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Abstract

The estimation of camera egomotion is an old problem in computer vision. Since the 1980s, many approaches based on
both the discrete and the di#erential epipolar constraint have been proposed. The discrete case is used mainly in self-calibrated
stereoscopic systems, whereas the di#erential case deals with a single moving camera. This article surveys several methods
for 3D motion estimation unifying the mathematics convention which are then adapted to the common case of a mobile
robot moving on a plane. Experimental results are given on synthetic data covering more than 0.5 million estimations. These
surveyed algorithms have been programmed and are available on the Internet.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Camera calibration is the =rst step toward computational
computer vision. The use of precisely calibrated cameras
makes the measurement of distances in a metric world from
their projections on the image plane possible. The camera
model is a mathematical description of the geometric re-
lationship between the 3D geometric entities and their 2D
projections on the image plane consisting of a set of internal
camera parameters which describes the internal geometry
and optics of the camera, and a set of extrinsic parameters
which describes the position and orientation of the camera
in the scene. Perspective cameras can be represented by sev-
eral models depending on the desired level of accuracy.

Given a 3D point p in metric coordinates with respect
to the world coordinate system {W}, its projection m in
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pixels with respect to the image coordinate system {I} can
be computed through some linear (sometimes non-linear)
equations. 2 This set of equations encapsulates several
transformations which are broken down into four steps (see
Fig. 1).

1. First the coordinates of point p in the world coordinate
system are transformed into the camera coordinate system
by using an Euclidean transformation.

2. Next, it is necessary to carry out the projection of point
p onto the image plane by using a projective transforma-
tion, obtaining point q.

3. The third step models lens distortion causing a disparity
of the real projection on the image plane. Then, point q
is transformed into the real projection m.

4. Finally, the last step consists of transforming the m point
from the metric coordinate system of the camera into the
image coordinate system of the computer in pixels.

Small variations in the de=nition of the geometric trans-
formations used imply the use of di#erent camera models,

2 See Appendix A for the notation.
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Fig. 1. The geometric relation between a 3D point and its 2D projection.

resulting in di#erent calibration techniques. For instance,
the technique proposed by Hall [1] in 1982 is based on an
implicit linear camera calibration by computing the 3 × 4
transformation matrix which relates 3D object points with
their 2D image projections. The latter work of Faugeras [2],
proposed in 1986, was based on extracting the physical pa-
rameters of the camera from this sort of transformation tech-
nique. Some years later, work proposed by Faugeras was
adaptated to include radial lens distortion [3]. Two other in-
teresting contributions are the widely used method proposed
by Tsai [4], is based on a two-step techniquemodelling only
radial lens distortion, and the complete model of Weng [5],
proposed in 1992, which includes three di#erent types of
lens distortion. Research e#orts are still being carried out
on obtaining new camera models to improve both accuracy
in computing the optical ray and in extracting the camera
parameters which best model reality. For additional details
concerning camera calibration methods, please check the re-
cent calibration survey [6].

When we get into the binocular case (that is two views
from a stereoscopic system or two di#erent views from a
single moving camera) another interesting relationship is de-
=ned in the so-called epipolar geometry. This information is
contained in the fundamental matrix which includes the in-
trinsic parameters of both cameras and the position and ori-
entation of one camera with respect to the other. The funda-
mental matrix can be used to simplify the matching process
between the viewpoints and to get the camera parameters in
active systems where optical and geometrical characteristics
might change dynamically depending on the imaging scene.
In this case, the camera parameters can be extracted by us-
ing Kruppa equations [7]. Moreover, the epipolar geometry

can be considered from both a continuous and a discrete
point of view.

Probably the most well-known viewpoint is the discrete
epipolar constraint formulated by Longuet–Higgins [8],
Huang [9] and Faugeras [10]. In this case the relative 3D
displacement between both views is recovered by the epipo-
lar constraint from a set of correspondences in both image
planes. Then, given an object point p with respect to one of
the two camera coordinate system and its 2D projections q
and q′ on both image planes (in metric coordinates), the 3
points de=ne a plane � which intersects both image planes
at the epipolar lines lq′ and l′q, respectively, as shown in
Fig. 2. Note that the same plane � can be computed using
both focal points co and c′o and a single 2D projection, which
is the principle used to reduce the correspondence problem
to a single search along the epipolar line. Moreover, the
intersection of all the epipolar lines de=nes an epipole on
both image planes, which can also be extracted by inter-
secting the line de=ned by both focal points co and c′o on
both image planes. All the epipolar geometry is contained
in the so-called Fundamental matrix [8] as shown in Eq. (1)

mTFm′ = 0; (1)

where the fundamental matrix depends on the intrinsic pa-
rameters of both cameras and the rigid transformation be-
tween them

F = A−TRT t̂A′−1: (2)

When the intrinsic camera parameters are known, it is
possible to simplify Eqs. (1) and (2), obtaining,

qTEq′ = 0; (3)
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Fig. 2. Discrete epipolar case.

where q = A−1m; E = RT t̂; q′ = A′−1m′. The matrix E is
called essential [9].

Many papers describe di#erent methods to estimate the
fundamental matrix [11–14].

The di#erential case is the in=nitesimal version of the
discrete case, in which both views are always given from a
single moving camera. If the velocity of the camera is low
enough and the frame rate is very high, the relative displace-
ment between two consecutive images becomes very small.
The 2D displacement of image points can then be obtained
from an image sequence using the optical ;ow. In this case,
the 3D camera motion is described by a rigid motion using
a rotation matrix and a translation vector, as in (Fig. 3)

p(t) = R(t)p(0) + t(t); (4)

where di#erentiating

ṗ(t) = Ṙ(t)p(0) + ṫ(t): (5)

Then, replacing the parameter p(0) to R−1(t)[p(t) − t(t)]
in Eq. (5), the following equation is obtained:

ṗ(t) = Ṙ(t)R−1(t)p(t) + ṫ(t)− Ṙ(t)R−1(t)t(t); (6)

which leads to the following di#erential epipolar constraint:

qT�̂q̇ + qT!̂�̂q = 0: (7)

!= (!1; !2; !3)T is the angular velocity of the camera and
�= (�1; �2; �3)T is the linear velocity of the camera. By pro-
jecting p and ṗ in the image plane, q in camera coordinates
and its corresponding optical ;ow q̇ are obtained.

