Hu’s moment invariants and the algorithm built up by
adaptive lifting and Hu’s moment invariants.

The paper is organized as follows. In Sections 2, 3 and
4 we discuss the lifting scheme its adaptive version and
its redundant version. In Section 5 the method of moment
invariants is recapitulated and a new type of normalization
is introduced. Furthermore, the mathematical consequences
for the computation of moments of functions represented
by wavelet (detail) coe1cients are investigated. Section 6
discusses various aspects of the 2nal retrieval algorithm.
Simulation results of the algorithm for a synthetic database
are presented in Section 7. Finally, some conclusions are
drawn in Section 8.

2. The lifting scheme

The lifting scheme as introduced by Sweldens in 1997 (see
Ref. [4]), is a method for constructing wavelet transforms
that are not necessarily based on dilates and translates of
one function. In fact the construction does not rely on the
Fourier transform which makes it also suitable for functions
on irregular grids. The transform also allows a fully in-place
calculation, which means that no auxiliary memory is needed
for the computations.

The idea of lifting is based on splitting a given set of
data into two subsets. In the one-dimensional case this can
mean that starting with a signal x∈ l2(Z) the even and odd
samples are collected into two new signals, i.e., x= xe + xo,
where xe(n) = x(2n) and xo(n) = x(2n + 1), for all n∈Z.
The next step of the lifting scheme is to predict the value of
xe(n) given the sequence xo. This prediction uses a prediction
operator P acting on xo. The predicted value (Pxo)(n) is
subtracted from xe(n) yielding a “detail” signal d. An update
of the odd samples xo is needed to avoid alias sing problems.
This update is performed by adding Ud to the sequence xo,
with U the update operator. The lifting procedure can also
be seen as a 2-band 2lter bank. This idea has been depicted
in Fig. 1. The inverse lifting scheme can immediately be
found by undoing the prediction and update operators. In
practice, this comes down in Fig. 1 to simply changing each
+ into a − and vice versa.

Compared to the traditional wavelet transform the
sequence d=xe−P(xo) can be regarded as detail coe1cients
of the signal x. The updated sequence s= x0 +U (d) can be

Fig. 1. The lifting scheme: splitting, predicting, updating.

regarded as the approximation of x at a coarse scale. Using
s again as input for the lifting scheme yields detail and
approximation signals at lower resolution levels. We ob-
serve that every discrete wavelet transform can also be
decomposed into a 2nite sequence of lifting steps [5].

Example 1. We take P = I and U = 1=2. With these oper-
ators we get

s = xe=2 + xo=2;

d = xe − xo:

In this example the lifting transform corresponds to the clas-
sical Haar wavelet transform.

Example 2. For smoother approximation signals, we take
for example

(Px)(n)

= [ − x(n + 1) + 9x(n) + 9x(n− 1) − x(n− 2)]=16;

(Ux)(n) = x(n + 1)=4 + x(n)=4:

The lifting scheme can also be used for higher dimen-
sional signals x∈ l2(Zn). In our approach we use the
so-called quincunx lattice to decompose image at several
scaling levels. To explain this procedure we consider an
image as a two-dimensional signal. An important example
of the lifting scheme applied to such a signal is one that
involves 2 channels (M = 2). We subdivide the lattice on
which the signal has been de2ned into two sets on quincunx
grids (see Fig. 2). This division is also called “checker-
board” or “red–black” division. The pixels on the red spots
(◦) are used to predict the samples on the black spots (•),
while updating of the red spots is performed by using the
detailed data on the black spots. An example of a lifting
transform with second-order prediction and update 2lters is
given by

(Px)(i; j)

= [x(i − 1; j) + x(i; j − 1) + x(i + 1; j) + x(i; j + 1)]=4;

i mod 2 �= j mod 2;

Fig. 2. A rectangular grid composed of two quincunx grids.
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Table 1
Quincunx Neville 2lter coe1cients

Order N V1 V2 V3 V4 V5 V6 V7

2 1=4 0 0 0 0 0 0
4 10=32 −1=32 0 0 0 0 0
6 87=28 −27=29 2−8 3=29 0 0 0
8 5825=214 −2235=215 625=216 425=215 −75=216 9=216 −5=212

(Ux)(i; j)

