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1. INTRODUCTION

Depth measurement is one of the most important tasks in computer vison for the
applications of 3-D object recognition, scene interpretation and robotics. Various methods
for depth measurement have been proposed [1]. Stereo vision [2, 3] is perhaps the most
popular technique to obtain the depth image of a 3-D object. It generdly uses two cameras
to estimate stereo disparity and then recovers the 3-D structure of an object. The camera
mode of a stereo system involves a matching process between two images. This requires
reliable extraction of features from the separate 2D images and the matching of these

features between images. Both of these tasks are non-trivid and can be computationaly

expensve,

In contrast to stereo vision, Pentland [4, 5] has proposed a depth-from-defocus (DFD)
method to measure the depth information using a single camera so that the image-to-image
correspondence process is not required. DFD methods are based on the fact that in the
image formed by an optical system, objects at a particular distance from the lens will be
focused, whereas objects at other distances will be blurred by varying degrees depending on

ther distances. As the distance between the imaged point and the surface of exact focus
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increases, the imaged object becomes progressvely more defocused. By measuring the
amount of defocus (blur) of a point object in the observed image, the depth of the point

object with respect to the lens can be recovered from the geometric optics.

The blur estimation dgorithms generdly determine the blur estimate from ether the
image s power spectrum in the frequency domain, or from the image' s point spread function
inthe spatiad domain [6]. Pentland [7] has proposed two methods to measure the amount of
defocus. The first method requires only one image and is based on measuring the blur of
edges which are step discontinuity in the focused image. The blurred edge is modeled as the
result of convolving a focused image with a point spread function that is assumed to be a
Gaussan digtribution with spatia parameter s . The parameter s is used as the measure
of defocus, and has a one-to-one correspondence to the depth. The second method
requires two images and is based on comparing the two images formed with different
gperture diameter settings. A ratio of the Fourier powers between the two images is shown

to be related to the amount of defocus.

Following Pentland’'s second method, many blur estimation agorithms have been
developed [6, 8, 9, 10, 11]. These agorithms generdly require two or more images
obtained by changing one of the three intringc camera parameters. 1) distance between the
lens and the image detector plane, 2) focd length of the lens, and 3) diameter of the lens
aperture (f-number). These involve rdativey low mechanicd movement of the camera and

need specidized camera system whose parameter setting can be controlled precisdy.



La e d. [12] have proposed a generdized dgorithm that follows Pentland's first
method for estimating the spatid parameter s of a Gaussan point soread function. The

goatial parameter s is decomposed into the horizontal and vertical components s, and
s, o that the esimation of the edge orientation is not required. The horizontal and vertical

intengities of an observed edge is assumed to be the convolution of the focused image and

the Gaussans with spatiad paameters s, and s, , repectively. The blur estimation
problem is then formulated as a nonlinear equation. The paameter s, and s, are

evduated usng an iterative solution based upon Newton's method in the vicinity of
piecewise linear edges. Since no closed-form solution exigts for their modd, the nonlinear
search procedure can be very time-consuming and the solution may get suck in some loca

minimum.

In this paper, we use the moment-presarving principle, which gives dosed-form
solution and is computationdly fadt, to estimate the amount of defocus from a single image.
The basc framework of our gpproach is as follows. The observed gray-leved imege is
iniidly converted into a gradient image using the Sobel edge operator. For every edge point
of interest in the gradient image, the proportion of the edge region p, in a smdl
neighborhood window centered a the edge point is then computed using the

moment-presarving method. A focused edge will result in smdl value of p,, while a
defocused edge will yield large vaue of p,. The proportion of blurred edge p, is,
therefore, used as the description of degradation of the point soread function for estimating

the depth. In addition to the use of the depth formula derived from geometric optics for

depth estimation, artificia neural networks (ANNS) are dso proposed in this study to
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compensate for the estimation error from the depth formula

This paper is organized as follows : Section 2 overviews the geometry of the depth
formula. Section 3 describes the moment- preserving procedure for estimating the proportion

of blurred edge region p, in the neghborhood window. The ANNs used for

compensating for the estimation error are discussed in Section 4. Section 5 presents the
experimenta results including the effect of varying szes of the neighborhood window on
estimation errors, and the depth accuracy d the geometric depth formula and the ANNS.