For a complete demonstration, the reader is directed to
Haralick’s book, Chapter 15 [15], where the movement of a
rigid body related to a camera is explained. In our case, the
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Fig. 3. Di#erential epipolar case.

demonstration is used to describe the movement of a cam-
era related to a static object, in which only the sign of the
obtained velocities di#ers from the previous one. Neverthe-
less, Eq. (7) can also be demonstrated in di#erent ways as
explained in Vi'eville [16] and Brooks [17]. Also, another
equivalent form of Eq. (7) is shown in Eq. (8). In this case,
since matrix s is symmetric, the number of unknowns is re-
duced to six

qT�̂q̇ + qTS q = 0; (8)

where

S= 1
2 (!̂�̂ + �̂!̂): (9)
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Table 1
Motion recovery methods

Discrete case Di#erential case

Linear techniques
Longuet–Higgins [8] Zhuang, Huang, Ahuja, Haralick [21,22]a

Tsai and Huang [23] Heeger and Jepson [24–26]
Toscani and Faugeras [27] Kanatani [28,29]a

Tomasi and Kanade [30] Tomasi and Shi [31,32]
Brooks, Chojnacki, Hengel and Baumela [33]a

Seven points
Least squares
Iteratively reweighted least squares
Modi=ed iteratively reweighted least squares
Least median squares

Ma, KoRseck'a and Sastry [18,34]a

Baumela, Agapito, Bustos and Reid [35]a

Nonlinear techniques
Horn [36] Prazdny [37,38]
Weng, Ahuja and Huang [39] Bruss and Horn [40]
Taylor and Kriegman [41] Zhang and Tomasi [42]
Soatto and Brockett [43]
Ma, KoRseck'a and Sastry [44]

aThese methods are based on the Di#erential Epipolar Constraint.

The existence of two forms indicates that a redundancy
exists in Eq. (7) (for a demonstration see Vi'eville [16],
Brooks [17] andMa [18]). Several books describe the optical
;ow such as Trucco and Verri [19], and the article published
by Barron et al. [20] gives a state-of-the-art in optical ;ow
estimation.

When comparing the discrete and di#erential methods,
the discrete epipolar equation incorporates a single matrix,
whereas the di#erential epipolar equation incorporates two
matrices. These matrices encode information about the linear
and angular velocities of the camera [15].

Approaches to motion estimation can be classi=ed into
discrete and di#erential methods depending on whether they
use a set of point correspondences or optical ;ow. An-
other possible classi=cation takes into account the estimation
techniques used for motion recovery (linear or non-linear
techniques). In Table 1, the algorithms are summarized and
classi=ed in terms of their nature (discrete and di#erential
case), and estimation method (linear and non-linear tech-
nique).

This article analyzes several di#erent algorithms for cam-
era motion estimation based on di#erential image motion.
The surveyed methods have been compared with them and
experimental results are given. Moreover, this article an-
alyzes the adaptation of general methods used in free 3D
movement to planar motion which corresponds to the com-
mon case of a robot moving on a plane with the aim of
studying how much accuracy improves by constraining the
camera movement. Hence, this article focuses on linear tech-
niques, as the motion has to be recovered in real-time.

This article is structured as follows. Section 2 describes up
to 12 algorithms for 3D motion estimation based on optical
;ow. Section 3 focuses on the estimation of planar motion
by constraining the free movement explained in the previous
section. Then, Section 4 deals with the experimental results
obtained. The article ends with conclusions.

2. Overview of 3D motion estimation

In this section, we detail some methods used for the recov-
ery of every 6-DOF 3 motion parameter from optical ;ow,
providing insights into the complexity of the problem. The
surveyed methods have been classi=ed considering whether
they are based on the Di#erential Epipolar Constraint or not.

2.1. Methods based on the Di9erential Epipolar
Constraint

The methods based on the Di#erential Epipolar Constraint
deal with the minimization of the following criteria:

min
�;S

n∑
i=1

(qTi �̂q̇i + q
T
i S qi)

2: (10)

Rewriting Eq. (10) in matrix form

min
�

‖U �‖2; (11)

3 Degrees of Freedom.
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where

�= (�1; �2; �3; s11; s12; s13; s22; s23; s33)
T; (12)

U = (u1; u2; : : : ; un)T; (13)

in which

ui = (q̇i2qi3 − q̇i3qi2 ; q̇i3qi1 − q̇i1qi3 ; q̇i1qi2

−q̇i2qi1 ; q
2
i1 ; 2qi1qi2 ; 2qi1qi3 ; q

2
i2 ; 2qi2qi3 ; q

2
i3 )

T: (14)

Hereafter, 7 di#erent methods based on such minimiza-
tion criteria are consecutively explained in the following
paragraphs.

Seven points estimator: This method was proposed by
Brooks [33] but not entirely, since a similar method to esti-
mate the fundamental matrix has been used by other authors
[11,33].

Using seven points, through singular value decomposition
(U=V1DVT

2 ), vectors �1 and �2 are obtained from the two
last columns of V2. The solution is a linear combination of
�1 and �2; �= 
 �1 + (1− 
)�2 which corresponds to � and
S. Substituting � into �TS � = 0 (for details see Ref. [17])
a cubic equation on 
 is obtained. This equation could have
one or three solutions for � and S.
The main advantage of this method is that � and S can

be estimated using only seven points, but this can also be a
drawback when some of the points are corrupted by noise.
Moreover, the 7-points method cannot be applied in the
presence of redundancy. Hence, it can not be applied using
n points where n¿ 7.