= [x(i − 1; j) + x(i; j − 1) + x(i + 1; j) + x(i; j + 1)]=8;

i mod 2 = j mod 2:

The algorithm using the quincunx lattice is also known as the
red–black wavelet transform by Uytterhoeven and Bultheel
(see Ref. [6]). In general P can be written as

(Px)(i; j) =
∑

(n;m) ∈SÑ

aÑ (n; m) x(i + n; j + m);

i mod 2 �= j mod 2 (1)

with SÑ a subset of {(n; m)∈Z2 | (n + m) mod 2 = 1} and
aÑ (s); s∈ SÑ , a set of coe1cients inR. In this case a general
formula for U reads

(Ux)(i; j) =
∑

(n;m)∈SN

aN (n; m) x(i + n; j + m)=2;

i mod 2 = j mod 2 (2)

with SN depending on the degree of the used 2lter N . For
several elements in SN the coe1cients aN (s) attain the same
values. Therefore we take these elements together in subsets
of SN , i.e.,

V1 = {(±1; 0); (0;±1)}; V2 = {(±1;±2); (±2;±1)};
V3 = {(±3; 0); (0;±3)}; V4 = {(±2;±3); (±3;±2)};
V5 = {(±1;±4); (±4;±1)}; V6 = {(±5; 0); (0;±5)};
V7 = {(±3;±4); (±4;±3)}: (3)

Table 1 indicates the values of all aN (s); s∈Vk , for diGerent
values of N (2–8) when using quincunx Neville 2lters (see
Ref. [7]), which are the 2lters we use in our approach. We
observe that S8 = V1 + · · · + V7 and so a 44 taps 2lter is
used as prediction/update if the required 2lter order is 8.

We observe that the quincunx lattice yields a non-separable
2D-wavelet transform, which is also symmetric in both hor-
izontal and vertical direction. Furthermore, we only need
one prediction and one update operator for this 2D-lifting
scheme, which reduces the number of computations.

3. Adaptive lifting

When using the lifting scheme or a classical wavelet ap-
proach, the prediction and update 2lters or wavelet/scaling
functions are chosen in a 2xed fashion. Generally they can
be chosen in such way that a signal is approximated with
very high accuracy using only a limited number of co-
e1cients. Discontinuities mostly give rise to large detail
coe1cients which is undesirable for applications like com-
pression. For our purpose large detail coe1cients near edges
in an images are desirable, since they can be identi2ed with
the shape of objects we want to detect. However, they are
undesirable if such large coe1cients are related to the back-
ground of the image. This situation occurs if a small 2lter
is used on a background of texture that contains irregular-
ities locally. In this case a large smoothing 2lter gives rise
to small coe1cients for the background.

These considerations lead to the idea of using diGerent
prediction 2lters for diGerent parts of the signal. The sig-
nal itself should indicate (for example by means of local
behavior information) whether a high or low order predic-
tion 2lter should be used. Such an approach is commonly
referred to as an adaptive approach. Many of these adap-
tive approaches have been described already thoroughly in
the literature (e.g. Refs. [8–12]). In this paper, we follow
the approach proposed by Baraniuk et al. [13], called the
space-adaptive approach. This approach follows the scheme
as shown in Fig. 3.

After splitting all pixels of a given image I into two com-
plementary groups Ir and Ib (red/black), the pixels in Ir are
used to predict the values in Ib. This is done by means of a
prediction 2lter acting on Ir , i.e., P(Ir). In the adaptive lift-
ing case this prediction 2lter depends on local information
of the image pixels Ir . Choices for P may vary from high

Fig. 3. Generating coe1cients via adaptive lifting.
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to low order 2lters, depending on the regularity of the image
locally. For the update operator, we choose the update 2lter
that corresponds to the prediction 2lter with lowest order
from all possible to be chosen P. The above leads us to
use a second-order Neville 2lter for the update step and
an N th order Neville 2lter for the prediction step, where
N ∈{2; 4; 6; 8}.

3.1. Relative local variance

We propose a measure on which the decision operator in
the 2D adaptive lifting scheme can be based on, namely the
relative local variance (RLV) of an image. This RLV of an
image I is given by

rlv[I ](i; j) =
i+T∑

k=i−T

j+T∑
l=j−T

(I(k; l) − �i; j)
2=var(I) (4)

with

�i; j =
i+T∑

k=i−T

j+T∑
l=j−T

I(k; l)=(2T + 1)2: (5)

For the window size we take T = 5, since with this choice
all I(k; l) that are used for the prediction of I(i; j) contribute
to the RLV for (i; j), even for the 8th order Neville 2lter.