The paper is concluded in Section 6.
2. THE DEPTH FORMULA

For a convex-lens camera with a lens of focd length F, the rdaion between the
position of a point in the scene and the postion of its focused image is given by the
wedl-known lenslaw
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where D is the distance of the point object from the lens and n is the distance of the

focused image from the lens.

Let o be a point object on a vishle surface in the scene, and oCand o®be its
corresponding points in the focused image and the image detector plane, repectively. If o
isnot in focus then it gives rise to acircular image caled the blur circle on the image detector

plane (see Figure 1). Let the diameter of the blur circle be denoted by d,, . Pentland [7] has
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shown that the relationship between the depth D of a point object and the diameter d,
of the blur circleis given by

Fn

D:nO-F—-dbf for n,>n (2.9

Fn,
D=——7—"— f < 2.
N - F+d,f o M= (2b)

where n, Is the distance between the lens and the image detector plane, and f is the
f-number (aperture) of the lens system. As the sensor displacement increases (i.e, n,- Nn),
the defocusing diameter d,, increases. Note that defocusing is observed for both positive

and negative sensor displacement. If the image detector is behind the focused image (i.e,

N, >nN), thedepth D is evaduated by eq.(2.a). If the image detector is in front of the
focused image (i.e., n, <n), thedepth D isthen evauated by eg. (2.b). For agiven lens
system, the parameters F, n, and f can be consdered as congtants. Therefore, eq.(2)
shows thet the defocus d,, isan unique indicator of depth D . The depth formula of eq.(2)

can be rewritten in a condensed form [12] asfollows :

©)

where P=Fn,/f, Q=(n,- F) f/,and P and Q are constants with respect to a

given camera s&tting. The depth formulation of eg.(3) can be used to smplify the cdlibration

procedure.

3. MEASURE OF DEFOCUS



The depth formula of eq.(3) shows that there is a one-to-one correspondence between

the diameter of blur circle d, and the object depth D . The blur sze d, is generdly

assumed to be proportional to the spatia parameter s of the point spread function, i.e,

d,=k>s where k isassumed to be a congtant for a given lens system [7, 11, 12, 13].
Quantitative measurement of defocusis difficult and requires accurate modding of the point
goread function. Unlike the conventiond blur esimation agorithms that assume the point
gpread function is a Gaussian digtribution with spatid parameter s and solve for the vaue
of s in acomplex way, we use a more sraightforward approach to find the amount of
defocus by the moment- preserving technique. The observed image is initialy converted into
a gradient image using the Sobd edge operator so that edge pixels have large gradient
magnitude, and non-edge pixels have approximately zero gradient magnitude. For each edge
point of interest, the proportion of the edge region p, (i.e, the region with high gradient
megnitude) with respect to the neighborhood window in the gradient image is computed
usng the moment-presarving principle. A focused edge will result in smdl  p,, whereas a
defocused edge will yidd large p,. p, increases as the distance between the imaged
point and the surface of exact focus increases. Therefore, p, is a messure for the amount

of defocus. The estimation procedure for the proportion of edge region p, in a sl

window is described in detail asfollows.

Let f (x,y) bethe gray-levd of apixd a (x,y) in the observed image. The

gradientof f (x,y) isgiven by

Nf (x,y)=
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where go=aaf(x+iy+)w,(i.j)
j i

gy=§1éf (X+i,y+]j)w,(i,])
j i

The horizontal and verticdl Sobel edge operators w, (i,j) and w,(i,j), -1£i,

] £1, aregivenin Figure 2. The magnitude of the gradient is defined by

g(x,y) =[N (x,y) =[g5 +9;1"
g(x,y) forms the gradient image of the obsarved image f (Xx,y). Figure 3(a)
demonstrates the observed gray-levd image of amulti-step block. The camerais focused on
the lower steps of the block (lower-right in the image), and the upper steps are close to the
lens and result in defocused image (upper-left in the image). Figure 3(b) presents the
resulting gradient image of the observed image. It shows that the focused steps result in thin
and sharp edges, and the defocused steps yield thick and scattering edges. The width of
edges increases from lower-right to upper-left in the gradient image as the multi-step block
is defocused progressvely from lower steps to upper seps. The width of edges in the

gradient image can be a description for the diameter of blur circle d,, .