Least-squares estimator using eigen analysis: When
there are n points, where n¿ 8, Eq. (10) goes into redun-
dancy, in which � = 0 is the trivial solution. Then some

constraints have to be established in order to avoid the null
solution. A general constraint is to =x ‖�‖ = 1. Then, Eq.
(11) is rewritten as

min
‖�‖=1

�TUTU�: (15)

Introducing the Lagrange multiplier �,

L(�) = �TUTU�− �(�T�− 1): (16)

Eq. (15) is equivalent to minimize

min
‖�‖=1

UTU�− ��: (17)

Thus, the solution � must be the eigenvector of the 9 × 9
matrix X = UTU corresponding to the smallest eigenvalue
�0 (more details in Ref. [19] Appendix A.6).

Iteratively reweighted least-squares estimator: This
method is an evolution of the previous Seven-Point Estima-
tor proposed by Brooks [33]. In this case, � is computed by
using an iterative approximation method where all points
are reweighted in each iteration. The equation to minimize is

min
�;S

n∑
i=1

(
|qTi �̂q̇i + qTi S qi|2√‖2S qi + �̂q̇i‖2 + ‖�̂qi‖2

)2

; (18)

which can be rewritten in matrix form obtaining

min
‖�‖=1

�TwTUTU�; (19)

min
‖�‖=1

wTUTU�− ��; (20)

wherew=(w1; : : : ; wn)T andwi=(‖2S qi+�̂q̇i‖2+‖�̂qi‖2)−1.
Employing Lagrange multipliers, as in the previous method,
the solution � is the eigenvector corresponding to the small-
est eigenvalue of X=wTUTU. Then, the proposed iterative
method is shown in Fig. 4.
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Modi:ed iteratively reweighted least-squares estimator:
This technique, surveyed by Brooks [33], is similar to the
precedent method but is based on a di#erent minimization
of Eq. (18). Starting from the reweighted equation wi, we
can express it in matrix form as shown in Eq. (21).

w−1
i = ‖2S qi + �̂q̇i‖2 + ‖�̂qi‖2 = �TNi�; (21)

in which

Ni = 4
3∑


=1

�T
qiq
T
i �
 + 4

3∑

=1

�T
qiq̇
T
i �
 −

3∑

=1

�T
 q̇iq̇
T
i �


−
3∑


=1

�T
qiq
T
i �
; (22)

where �i and �i are 3× 9 matrices explained in Ref. [33].
After that, Eq. (19) is reorganized as

min
‖�‖=1

2X�; (23)

where

X =
n∑

i=1

Mi

�TNi�
−

n∑
i=1

�TMi�
(�TNi�)2

Ni ; (24)

Mi = uiuTi : (25)

By using eigen analysis, a solution of � is obtained. The
procedure proposed is shown in Fig. 4.

Least median squares estimator: The previous methods
assume that image points can only present a gaussian noise
in its localization in the image plane. LMedS is considered a
robust estimator as the method does not use all data because
it assumes that a set of points could present a matching
error with its correspondent. The points with an erroneous
matching are called outliers and the rest are called inliers.
LMedS is able to recognize the outliers and keep them out of
the computation. LMedS is considered a statistical method
which was =rst proposed by Rousseeuw [45] but later used
in several other applications, such as Fundamental matrix
estimation [11].

First, this technique is based on selecting a number of sets
made up of seven random points which are used to compute
approximations of � by using the 7-points method. It is
important to assure that sets are made up of points evenly
spread throughout the image. The number of sets considered
depends on the estimated outliers ratio and the probability
that at least one set is free of outliers. This probability is
given by P = 1− (1− (1− �)s)p, where � is the maximum
outlier ratio, s is the number of elements in each set sample
(seven in our case) and p is the number of set samples.
Arranging the terms, we obtain

p=
⌈

log(1− P)
log(1− (1− �)s)

⌉
: (26)

The LMedS method calculates the median of algebraic
residual for each � using all data, where the chosen � has to

minimize this median. This � is used to identify the outliers.
Finally, when the outliers are removed, a non-robust method
using all the remaining points is used to estimate the best
solution.

The complete algorithm is:

1. Choose p sets of seven points evenly spread throughout
the image.

2. For each set, obtain an estimation of � using the 7-Point
method. We obtain �j and Sj , where j = 1; : : : ; p.

3. For each estimation, compute the algebraic residual and
determine the median as

mj = med
i=1;:::; n

(
|qTi �̂j q̇i + qTi Sjqi|2√‖2Sj qi + �̂j q̇i‖2 + ‖�̂jqi‖2

)2

: (27)

4. From every estimation mj , take the mk in which the me-
dian is the minimum: mk =minj=1; :::;p mj .

5. Compute the robust standard deviation �̂ = 1:4826(1 +
(5=(n− 7))

√
mk).

6. Then, qi is considered an outlier only if (|qTi �̂k q̇i +
qTi Skqi|2=

√‖2Skqi + �̂k q̇i‖2 + ‖�̂kqi‖2)2 ¿ (2:5�̂)2.
7. Finally, recompute � and S considering only the inliers

by using one of the previous methods.

Ma, Ko;seck�a and Sastry estimator: The estimator pro-
posed by Ma et al. [18,34] estimates not only the linear ve-
locity � and the symmetric matrix S like the previous meth-
ods, but also the angular velocity ! which is computed from
S.