For all pixels (i; j) to be predicted, we 2rst compute
rlv[I ](i; j). Then quantizing the values of the RLV yields
a decisionmap indicating which prediction 2lter should be
used at which positions. Values above the highest quan-
tizing level induce a 2nd order Neville 2lter, while val-
ues below the lowest quantizing levels induce an 8th
order Neville 2lter. For the quantizing levels we take
multiples of the mean of the RLV. Test results have shown
that [�(rlv) 1:5 �(rlv) 2�(rlv)] are quantizing levels that
yield a good performance in our application. In Fig. 4 we
have depicted an image (left) and its decision map based
on the RLV (right).

(a) original image (b) decision map (RLV)

Fig. 4. An object on a wooden background and its RLV (decision
map): white=8th order; and black = 2nd order.

4. Redundant lifting

Although both traditional wavelet analysis and the lifting
scheme yield detail and approximation coe1cients that are
localised in scale and space, they are not rotation/reRection
invariant. Moreover, these coe1cients are not even transla-
tion invariant.

For the classical wavelet transform a solution for transla-
tion invariance is given by the redundant wavelet transform
[14], which is a non-decimated wavelet (at all scales) trans-
form. This means that one gets rid of the decimation step.
As a consequence, the data in all subbands have the same
size as the size as the input data of the transform. Further-
more, at each scaling level, we have to use zero padding
to the 2lters in order to keep the multiresolution analysis
consistent. Not only more memory is used by the redundant
transform, unfortunately also the computing complexity of
the fast transform increases.

Whether the described redundant transform is also in-
variant under reRections and rotations depends strongly on
the 2lters (wavelets) themselves. Symmetry of the 2lters
is necessary to guarantee certain rotation and reRection in-
variances. This is a condition that is not satis2ed by many
well-known wavelet 2lters.

The redundant wavelet transform can also be translated
into a redundant lifting scheme. In one dimension this works
out as follows. Instead of partitioning a signal x∈ l2(Z) into
xe and xo we copy x to both xe and xo. The next step of the
lifting scheme is to predict xe by

xe = xe − P(j)xo: (6)

The prediction 2lter P(j) is the same 2lter as used for the
non-redundant case, however now it depends on the reso-
lution level, since at each level zero padding is applied to
P. This holds also for the update 2lters U (j). So, the update
step reads

xo = xo + U (j)xe: (7)

We observe that in our approach Neville 2lters on a quin-
cunx lattice are used. Due to their symmetry properties (see
Table 1), the redundant scheme does not only guarantee
translation invariance, but also invariance under rotations
over multiples of �=2 and reRections in the horizontal, ver-
tical and diagonal axis is assured. Invariance under other
rotations and reRections cannot be guaranteed by any pre-
diction and update 2lter pair, since the quincunx lattice is
not invariant under these transformations.

5. Moment invariants

At the outset of this section we give a brief introduction
into the theory of statistical invariants for imaging purposes,
based on centralized moments. Traditionally, these features
have been widely used in pattern recognition applications
to recognize the geometrical shapes of diGerent objects [2].
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Here, we will compute invariants with respect to the detail
coe1cients as produced by the wavelet lifting schemes of
Sections 2–4. We use invariants based on moments of the
coe1cients up to third order. We show how to construct
a feature vector from the obtained wavelet coe1cients at
several scales. It is followed by proposals for normalization
of the moments to keep them in comparable range.

5.1. Introduction and recapitulation

We regard an image as a density distribution function
f∈ S(R2), the Schwartz class. In order to obtain translation
invariant statistics of such f we use central moments of f
for our features. The (p+q)th order central moment �pq(f)
of f is given by

�pq(f) =
∫
R

∫
R
(x − xc)

p(y − yc)
q

×f(x; y) d(x − xc) d(y − yc) (8)

with the center of mass

xc =

∫
R

∫
R xf(x; y) dx dy∫

R

∫
R f(x; y) dx dy

and

yc =

∫
R

∫
R yf(x; y) dx dy∫

R

∫
R f(x; y) dx dy

: (9)

Computing the centers of mass x′c and y′
c of g(x; y)=f(x−

a; y − b) yields

x′c = xc + a and y′
c = yc + b:

Combining this with Eq. (8) shows �pq(g) = �pq(f), i.e.,
the central moments are translation invariant.