As observed in Figure 3(b), the gradient image can be divided into two regions, the
bright region that represents the edges with high gradient magnitudes, and the dark region
that represents the interior portions of objects or the background with low gradient
megnitudes. Given a loca neighborhood window centered at the edge point of interest, the
gradient image defined in the window can be converted into a binary image that contains
only white region (i.e, high gradient magnitude for edges) and black region (i.e, low

gradient magnitude for backgrounds) using the moment preserving method. The proportion



of the white region with respect to the entire window region represents the width of the

imaged edge in the gradient image and, therefore, indicates the diameter of blur circle d,, .
Let the gradient image g (x,y ) defined in a locad neighborhood window be the

real-world verson of anided gradient image that congsts of only two homogeneous regions,

the bright region with a uniform gradient magnitude h., and the dark region with a uniform
gradient megnitude h, . Denote p, and p, by the proportions of the bright region and
the dark region, respectively, in the ided gradient image. Note that h.>h,, O£ p,,
p,£1and p,+p,=1. For agiven edge point & (x,y), the first three moments of

g(x,y) aegiven by

1 o i .
m =— a S,t ’ J :1a213
J n(s,t)TN(x,y)[g( )]

where N (x,y) is the neighborhood window that conssts of neighboring points around

(x,y),and n isthetota number of pixds in the window.

By preserving the first three moments in both red-world gradient image g (x,y )
and theided gradient image, we can obtain four equations as follows:
Pt + P,y = my
phe” + Py xh,” = m,

P Xh.’ + Py xh,” = my

pe+ pb :1

There exigts a closed-form solution for the four unknown varigbles p,, p,, h. and h,,



which are given by [14]

h, = %[ ¢~ (e - 4cy)”?]

he =%[ e+ (o - 4c,)"?)

AT
Po m my| |h, he
pe:]‘- pb
-m, m
where COZ‘ 2 M (my- m?)
-ms m
1 -m
C, = 2/(m2' mlz)
my - My

Thevdueof p,, O£ p,£1, gives the proportion of edge region in the neighborhood
window. The larger vaue of p,, the larger amount of defocus. In this study, p, is
assumed to be proportiona to the diameter of blur cirdle d,, i.e, d, =k xp,, where k

isacongant. Therefore, the depth formula derived in eq.(3) can be rewritten as

Pc
D=
Qe+ p,

(4)

where P¢=k R,/f, Q¢=k(n,- F) f,and P¢ and Q¢ are condants for a given

camera siting.

The congtants P¢ and Q¢ in eq.(4) can be determined initidly once and for dl by a

suitable camera cdibration. We may manudly collect n data points of the measured
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depths D, , 1=1,2, .n, a,dfferent disgances from the camera, and use the

moment-preserving method to calculate their corresponding proportions of edge region p,

in the local window. Let D =(D,,D,, .D,)" and P = (P, P, .pén)T.,(Q,&)

gives a st of n known data pairs. Then, the best estimates of P¢ and Qg, in the

least- squares sense, are given by
Q) T TQ'l
a n=|D -1 §&D -1X¥D -1 = xC
R E-CIEE EEIEE
where C =(D, xp, , D, *p,, ..., D,*p, ). Once P¢ and Q¢ are fixed for a given

camera setting, the numerica relationship between the depth D and p, is uniquey

determined by eg.(4).
4. ANN APPROACH FOR ERROR COMPENSATION

Since the depth formula of eq.(3) arises from the geometric optics of lensimaging,

the diameter of blur cycle d, only represents the geometric blur. However, the actud blur

is not due to geometric defocus done [15]. The geometric depth formulamay yield nonlinear
erors in cdculaiing the depth D owing to opticad aberrations, vignetting, etc. To
overcome this problem, we use atificia neurd networks (ANNS) to compensate for the
erors resulted from the depth formula The advantages of an ANN in esimation
gpplications are that it provides a modd-free approach to reducing the estimation error, and

it generates nonlinear interpolation for input data which are previoudy unseen in training.

An ANN is specified by the topology of the network, the characterigtics of the
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nodes and the processing dgorithm. The neura networks used in this work are multilayer
feedforward neurd networks composed of an input layer, a single hidden layer, and an
output layer. Each layer is fully connected to the succeeding layer. The outputs of nodesin
one layer are trangmitted to nodes in another layer through links. The link between nodes
indicates flow of information during recdl. During learning, information is dso propagated

back through the network and used to update connection weights between nodes.