The computation of the 3D velocity (�;!) is divided into
four steps:

1. Estimate �0 and S0. Obtain �0 and S0, minimizing the
error, function using least-squares estimator using eigen
analysis.

min
�0

‖U�0‖2: (28)

2. Recover the special symmetric matrix. The symmetric
matrix S obtained in the previous step probably does not
have the form S = 1=2(!̂�̂ + �̂!̂) called special sym-
metric matrix by the authors. Therefore, diagonalize the
symmetric matrix s0 using eigenvalue decomposition:

S0 = V1 diag{�1; �2; �3}VT
1 (29)

with �1¿ �2¿ �3. Project the symmetric matrix onto the
special symmetric matrix.

S= V1 diag{�1; �2; �3}VT
1 ; (30)

where

�1 =
2�1 + �2 − �3

3
; �2 =

�1 + 2�2 + �3
3

and �3 =
2�3 + �2 − �1

3
: (31)
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3. Recover the linear and angular velocities from the special
symmetric matrix, obtaining four solutions:




!̂1;2 =U2RZ(± �
2 ) diag{�; �; 0}UT

2 ;

�̂1;2 = V2RZ(± �
2 ) diag{1; 1; 0}VT

2 ;

!̂3;4 = V2RZ(± �
2 ) diag{�; �; 0}VT

2 ;

�̂3;4 =U2RZ(± �
2 ) diag{1; 1; 0}UT

2 ;

(32)

where U2 = −V2RY( ); V2 = V1RT
Y( =2 − �=2); � =

�1 − �3¿ 0 and  = arccos(−�2=�)∈ [0; �].
4. Recover the linear velocity. It is necessary to choose one

velocity from the four available. Choose the one which
accomplishes

�Tk �0 = max
i=1;:::;4

�Ti �0: (33)

Then the 3D velocity estimated is � = �0 and ! = !k .

Baumela, Agapito, Bustos and Reid estimator: This mo-
tion estimator was proposed by Baumela et al. [35] and
is based on using information from the uncertainty of the
optical ;ow. This algorithm is based on the assumption that
the optical ;ow estimation produce exact values for q and
noisy estimations for q̇.

By starting from Eq. (8) and knowing that q=(q1; q2; 1)T

and q̇ = (q̇1; q̇2; 0)T, we obtain

aq̇1 + bq̇2 + c = 0; (34)

where a=v3q2−v2; b=v1−v3q1 and c=s11q21+2s12q1q2+
2s13q1 + s22q22 +2s23q2 + s33. Then the algorithm is based on
minimizing the distance between Eq. (34) and the optical
;ow for all the points

min
�;S

n∑
i=1

(aiq̇i1 + biq̇i2 + ci)2

a2i + b2i
: (35)

The uncertainty of each ;ow measurement can be expressed
by the covariance matrix 'q̇i , consequently Eq. (35) be-
comes

min
�

n∑
i=1

�TfifTi �
�THi'q̇iHT

i �
; (36)

where

fi = (q̇i2 ;−q̇i1 ; q̇i1qi2

− q̇i2qi1 ; q
2
i1 ; 2qi1qi2 ; 2qi1 ; q

2
i2 ; 2qi2 ; 1)

T; (37)

HT
i =

(
1 0 −qi2

0 −1 qi1

)
: (38)

It is necessary to impose the constraint �TS� = 0 in the
minimization of Eq. (36). The possibility proposed by the
authors of the method is to substitute s33 to the explicit value
and employ an iterative minimization method. In this case,
Eq. (36) is rewritten in the following way:

min
�

n∑
i=1

�TgigTi �
�THi'q̇iHT

i �
; (39)

where

gi =
(
q̇i2 ;−q̇i1 ; q̇i1qi2 − q̇i2qi1 ; q

2
i1

− �21
�23

; 2
(
qi1qi2 −

�1�2
�23

)
;

×2
(
qi1 −

�1
�3

)
; q2i2 −

�22
�23

; 2
(
qi2 −

�2
�3

))T
; (40)

� = (�1; �2; �3; s11; s12; s13; s22; s23)
T (41)

and

s6 =− s11�21 + 2s12�1�2 + s22�22
�23

− 2s13�1 + 2s23�2
�3

: (42)

2.2. Methods directly based on the optical ?ow

Hereafter, 5 di#erent methods which are based directly
on the optical ;ow instead of using the Di#erential Epipolar
constraint are explained. Such methods have been included
in the article with the aim of providing experimental results
covering the whole =eld of di#erential egomotion estima-
tion.

Bruss and Horn estimator: Bruss and Horn [40] proposed
a method not based on the di#erential epipolar principle as
are the previously described methods. Instead, their method
is based on the following equation:

q̇ =

(
1 0 −q1

0 1 −q2

)(
�

Z(q)
+ !× q

)
: (43)

This equation relates the camera velocity with respect to the
static scene in which q is the image point, q̇ is the point ve-
locity, Z(q) is the point depth related to the camera coordi-
nate system and, =nally, � and ! are the linear and angular
camera velocities, respectively.

Then a bilinear constraint can be imposed on the linear �
and angular ! velocities of every pixel in order to remove
point depth Z(q) by means of a few algebraic transforma-
tions in Eq. (43) described in the following equation:

�T(q × q̇) + (�× q)T(q × !) = 0: (44)

However, the following stages are required. First, an
initial guess of the translation which can be estimated
by using least-squares technique is needed. Second, a
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non-linear minimization of Eq. (44) is applied to every im-
age pixel with the constraint ‖�‖=1 with the aim of obtain-
ing �. Finally, the rotation velocity can be extracted linearly
from Eq. (44).
Prazdny estimator: The method proposed by Prazdny

[38] was one of the =rst to estimate camera movement from
optical ;ow, so it is not based on the epipolar constraint
either. This method di#ers from the previous one because it
estimates the rotating velocity =rst instead of computing the
linear velocity. Then a triplet of image points can be obtained
from Eq. (43) and by using some algebraic transformations
the following equation is given:

n3(n1 × n2) = 0; (45)

where ni =(!×qi + q̇i)×qi =0. Once the rotating velocity
w is computed from Eq. (45), the linear velocity is given by
Eq. (44).