We also require that the features should be invariant under
orthogonal transformations (rotations). For deriving these
features we follow Ref. [2]. Here polynomials with variables
�pq were constructed in such way that there values are in-
variant under rotations and most of them also under reRec-
tions. The 2rst two invariant polynomials that were derived
are only built by second-order moments. These two invari-
ants read

I1 = �20 + �02 and I2 = (�20 − �02)
2 + 4�2

11:

These two polynomials are invariant under both rotations
and reRections.

In the same way as for the second-order moments, Hu
also derived three polynomials, all invariant under both ro-
tations and reRections, that are only built up by third-order
moments. These four invariants are

I3 = p2
1 + p2

2; I4 = p2
3 + p2

4 and

I5 = 2(p1p
3
3 − 3p1p3p

2
4 + 3p1p

2
3p4 − p1p

3
4)

with

p1 = �30 − 3�12; p2 = �03 − 3�21; p3 = �30 + �12;

p4 = �03 + �21:

A fourth invariant polynomial built by only third-order mo-
ments was given by

I6 = 2(p1p
3
4 + 3p2p3p

2
4 − 3p1p

2
3p4 − p2p

3
3):

This polynomial is also invariant under rotations but changes
sign after reRection. Since we want to include reRections as
well in our set of invariant transformations we will use |I6|
instead of I6 in our approach. From now on, we will identify
|I6| with I6.

Finally, by combining second- and third-order moments a
seventh polynomial has been constructed by Hu. This poly-
nomial is again invariant under both rotations and reRec-
tions. It reads

I7 = 2p5p
2
3 − 2p5p

2
4 + 8�11p3p4

with p5 = �20 − �02 and p3; p4 as above. Altogether seven
invariant measures have been created in this way. Further-
more, we observe that all possible linear combinations of
these invariants are also invariant under proper orthogonal
transformations and translations. Therefore we can call these
seven invariants also invariant generators.

At the end of this section we elaborate brieRy on the
computation of the moments. Using the values of the
image pixels (or lifting coe1cients) we construct an in-
terpolating function based on piecewise constant approxi-
mation. The piecewise constant basisfunctions have their
support on squares center around the pixels. Furthermore,
the image is normalized in such way that the size of the
shortest side is equal to 1. The size of the longest side is
scaled accordingly. Observe that though the above interpo-
lating function is not in the Schwartz class, it has compact
support, is measurable and can be integrated. So we can
now perform the integration in Eqs. (8) and (9) numerically
and thereby compute the moments.

5.2. Normalizations

Here we increase the number of circumstances under
which images should be considered invariant. Firstly a
change in the dimensions of the object should still lead to
the conclusion that the object remains the same. Invariance
under this type of scaling, the similitude invariance, can
be obtained by normalizing the moments �pq. Secondly,
diGerences in luminosity also aGect images of the same
object. We will allow for a moderate variance with varying
luminosity.

5.2.1. Similitude invariance
Uniform dilations (by a scalar "¿ 0) of the whole image

or objects in an image against a neutral background will
result in new central moments given by [2]

�′
pq = "p+q+2�pq: (10)
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It follows in particular that �′
00 ="2�00, and also �′

20 +�′
02 =

"4(�20 + �02). Combining this result with Eq. (10) yields
�′
pq

(�′
00)(p+q+2)=2

=
�pq

�(p+q+2)=2
00

and

�′
pq

(�′
20 + �′

02)(p+q+2)=4
=

�pq

(�20 + �02)(p+q+2)=4
;

respectively. As we recall that both �00 and �20 +�02 are in-
variants w.r.t. rotation and reRection this demonstrates how
to normalize the moments to achieve invariance under di-
lation. The 2rst choice leads to the following new set of
invariant generators

I ′1 = I1=�
2
00; I ′2 = I2=�

4
00; I ′3 = I3=�

5
00; I ′4 = I4=�

5
00;

I ′5 = I5=�
10
00 ; I ′6 = I6=�

7
00; I ′7 = I7=�

10
00 : (11)

The second choice leads to a diGerent but similar result. It
may be more suitable (as a starting point) in case the density
distribution is given by wavelet detail coe1cients (Section
6.3).