Let o; be the output of the previous layer and w; ; the connection weight between

the ith node in one layer and jth node in the previous layer. The totd input to the ith node of
alayeris
nexaw o,
j
A hyperbolic tangent activation function is used here to determine the output of the node i,

which isgiven by

net e-ne;t

net

oi:f(n e)lze +e-net

In the learning phase for such a network, we present the training pattern T :{I p} ,
where |, is the pth nodein the input layer, and ask the network to adjust the weightsin al
the connecting links such that the desired outputs { D k} are obtained at the output nodes.

Let {Ok} be the evauated outputs of the network in its current state. For atraining pattern

the squared error of the system can be written as

(D~ 0f

m
1
N
?\-QJO

The generdized ddta-rule learning dgorithm [16] is gpplied to adjust the weights such that
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theerror E isaminimum. A detalled derivation of the learning procedure can be found in
[17].

Two neurd networks are developed in this study. The first neura network, denoted by
ANNj4, isathree-layer back-propagation network with two nodes in the input layer, seven
nodes in the hidden layer, and one sngle node in the output layer. The topology of the

network ANN; is illugtrated in Figure 4. The input vector T,=(p,,D ) of the network
ANN; includes two components, which are
P, = the proportion of edge region in the neighborhood window obtained from
the moment- preserving method.

D = the depth of an edge point derived from the depth formula of eq.4.

(p. D) correspond to the two nodes in the input layer in sequence. In the learning phase of
the network, the desired vaue of the node in the output layer is the actual depth D’
known a priori. A pair of (Input,Output) = (T,,D") forms the training sample for the
network. In the recal phase of the network, the measured depth is Smply given by the vaue

of the node in the output layer.

It has been found [13] that the edge orientation is crucid to the estimation of the
amount of defocus. A good drategy for improving the estimation accuracy of depth is to
cdibrate the congtants P¢ and Q¢ in eq.(4) usng known data points in separate
orientations, and then present the information of edge orientations to the network. The
gradient Nf (x,y)=(g, ,d, ) used for computing the gradient magnitude as described
in section 3 provides the additiond information of edge orientation. The orientation of an

edge point with gradient (g, ,g, ) isgiven by
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a=t 2@") ®

X

The vdue of g dong with the sgns of g, and g, can uniquely define the edge

orientation between 0°and 3 6°0

The proposed second neura network, denoted by ANN,, therefore takes the edge

orientation, and congants P¢ and Q¢ cdibrated in individud orientations as the

additional input. The topology of the network ANN; is the same as that of the ANN;,

except that ANN, has five nodes in the input layer. The topology of the network ANN; is

shown in Figure 5. The input vector T, =(p,,D ,q,F;q:,Qq ¢) of the network ANN2

congsts of five components, which are

P, ,D = the same as those defined previoudy for the network ANN;
g = the edge orientation givenby eq.(5)

¢~ C_ , , . . .
P, ", Q, "= the condtants in eq.(4) calibrated in the orientation of ¢

In the training phase of the network ANN,, pairs of (T,,D") form the traning

samples with finite number of edge orientations. In the recal phase of the network, the edge

orientation evauated by eq.(5) is converted to the nearest orientation q used in training,

and the corresponding F3]¢ and tht are sdlected from a look-up table. The vaue of the

node in the output layer of the network gives the depth of the edge point.

5. EXPERIMENTAL RESULTS
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In this section we present experimenta results for evaduating the performance of the
proposed depth estimators. In our implementations, al agorithms are programmed in the C
language and executed on a persond computer with a Pentium 66 MHz processor. The
imege Szeis 5 1724 8 Pixds with 256 gray levels. The camera is sat up so that the
camerais 415mm from the tabletop, and the opticd axis of the camera is perpendicular to
the table surface. All experiments are performed with the point of sharpest focus
gpproximately set a the top of the table. A three-step block as shown in Figure 6 is used as
the benchmark in the experiments to evauate the performance of the proposed depth
estimators. The first step ( the one closest to the table ), the second step and the third step

(the one closest to the camera) are 21 mm, 40 mm and 40 mm in deep, respectively.

Thefirg series of experiments use the three-step block to evauate the effect of varying
szes of the neighborhood window on estimation errors of depth. The neighborhood window

sdected in thiswork is of circular shape. Figure 7(a) depictsthe p, vaue versus the depth
of each step of the block for the neighborhood windows of radii 45, 35, 25 and 19 pixes. It
can be seen from the figure thet the value of  p, increased as the depth decreases, i.e., the

amount of defocus increases as the object gets closr to the camera The
root-mean-squares (RMS) depth errors obtained by the depth formula for individud radii of
the neighborhood windows are presented in Figure 7(b). It shows that too small the size of

the window may not include sufficient data to estimate p, reliably, whereas too large the

gze of the window may include superfluous data and increases the computationa

requirement. Based on the experimentad results, the neighborhood window of radius 35
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pixelsisvdid for accurate estimation of  p, , and is used in the subsequential experiments.