Hegger and Jepson estimator: Hegger and Jepson pro-
posed the so-called linear subspace method [24,25]. Given
the optical ;ow of a set of n image points, the following
relationship can be formulated:

�i =
n∑

k=1

cik(q̇k × qk); (46)

where vector �i is orthogonal to �. Moreover, ci =
(ci1; : : : ; cin) has to be chosen so that it is orthogonal to both
quadratic polynomiums qk1 and qk2 with the aim of remov-
ing the rotating velocity from the images. Note that given n
points, n − 6 vectors �i are generated. Then � corresponds
to the eigenvector associated to the smallest eigenvalue of∑
�i�Ti .
Tomasi and Shi estimator: The method proposed by

Tomasi and Shi [31,32] estimates v from image defor-
mations. Their method estimates translation from image
deformations, de=ned as the change 
̇ in the angular dis-
tance 
 = arccos(qi qj) between two image points due to
camera movement. Image deformations do not depend on
the camera rotating movement so the following bilinear
equation can be extracted. Note that this equation is only a
function of � and both depth points Z(qi) and Z(qj),


̇ = sin 
(Z(qj); Z(qi); 0)(qi ; qj ;wij)
−T�; (47)

wherewij=(qi×qj)=‖qi×qj‖. Eq. (47) is then minimized by
using the variable projection method [46] from a given set of
correspondences with the aim of obtaining � forcing ‖�‖=1.
This minimization leads to estimates of three parameters of
the linear velocity � and the n depth parameters of every
point. Hence, computing time depends considerably on the
number of point correspondences.

Kanatani estimator: The last of the surveyed methods
considered in this article is that proposed by Kanatani
[28,29] in 1993. One of the =rst methods to estimate camera
movement based on the epipolar geometry was described
by Zhuang et al. [22] in 1998. Later, in 1993, Kanatani

reformulated this method. He described the image sphere
representation and solved the di#erential epipolar equation
written in terms of the essential parameters and twisted op-
tical ;ow.

The =rst approach proposed by Kanatani was statistically
biased. In order to remove the bias, he proposed an algorithm
called renormalization, also in 1993. This second method
automatically adjusts the bias and removes the image noise.

3. Adaptation to a mobile robots

The aim of this work is to estimate the motion of a mo-
bile robot. Due to the fact that the permitted movements of
a robot are limited, it is possible to establish some modi=-
cations in the di#erential epipolar equation by applying new
constraints. With these modi=cations, the number of poten-
tial solutions is reduced so the obtained results improve con-
siderably.

Our robot (see Fig. 5) is constrained to only two indepen-
dent movements: a translation along rx axis and a rotation
around rz axis.

R�r = (�r1 ; 0; 0)
T; R!r = (0; 0; !r3 )

T: (48)

This limitation implies that the camera placed on and
above the robot cannot move freely, so the camera velocity
is the same as the robot velocity (�r = �c and !r = !c).
The motion with respect to the camera coordinate system
depends on its position. The camera is placed in the vertical
of the robot at height h and the cx axis is parallel to ry and
perpendicular to rx. There is a known angle 
 between rx
and cz axis (see Fig. 5). With this con=guration the matrices
which relate camera and robot coordinate systems are:

RRC = RZ
(
−�
2

)
RX
(
−�
2
− 

)
; RtC = (0; 0; h)T;

CRR = RX
(�
2
+ 

)
RZ
(�
2

)
;

C tR = (0;−h cos 
; h sin 
)T: (49)

By transforming the velocities to camera coordinate sys-
tem [47]

C�r =
CRR

R�r − CRR
R!r × C tR; (50)

C!r =
CRR

R!r (51)

we obtain

C�r = (0; �r1 sin 
; �r1 cos 
)
T; (52)

C!r = (0; !r3 cos 
;−!r3 sin 
)T: (53)
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Fig. 5. (a) Robot for test the algorithms; (b) robot and camera coordinate systems.

The camera motion is independent of h and depends only on
three unknowns: vr1 ; wr3 and the angle 
. With this infor-
mation it is possible to simplify the symmetric matrix Sr as

Sr =
1
2
(!̂r�̂r + �̂r!̂r) =




0 0 0

0 !r3�r1 sin 
 cos 

1
2
!r3�r1 (cos

2 
 − sin2 
)

0
1
2
!r3�r1 (cos

2 
 − sin2 
) −!r3�r1 sin 
 cos 



 ;

(54)

where s11 = s12 = s13 = 0; s22 = 1
2!r3�r1 sin(2
); s23 =

1
2!r3�r1 cos(2
) and s33 =−s22.
The following subsections concern the adaptation of the

methods described in Section 2.1 to the movement of a mo-
bile robot by means of the di#erential epipolar constraint.

Least-squares simpli:ed estimator using eigen analysis:
This method is a simpli=ed version of the method described
in Section 2.1. Starting from the di#erential epipolar equa-
tion

min
�r1 ; s22 ; s23

n∑
i=1

(qTi �̂r q̇i + q
T
i Srqi)

2 (55)

and knowing the camera motion constraint (Eqs. (52)–(54)),
it is possible to rewrite Eq. (55) in matrix form as

min
�′

‖U′�′‖2; (56)

where

�′ = (�r1 ; s22; s23)
T; (57)

U′ = (u′1; u
′
2; : : : ; u

′
n)

T (58)

and

u′i = ((q̇i1qi2 − qi1 q̇i2 ) cos 
 + (qi1 q̇i3 − q̇i1qi3 ) sin 
; q2i2

−q2i3 ; 2qi2qi3 )
T: (59)

When there are n points and n¿ 8, the solution of �′ is
the eigenvector corresponding to the smallest eigenvalue of
the square matrix X′ =U′TU′.