5.2.2. The homogeneity condition
We consider the simple model that for a change in lu-

minosity of an object the distribution function f is mapped
onto a diGerent f′ by means of an a1ne transformation. For
images this means that the grayvalue of each pixel is mul-
tiplied by a scalar $¿ 0 and shifted along a distance b (the
oGset). A scalar multiplication of the distribution function
f does not aGect the center of mass (9). From Eq. (8) it
follows directly that

�pq($f) = $�pq(f) for all $ �= 0; (12)

however the vector I ≡ (I1 I2 I3 I4 I5 I6 I7)T, consisting
of all seven presented invariants, changes unevenly in its
entries, due to the fact that all Ik are polynomials of diGer-
ent degree. To overcome this inhomogeneous change in the
feature vector I due to scaling of the object we introduce
the homogeneity condition, meaning that we demand a ho-
mogeneous change in the elements of a feature vector in
the case of scaling. We observe that neither the vector I nor
the normalized vector I ′ derived from Eq. (11), satis2es the
homogeneity condition, as multiplication of f by positive $
leads to the new feature vector

I = ($I1 $2I2 $2I3 $2I4 $4I5 $3I6 $4I7)
T

and the new normalized vector

I ′ = ($−1I ′1 $−2I ′2 $−3I ′3 $−3I ′4 $−6I ′5 $−4I ′6 $−6I ′7)
T:

The following operator

Rp(u) = sign(u)|u|1=p with p∈N and u∈R (13)

when applied to an invariant Ik produces again an invariant.
It is a “legal” operation that invariants can be subjected to,
i.e., neither their invariance properties nor their discrimina-
tive power are lost. The feature vectors

Ĩ = (I1 R2(I2) R2(I3) R2(I4) R4(I5) R3(I6) R4(I7))
T (14)

and

˜I ′ = (I ′1 R2(I
′
2) R3(I

′
3) R3(I

′
4) R6(I

′
5) R4(I

′
6) R6(I

′
7))

T; (15)

now both satisfy the homogeneity condition as can be eas-
ily veri2ed. By numerical experiments it is shown that also
hereby the vector elements remain in comparable range. At
this point we might consider to introduce a distance mea-
sure between feature vectors F and F ′ which vanishes alto-
gether if F = $F ′, $∈R, however this is a matter for future
investigation.

5.2.3. O;set in the a<ne transform
The oGset b in the a1ne luminosity model is not a mat-

ter of concern when using our wavelet lifting approach. The
detail coe1cients produced by the lifting scheme are invari-
ant to the oGset b in the a1ne transform of our luminosity
model. To show this we construct a new image y∈ l2(Z2),
given an image x∈ l2(Z2), by

y(i; j) = x(i; j) + b;

for all i; j∈Z and for a given b∈R. According to Eq. (1)
the detail coe1cients of y are given by

dy(i; j) = y(i; j) − (Py)(i; j)

= x(i; j) + b−
∑

(n;m)∈SÑ

aÑ (n; m)

×(x(i + n; j + m) + b)

= x(i; j) + b− b−
∑

(n;m)∈SÑ

aÑ (n; m) x(i + n; j + m)

= dx(i; j);

if and only if∑
(n;m)∈SÑ

aÑ (n; m) = 1

for the given prediction 2lter. This necessary and su1cient
condition is satis2ed for the Neville 2lters we use in our
approach, independent of the 2lter order.

5.2.4. The number of coe<cients
To create feature vectors from a given image, using a

wavelet lifting approach, we 2rst compute the detail coef-
2cients d1 that appear in the lifting scheme for this image.
The coarse scale approximation data s1 is used again in the
lifting scheme to obtain d2 and s2. After K recursive lift-
ing steps we can use the detail coe1cients d1; : : : ; dK for
computing feature vectors, as follows. After each step we
select a relatively small set of coe1cients, which we expect
to correspond with the object of interest and not with the
background. The set of these coe1cients is given by Wj .
All other detail coe1cients dj(n; m); (n; m) �∈ Wj are put to
zero. Of this newly constructed “detail image” dj the mo-
ments �j

pq are computed. However, before calculating the
invariants at this scale j we have to take into account that
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the number of coe1cients Lj may not be a constant as a
function of j. Therefore we choose to use moments +pq that
are normalized to the number of coe1cients as well, i.e.,
+jpq =�j

pq=Lj . The criterions to select the coe1cients may be
based on thresholding, or, which is more sophisticated and
reliable, on edge detection (see Section 6.1).