The second series of experiments are to use the three-step block to evaluate the
performances of the geometric depth formula and the neura networks ANN; and ANN.. In
order to andyze the effect of heights and orientations of objects with respect to a fixed
camera, we have experimented the block placed a seven heights with respect to the
tabletop varying from O mm to 60 mm in 10 mm increments. The block at each of the seven
heights is rotated through eight orientations in approximatdy 4 % increments. For each
image of the block at a given height and orientation, we sdlect two edge points from each
step of the block as the test samples. Figure 8 shows the images of the three step block a
seven different heights. Of the seven heights, data sampled from the heights 0 mm, 20 mm

and 50 mm are used for both cdibrating the constants P¢ and Q¢ in eq.(4), and training

the neura networks ANN; and ANN,. Data sampled from the heights 10 mm, 30 mm, 40
mm and 60 mm are used for testing the estimation accuracy of the depth formula of eq.(4)
and the compensation capability of ANN; and ANN,. Therefore, atotal of 336 ( 3 steps ”

2 edge points per step © 7 heights © 8 orientations ) samples is generated. Of the 336
samples, 144 are used as the training patterns, and the remaining 192 untrained samples are

used asthe test set.

Furthermore, in order to evaduate the effect of gray-level contrasts on the estimation
accuracy of depth, we have dso experimented the placement of the three-step block on two
backgrounds with digtinct gray-levels. The average gray-levd of the block in the image is

100, and the average gray-levels of the two backgrounds used in the experiments are 202
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and 145. The block on the background with gray-level 202 is referred to as a high contrast
image, whereas the block on the background with gray-level 145 is referred to as a low
contrast image. Each contrast category contains 336 samples generated as described above.
These two contrast categories generate following four combinations of experiments: 1) Both
traning samples and test samples are collected from high contrast images, denoted by
E(H,H), 2 Traning samples are generated from low contrast images, but test samples
are collected from high contrast images, denoted by E (L ,H ), 3) Both training samples

and test samples are generated from low contrast images, denoted by E (L, L), and 4)

Training samples are generated from high contrast images, but test samples are collected

from low contrast images, denotedby E (H ,L).

Now we evaluate the performance of the proposed depth estimators under two
conditions : 1) cdibrating and training the sysem without using the information of edge
orientations, and 2) cdibrating and training the sysem with the information of edge

orientations.

Let the congtants Pd¢and Q¢ in eq.(4) be cdibrated, and the network ANN; be
traned by the 144 known data samples without consdering the information of edge
orientations. Table 1 summarizes the experimenta results of the root-mean-squares (RMS)
depth errors in percentage for the geometric depth formula and the network ANN;. It can
be seen from Table 1 that the experiment of E (H ,H ) gives the best performance with
the RMS error of 1.77% from the depth formula. The proposed methods aso work well
when the training environment does not coincide with the testing environment. The
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experiment E (L,H ) compares favorably with the experiment E (H ,L), and even the
experiment E (L, L). The performance of the experiment E (L ,H ) is as good as that
of the experiment E (H ,H ) if the network ANN, isapplied. Therefore, in an gpplication
of the proposed methods for accurate depth estimation, high-contrast images with the same
training environment and scene environment should be employed if the scene environment
can be easly controlled. If the scene environment cannot be predicted beforehand, the use
of rdatively low-contrast images in training is a good drategy to generate good depth

esimation.

The neura network approach with the network ANN; generaly yields better depth
edimation, especidly for the experiments E(H,L), E(L,L), and E(L,H),
compared with the geometric depth formula. In generd, the RMS error from the depth
formula is within 5%, and the RMS error from the network ANN; is within 3% for the
cameraat 145 mm distance. These results compare competitively with the measured errors

reported in references [10, 12, 18].