Iteratively reweighted least-squares simpli:ed estimator:
This simpli=ed estimation reduces the number of parameters
and the weight function. By rewriting Eq. (18) in matrix
form and only using three parameters (vr1 ; s22 and s23) we
obtain

min
‖�′‖=1

�′Tw′TU′TU′�′; (60)

min
‖�′‖=1

w′TU′TU′�′ − ��′; (61)

where �′ is de=ned in Eq. (57), U′ is de=ned in Eq. (58),
w′ = (w′

1; : : : ;w
′
n)

T and w′
i = (‖2Srqi + �̂r q̇i‖2 + ‖�̂rqi‖2)−1.

It is necessary to use an iterative algorithm (see Fig. 4) to
solve Eq. (60), which is actually the same, already applied
in the general method, but uses the simpli=ed equation X′=
w′TU′TU′.
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Modi:ed iteratively reweighted least-squares simpli:ed
estimator: This method is the adapted version to a mobile
robot of the method used to estimate camera motion pro-
posed by Brooks [33] and described in Section 2.1. When
considering Eq. (18), the reduced number of parameters to
estimate leads to a simpli=ed equation as follows:

w−1
i′ = ‖2Srqi + �̂r q̇i‖2 + ‖�̂rqi‖2 = �′TN′

i�′; (62)

where

N′
i = 4

3∑

=1

�T
′qiq
T
i �

′

 + 4

3∑

=1

�T
′qiq̇
T
i �

′



−
3∑


=1

�T
′ q̇iq̇
T
i �

′

 −

3∑

=1

�T
′qiq
T
i �

′

 (63)

and

�′1 =




0 0 0

0 0 0

0 0 0


 ; �′2 =




0 0 0

0 1 0

0 0 1


 ;

�′3 =




0 0 0

0 0 1

0 −1 0


 ; �′1 =




0 0 0

−cos(
) 0 0

0 0 0


 ;

�′2 =




cos(
) 0 0

0 0 0

−sin(
) 0 0


 ; �′3 =




0 0 0

sin(
) 0 0

0 0 0


 :

(64)

Then Eq. (18) is rewritten in matrix form considering the
parameters to estimate the robot movement obtaining

min
‖�′‖=1

2X′�′; (65)

where

X′ =
n∑

i=1

M′
i

�′TN′
i�′

−
n∑

i=1

�′TM′
i %

′

(�′TN′
i�′)2

N′
i ; (66)

M′
i = u

′
iu

T
i′ (67)

using u′i which was previously described in Eq. (59).
Finally, �′ is obtained, minimizing X′�′ = 0 by using

eigen analysis and the algorithm shown in Fig. 5.
Least median squares simpli:ed estimator: The adapta-

tion of LMedS to robot movement estimation forces the fol-
lowing considerations. First, instead of using the 7-points
method to measure of the velocity for each group of points,
we will use the simpli=ed least-squares method described in
this section. In the adaptation to a mobile robot, the move-
ment is constrained to only three unknowns; that is straight
forward, translation and rotation. Moreover, the number of

sets to generate randomly also changes as it depends on the
number of set points. Eq. (26) relates such a relationship.
The second modi=cation of this method takes place in

the last step of the algorithm once all the outliers have been
removed, and �r and Sr are recalculated using the modi-
=ed iteratively reweighted least-square simpli=ed estimator
instead of the general method.

Ma, Ko;seck�a and Sastry simpli:ed estimator: The
method proposed by Ma et al. [18,34] is not a#ected by
the reduction of the number of parameters. Moreover, only
the =rst step of the method has to be modi=ed to adapt the
algorithm to the case of a robot moving on a plane, that is
v0 and s. The equation to minimize is the following:

min
�′

‖U′�′‖2: (68)

Eq. (68) computes �r0 and Sr , these results are used in the
further steps of the algorithm already detailed in Section 2.1.
Then the steps of the algorithm are the following:

1. Estimate �r0 and Sr .
2. Recover the special symmetric matrix.
3. Recover velocities form the special symmetric matrix.
4. Recover velocity.

Baumela,Agapito,Bustos and Reid simpli:ed estimator:
The adaptation of the general method proposed by Baumela
et al. [35] described in Section 2.1 to the simpli=ed case
of the robot movement is based on the following modi=ca-
tions. Considering Eq. (8) and using the simpli=ed camera
movement described in Eqs. (52) and (54), the following
linear equation is obtained:

a′q̇1 + b′q̇2 + c′ = 0; (69)

where a′ = vr1 (q2 cos 
− sin 
); b′ =−vr1q1 cos 
 and c′ =
s22(q22 − 1) + 2s23q2.

This algorithm minimizes the distance between Eq. (69)
and the optical ;ow of every point by using the following
equation:

min
vr1 ; s22 ; s23

n∑
i=1

(a′i q̇i1 + b′i q̇i2 + c′i )
2

a2i′ + b2i′
: (70)

Considering that the measures of the optical ;ow present
a given discrepancy, Eq. (70) is rewritten in matrix form
including the covariance matrix of the optical ;ow 'q̇i , ob-
taining

min
�′

n∑
i=1

�′Tf ′i f ′Ti �′
�TrHi'q̇iHT

i �r
; (71)

where f ′i = ((q̇i1qi2 − qi1 q̇i2 )cos 
 − q̇i1 sin 
; q2i2 − 1; 2qi2 )
T

and HT
i is de=ned in Eq. (38).

However, the constraint �Tr Sr�r=0 has to be forced to Eq.
(71) in minimization. Hence, the parameter s22 is extracted
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and substituted in Eq. (71), obtaining

min
�′

n∑
i=1

�′Tg′ig
′T
i �

′

�TrHi'q̇iHT
i �r

; (72)

where

g′i = ((q̇i1qi2 − qi1 q̇i2 ) cos 
 − q̇i1 sin 
; 2qi2

− tan(2
)(q2i2 − 1))T; (73)

�′ = (�r1 ; s23)
T; (74)

and

s22 =−s23 tan (2
): (75)

4. Experimental results

All the methods surveyed have been programmed and
tested under the same conditions of image noise with the aim
of giving an exhaustive comparison of most of 6-DOF mo-
tion estimation methods. Hence, Section 4.1 compares the
twelve surveyed methods of 3D motion estimation and Sec-
tion 4.2 deals with the six proposed adaptations to a 2-DOF
mobile robot movement estimation. Section 4.3 shows re-
sults in real image sequences.