After K lifting steps we have at our disposal Ĩ
′( j); j =

1; : : : ; K . Combining them into one 7K-dimensional vectors
yields the feature vector. We take K = 4, a common choice
with other wavelet approaches [3,15].

6. The retrieval algorithm

6.1. Reducing the set of coe<cients

As discussed in the previous chapter, our approach is
based on the computation of statistics of detail coe1cients.
We also mentioned that, in order to get a sparse represen-
tation of the crisp object, we only use locally dominant co-
e1cients, related to the object, for computing the moment
invariants. One way to do this is to compute for each de-
tail coe1cient an approximate value for its gradient. This
gradient based information is used to select the coe1cients
that are likely to be related to the object an not to the back-
ground. This is done by means of a threshold value.

So, for a given image I the detail coe1cients we 2rst
compute the matrices consisting of detail coe1cients after
each lifting step, i.e., d1; : : : ; dK . At each level j the small
set of coe1cients Wj that are used to compute the moment
invariants are given by the following rule

dj(n; m) ∈ Wj ⇔ |∇dj(n; m)|

¿

√√√√ N∑
n=1

M∑
m=1

|∇dj(n; m)|2=NM (16)

withN andM , respectively, the number of rows and columns
in the matrix dj . The gradients are approximated numeri-
cally. The threshold value in the right-hand side of Eq. (16)
is known as the root mean-square (RMS).

6.2. Preprocessing

When using our algorithm we have to deal with the fact
that in practice most a1ne transformations do not map an
image on one (Cartesian) lattice onto an image de2ned on
the same lattice. Generally, an interpolation 2lter is used to
get a new image, which is de2ned on the original lattice. It
can be shown that if the diGerence between the image f,
that was not de2ned on the original lattice, and its interpo-
lated version g de2ned on the lattice, is small, then also the
diGerence in the moments �pq will be small. So, in a certain
sense, the moments are continuous in the image functions.

Applying a high pass 2lter (prediction 2lter) on both the
interpolated and the original image yields some other results.

Although the detail coe1cients of both images will only
slightly diGer from each other, they will induce large diGer-
ences in the central moments �pq. Simulation results have
shown that they are highly inRuenced by this phenomenon.

As a remedy we propose to use a blurring 2lter on all im-
ages in the database at each resolution level. In our setup a
(5×5) 2D cubic spline 2lter has been used, but other smooth-
ing 2lters (Gaussian) gave a good performance as well.

6.3. Similitude invariance revisited

In Section 5.2.1 we have already seen that uniform dila-
tions (by "¿ 0) result in a multiplication of Hu’s moments
by �′

pq = "p+q+2�pq. However, if the object in an image
can just be represented by an orbit on a neutral background,
e.g., a circle, then a uniform dilation yields �′

pq="p+q+1�pq.
Assuming that the selected sparse set of detail coe1cients
also induce orbits instead of regions, this change in mo-
ments also holds for the moments computed from these co-
e1cients. To increase stability in the lifting approach all
moments were also divided by Lj , the number of selected
coe1cients at level j, yielding new moments +jpq. For these
moments we have

+jpq = "p+q+jpq:

Following the computations in Section 5.2.1 invariance of
the wavelet moments +jpq is achieved by dividing them by
(+j20 + +j02)

(p+q)=2, yielding at level j the new moments

,j
pq =

+jpq

(+j20 + +j02)(p+q)=2
=

�j
pqL

(p+q)=2−1
j

(�j
20 + �j

02)(p+q)=2
:

We observe that invariant I1 is now always equal to 1 due
to this normalization. Therefore we replace this invariant by
I1 = �00.