Now let the congtants P¢ and Q¢ in eq.(4) be separatdly calibrated using the

known data samples in each edge orientation. Table 2 presents the experimental results of
the RMS depth errors in percentage from the geometric depth formula and the network
ANN, that uses the additiond information of edge orientations as the input. The trend
resulting from the experimentsin Table 2 are congstent with that in Table 1. The experiment

E (H ,H )yidds the best performance with the RMS error of 0.64% from the network
ANN,. The experiment E(L,H) vyidds twofold improvement over the
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experiment E (H ,L) when the traning environment does not coincide with the scene

environment.

The network ANN, works extremedy wel even for low-contrast images and
norcoincident environments in training and testing. The improvement of the network ANN,
versus the depth formula is about twofold. Given that the depth formula is used for
estimating the depth in the experiments, the use of additiona information of edge orientations
for traning individud P¢ and Q¢ does not generate Sgnificant improvement in the
measured depth errors. However, if the neural network approach is used for measuring the
depth in the experiments, the network ANN, that uses edge orientations to the input layer
yidds significant improvement in the measured errors, compared with the retwork ANN;
that does not use the information of edge orientations as the input. In generd, the RMS error
from the geometric depth formula is gill within 5% even with the information of edge
orientations, and the RMS error from the network ANN; is within 2% as seen in Table 2.
Based on the experimental results described above, the proposed moment-preserving

method for estimating the proportion of edge region p, and the proposed neural network

aoproach have demondrated their efficiency and effectiveness for edge-based depth

esimation.

6. CONCLUSION

In this paper, the geometric depth formulaiisdescribedby D = P¢/ Q¢+ p, ), where

P¢ and Q¢ are congtants for a given camera setting, and p, is the proportion of edge
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region in asmall neighborhood window. To compute the vaue of  p, , the origind gray-level
image is converted into a gradient image using the Sobel edge operator. For each edge point
of interest in the gradient image, the proportion p, is then evauaed usng the
moment-presarving principle. The moment-preserving method provides a closed-form
solution to obtain the vaue of  p, , and is computationdly fast. The resulting value of  p, is
between 0 and 1, and increases as the amount of defocus increases. In addition to estimating
the depth by using the geometric depth formula, two artificia neura networks ANN; and
ANN, are adso proposed in this study to compensate for the estimation error of the depth

formula

The best depth accuracy is obtained for objects in high-contrast images where the
traning environment coincides with the scene environment. The proposed methods aso
work well for objects that their training images and scene images have different gray-leved
contrasts. Experimenta results have shown that the RMS error from the geometric depth
formulais within 5%, and the RMS errors from the networks ANN; and ANN, are within

3% and 2%, respectively.

The interior edge that dstinguishes between two homogeneous surfaces of an object
generdly has very low gradient magnitude in the gradient image. Since the proposed
moment-preserving gpproach is based on the measurement of the proportion of edge region

p. inaloca window in the gradient imege, this redtricts the proposed method in its current

form to be only applicable to the edges between objects and the background.
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Figure 1. Image formation and defocus in a convex lens
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Figure 2. The horizonta and vertica Sobel edge operators.




(b)

Figure 3. Images of a multi-step block. (@) The origind gray-level image. (b)
The corresponding gradient image. The camera is focused on the top
of the table where the block is located.
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Input layer Hidden layer Output layer

Figure 4. The system architecture of the network ANN;.

Input layer Hidden layer Output layer

Figure 5. The system architecture of the network ANN,.
(Only partia connections are presented.)
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Figure 6. A three-step block used for experiments.
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Figure 7. (8) The plots of the proportion of edge region p, agains the depth D for

varying sizes of windows. (b) The measured errors of depth for varying sizes of
windows.
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Figure 8. The images of the three-step block a seven different heights.
H represents the distance from the base of the block to the top of the
table
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Table 1. Comparison of RM S depth errors from the depth formula and the network ANN,
under different gray-level contragts for training and testing. (The information of
edge orientations is not gpplied. )

Experiment RMS depth error (%)

Depth formula Network ANN;
E(H.,H) 1.77 1.97
E(L.H) 3.25 1.97
E(L,L) 4.16 2.75
E(H,L) 4.27 2.75

Table 2. Comparison of RMS depth errors from the depth formula and the network ANN,
under different gray-level contragts for training and testing. (The information of
edge orientationsiis utilized. )

Experiment RMS depth error (%)

Depth formula Network ANN,
E(H,H) 1.22 0.64
E(L.H) 2.88 1.00
E(L,L) 4.06 1.52
E(H,L) 4.16 2.00
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