4.1. Results on 3D motion estimation

The surveyed methods based on the di#erential epipolar
constraint explained in Sections 2.1 have been programmed
in MATLABJ. The others, that is the ones explained in Sec-
tion 2.2 have been taken from the comparative survey and
MATLABJ toolbox given by Tian et al. [48]. The partial
use of a previous toolbox permits us to validate the pro-
grammed methods and compare the obtained results.

Several tests were done using synthetic data with the goal
of comparing the robustness of the methods in the presence
of image noise. We have used a methodology similar to the
one proposed by Tian et al. [48] and Ma et al. [18]. More-
over, the camera movement is estimated from a cloud of
50 3D points located in front of the camera and distributed
throughout the =eld of view image (we considered a =eld
of view varying between 30◦ and 90◦). Next, the optical
;ow of every point is computed. Once the optical ;ow of
the 50 points is computed, gaussian noise is added to every
velocity component with a standard deviation varying from
0.05 pixels up to 0.5 pixels. With the aim of studying the
robustness of every method in any potential camera move-
ment, all the potential camera orientations and translations
are considered in ranges of 22:5◦. 10 movement estimations
are carried out for every camera pose.

Then the optical ;ow of every point is computed by using
Eq. (43), in which q̇ is the velocity of the image point q =
(q1; q2; 1) on the image plane; � and ! are the camera’s
linear and angular velocities; and Z(q) is the depth of every
pixel q.

In the following experiments the angular velocity has been
considered =xed and equal to 0:23◦/frame, while the co-
eUcient of linear/angular velocity varies from 1 up to 10.
Once the optical ;ow of the 50 points is computed, a gaus-
sian noise is added to every velocity component varying its
standard deviation from 0.05 up to 0.5 pixels. With the aim
of studying the robustness of every method in any potential
camera movement, all the camera orientations and trans-
lations have been considered in ranges of 22:5◦ and 10◦

movement estimations are carried out for every camera pose.
Hence, given an image =eld of view of 30◦; 60◦ and 90◦, a
linear/angular coeUcient of 1, 5 and 10 and a gaussian noise
of 0.05 up to 0.5 pixels, an amount of 655,360 movement
estimations have been computed for each surveyed method.
Every estimation has been compared to the real movement
where the discrepancy in the linear velocity estimation is the
angle between the real movement vector � and the estimated
�est which is computed using the following equation:

errorlineal = cos−1(� · �est): (76)

The discrepancy between the rotation matrix of the real
angular movement R with respect to the estimated rotation
matrix Rest obtained from the vector of angular velocities
!est is used to compute the angular velocity error. Then, the
di#erence rotation matrix is de=ned as follows, VR=RTRest .
The matrix VR is de=ned by a rotation axis and an angle.
The measuring error presented in this angle is computed by
using the following equation:

errorangular = cos−1
(
Tr(VR)− 1

2

)
; (77)

where Tr(VR) is the trace of the matrix.
Fig. 6a shows the obtained results of every method con-

sidering a linear/angular velocity coeUcient equal to unity,
an image =eld of view of 90◦ and a gaussian noise varying
from 0.05 up to 0.5 pixels. This is a worst case, which leads
us to compare the robustness of every method. The best re-
sults are obtained when the linear/angular velocity coeU-
cient is bigger than the unity and the image =eld of view
smaller than 90◦.
The 7-points method and the method proposed by Prazdny

are not shown in Fig. 6a due to the poor results obtained
which condition the illustrative comparison of the =gure.
The =gure shows the errors in the linear velocity angle and
its standard deviation and the errors in the angular velocity
angle and its standard deviation.

Summarizing, the surveyed methods which present the
worst results are the modi=ed iteratively reweighted least
squares (MIRLS) and the least median squares (LMedS) due
to the lack of convergence in minimization given byMIRLS.
Our implementation of LMedS optimizes the solution, once
the outliers have been removed, by using MIRLS minimiza-
tion, showing a poor estimate of the camera movement. The
other surveyed methods obtain similar results, especially
in the estimation of the translation movement, where an
angle error of around 20◦ is obtained with a gaussian noise
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1.- 7p;  2.- LSeig;  3.- Ma; 4.- IRLS; 5.- MIRLS; 6.- LMedS; 7.- Baumela; 8.- Heeger;

9.- KanataniA; 10.- KanataniB; 11.- Bruss; 12.- Tomasi; 13.- Prazdny.

Fig. 6. (a) Estimation results and (b) computing time results of general methods with synthetic dates.

of only 0.3 pixels. Note that we are comparing these methods
in the most unfavorable conditions. These conditions can be
improved by reducing the image =eld of view of the camera
or increasing the linear/angular velocity coeUcient. Never-
theless, the results indicate that in di#erent conditions the
results obtained by the surveyed methods are comparatively
similar. However, Fig. 6a shows that the method proposed
by Kanatani with a previous data normalization obtains by
far the best results in angular velocity estimation even with
increasing gaussian noise. Finally, comparison of the exe-
cution time of every method in MATLABJ running on a
PentiumJ III Computer at 800 MHz is shown in Fig. 6b.
The =gure shows that while almost half the methods obtain a
solution in less than 0:1 s; eleven, such as 7-points method,
Bruss and Horn, and Tomasi and Shi, obtain a movement es-
timation in less than 0:5 s, and the two others, Prazdny, and
Baumela, Agapito, Bustos and Reid spend more than 0:5 s.