6.4. Outline and recapitulation of the retrieval algorithm

Given the many aspects that have been discussed before,
we give an outline of the retrieval algorithm. This algorithm
is needed to measure the performance of the adaptive lifting
approach versus non-adaptive 2ltering approaches. Firstly,
we need to build a database with images of interest. In the
database each image is accompanied by its feature vector
which has to be derived. So-called query images are images
which (usually) do not reside in the database and are com-
pared to the elements of the database. Also from a query
image a feature vector has to be derived to make compari-
son possible. Below follows a recap for the construction of
a feature vector.

From image to feature vector.

(1) Application of a smoothing 2lter to the image (prepro-
cessing, see Section 6.2).

(2) Computation of the RLV at each pixel (see Section 3).
(3) For each pixel a prediction stencil is chosen. The

choice depends on the relative local variance (step 2)
by means of a decision operator.
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Fig. 5. Object library of eight images of size 128 × 128.

(4) Computation of the detail coe1cients via lifting. It
involves adaptive 2ltering (see Section 3).

(5) Selection of relevant detail coe1cients.
(6) Computation of moments up to third order w.r.t. the

coe1cients resulting from step 4 (see Section 5.1).
(7) Composition of a feature vector based on moment

invariants.
(8) Normalization of the feature vector by application of

the homogeneity condition (see Section 5.2.2).

(9) Application of the smoothing 2lter of step 1 to the
approximation coe1cients.

(10) Repetition of steps 2–9 up to K levels.
(11) Composition of one feature vector from the K feature

vectors resulting from step 8.

Once all feature vectors have been constructed distances
between two images are computed by a weighted Eu-
clidean distance, with one over the variance of each single
feature, measured upon the whole database, as weighting
coe1cients. The distance between two images is identi-
2ed with the distance between the corresponding feature
vectors. For a given query image we 2nd the image in the
database which is at the smallest distance. This concludes
the retrieval algorithm.

7. Results

7.1. A synthetic database

To give a “proof of principle” of our proposed adaptive
lifting approach, we constructed a synthetic database of 64
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Fig. 6. Retrieval performance of adapted (solid) and non-adapted (dotted) approaches.
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images. These images can be divided into eight classes, each
one consisting of images of one of the objects depicted in
Fig. 5, but subjected to translation over various distances,
reRection over various angles, rotation and the similitude
transform (zooming in). Moreover, the images are pasted
on an arbitrarily chosen wooden background texture (256×
256). For the simulation each image was used as a query to
retrieve the other seven relevant ones.

7.2. The e;ectiveness of adaptivity

For several types of 2lters we performed a simulation
with our synthetic databases consisting of eight classes of
eight images (of the same object). All 64 images were used
successively as input query image. So for each image 63
distances were calculated. In Fig. 6 the retrieval rates have
been depicted for the ideal case (crosses), our adaptive ap-
proach (solid line) and the best possible non-adaptive ap-
proach using Neville 2lters (dotted line). These rates are
given by the mean number of retrieved images in the class
of the query image versus the number of considered top re-
sults (smallest distances). Ideally both number are equal to
each other until the number of top results equals the number
of remaining images in one class (7).

From Fig. 6 it is obvious that retrieval rates were
improved by using adaptive lifting 2lters instead of classical
non-adaptive wavelet 2lters. Moreover, the dotted line is
related to the best possible retrieval rates using Neville 2l-
ters of 2xed order. It turned out that 8th order Neville 2lters
gave slightly better results than the other ones we used. The
values of the solid line increase the values of the dotted
line by 5–10%, which can be seen as the quantitative
improvement of using adaptive lifting techniques in this
simulation.

Besides, we expect that the followed approach oGers
also the opportunity to deal with database of objects pho-
tographed against many other types of background textures.
However more simulation with other databases are needed
to con2rm this conjecture.

8. Conclusions

In this paper, we described how adaptive lifting can be
used for certain types of content based image retrieval. Test
results show that the adaptive approach performs better
than non-adaptive approaches both in a qualitative and a
quantitative manner. The combination of adaptive lifting
coe1cients and moment invariants yields an improved re-
trieval system based on shape related information. Presum-
ably the adaptive scheme can also be used in combination
with other methods to extract other types of features in an
image.

Furthermore, we have seen that the classical method
of computing moment based invariants encounters some
serious di1culties when applying them on images, that
have been 2ltered by a high pass 2lter (detail coe1-
cients). Both the computations of the moments them-
selves as well as certain invariants have to deal with these
problems.
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