4.2. Results on mobile robot motion estimation

In order to compare the methods adapted to estimate mo-
bile robot movement, tests are based on the same settings
used in the previous section but constrained to the common
case of a mobile robot. A new parameter 
, correspond-
ing to the angle between the optical axis of the camera and
the ground plane has been considered. Tests were done for
several values of 
, that is: 0◦; 15◦; 30◦; 45◦; 60◦; 75◦

and 90◦. It has been observed that the movement estimation
presents a slight error at 
=45◦, which was the worst case.

Fig. 7a shows the results obtained by the movement esti-
mation methods for the case of a mobile robot with a =eld
of view of 90◦, a coeUcient linear/angular velocity equal to
unity considering the worst case 
 = 45◦.

The methods adapted to robot motion do not present an
error in the linear velocity estimation because the methods
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Fig. 7. (a) Estimation results and (b) computing time results of general and simpli=ed methods with synthetic images.

intrinsically =x its direction. Hence, the error in the trans-
lation estimate for every method shown in Fig. 7a is zero.
Actually, this fact implies that the error presented in the es-
timation of the angular velocity decreases considerably. Re-
sults on rotation estimation show that the adapted methods
are more robust in the presence of image noise than their gen-
eral versions (i.e. including all the 6-DOF). Fig. 7b shows
the computation times obtained by using MATLABJ and a
PC PentiumJ III at 800 MHz, showing that seven of the 12

methods yield an estimate in 0:05 s or less, permitting their
use in real-time applications.

4.3. Results on mobile robot motion with real images

The results obtained with real images are also quite
accurate. Fig. 8 compare the results given by LS and its
adaptation to the mobile robot (RobalphaLSeig), consider-
ing up to 80 test images where the camera has a tilt angle of
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Fig. 8. Example of motion estimation with real images of 6-DOF (LSeig) and its adaptation to 2-DOF (RobalphaLSeig) with (a) 
 = 0◦;
(b) 
 = 10◦; and (c) 
 = 20◦.

0◦; 10◦ and 20◦, respectively, and the robot progresses and
rotates with an angle of −0:1◦ in every two consecutive im-
ages. Figure show the accuracy on rotation and translation
estimation and the vectors obtained. The error on translation
estimation is zero in the adapted method while the general
method (6-DOF estimation) gives an error in the Z-axis,

since, in that case, it is diUcult to distinguish between a
camera rotation around Y -axis and a camera translation
along X -axis. The error increases for 
 equal to 45◦ being
minimum at 0◦ and 90◦. Finally, the rotation estimation is
also more accurate using the adapted RaLS than the general
method.
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Fig. 8. (Continued)

The same example described in the previous paragraph
was tested for all the surveyed methods. The results obtained
are presented in Fig. 9, which shows that the adapted 2-DOF
methods are always more accurate than the general 6-DOF.

5. Conclusions

This article presents an up-to-date classi=cation of the
methods and techniques used to estimate the movement of a
single camera. A survey of several motion recovering meth-
ods is done and experimental results are given with synthetic
data considering both gaussian noise and outliers.

The general methods to estimate a 6-DOFmovement have
been adapted to the common case of a mobile robot moving
on a plane obtaining better results and stability even under
important noise conditions.

This article is presented to give a better understanding of
the relative performances of the 6-DOF camera movement
estimators, especially in the common 2-DOF case of a mo-
bile robot. Several methods were described after analyzing
their di#erences with respect to the use of the epipolar ge-
ometry in both the discrete case and the di#erential case.

In summarizing, the 6-DOF movement estimator methods
are quite sensitive to noise. Hence, these methods should be
adapted constraining the number of DOF with the aim of
reducing the error. In this article, the 2-DOF common case of
a mobile robot has been considered and results show better
movement estimation and stability due to a =xed direction
of the translation movement constrained by the structure of
the mobile robot.

The contributions of this article are the following:

• Comparison of discrete versus di#erential epipolar con-
straint.

• A state-of-the-art motion estimation.
• Proposal of some new methods to compute 2-DOF mobile

robot egomotion.
• Experimental results are presented considering synthetic

data with both gaussian noise and outliers, and real images
obtained by a camera mounted on a mobile robot.
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Appendix A. Mathematics convention

The mathematical convention used in this article is the
following:

• Vectors are in boldface and lowercase i.e. v is a vector;
matrices are in boldface and uppercase i.e.M is a matrix;
and scalars are in lowercase i.e. s is a scalar.

• World coordinate system: {W}= {wo;wx;wy;wz}.
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Fig. 9. Results of general (1–6) and adapted (7–12) methods with real images.

• Camera coordinate system: {C}= {co; cx; cy; cz}.
• Robot coordinate system: {R}= {ro; rx; ry; rz}.
• Image coordinate system: {I}= {io; ix; iy}.
• Left uppercase superscript relates the reference coordinate

system, i.e. J v relates the vector v with respect to the
coordinate system {J}.

• A rigid transformation between a two coordinate system:
JKH expresses the coordinate system {H} with respect
to {J}

• 3D point: p = (p1; p2; p3)T ∈R3

• 2D image point: m = (m1; m2)T ∈Z2

• Translation vector: t = (t1; t2; t3)T ∈R3.

• Rotation matrix: R=




r11 r12 r13

r21 r22 r23

r31 r32 r33


∈R3×3 and or-

thonormal.
• Linear velocity: � = (�1; �2; �3)T ∈R3.
• Angular velocity: ! = (!1; !2; !3)T ∈R3.

• Symmetric matrix: S=




s11 s12 s13

s12 s22 s23

s13 s23 s33


∈R3×3 where

S= ST.
• Skew symmetric matrix associated with �: �̂ =


0 −�3 �2

�3 0 −�1

−�2 �1 0


 where �× u = �̂u.
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