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Abstract

The Hough transform is a popular method for detecting complex forms in digital images. However, the technique is not
very robust since several parameters that determine the scope of the detection results, such as quantization thresholds
and intervals, must "rst be de"ned. In the present paper, we propose to enhance shape detection with the Hough
transform through fuzzy analysis. One chief drawback of the Hough transform, i.e., the uncertainty/precision duality, is
thus reduced. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Hough transform (HT) was "rst introduced in the
1960s as a method for detecting sets of collinear points in
binary noisy digital images [1]. It was brought to the
attention of the scienti"c community through the works
of Rosenfeld [2] and Duda and Hart [3].

This technique was later extended to the detection of
arbitrary shapes [4] in arbitrary dimensioned spaces.
Hough-like transforms have also been suggested for pat-
tern recognition [5].

There have been several proposals to reduce the huge
memory storage capacity and computational time re-
quired for HT, a substantial drawback of this technique
[6,7].

Many papers have focused on the e!ects of errors due
to random noise and data quantization. Probabilistic
analysis of the HT process seems particularly complex
and suggested solutions are still highly empirical.
A powerful approach has been proposed in Ref. [8] to
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design a tool to analyze HT performance by using hy-
pothesis testing methods.

The Hough transform and its extensions have been
reviewed in detail [9,10] and an exhaustive bibliography is
available [11,12]. Comparisons between probabilistic and
non-probabilistic approaches are reviewed in Ref. [13].

Despite the abundance of papers dedicated to HT,
relatively little attention has been paid to what we termed
the uncertainty/precision duality. This duality could be set
out as follows: as the shape detection precision increases,
the reliability of the detection decreases. This seems to be
due to the binary aspect of the vote in the classical Hough
transform (CHT).

Han et al. [14] proposed using fuzzy subset theory to
deal with the problem of approximate concepts in HT.
They designed a fuzzy Hough transform (FHT) which
generalized the distributed voting principle described by
Thrift and Dunn [15]. However, this method makes no
distinction between data uncertainty and expected or
computationally induced parameter uncertainty. In addi-
tion, there is no bene"t to assessing the data in terms of
con"dence.

Our new FHT approach takes current knowledge
on uncertainty into consideration to improve shape
detection.
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The present paper is organized as follows. Section 2
includes a short survey of CHT to outline some notation
points and specify how the transform is conventionally
computed. Section 3 provides a brief introduction to
fuzzy subset theory. FHT is presented in Section 4 as
a fuzzixcation of CHT. We demonstrate that this new
formulation is helpful for solving problems such as thre-
sholding, peak enhancement, quantization of parameter
space and data localization uncertainty. It allows the user
to deal separately with data uncertainty, data con"dence,
parameter uncertainty and parameter con"dence. This
new formulation is highlighted through a few examples
given in Section 5, with CHT and FHT compared ac-
cording to their abilities to identify approximate straight
lines in a particularly noisy image. Discussion, con-
clusions and extensions are proposed in Section 6.

The study was restricted to the detection of straight
lines in images in order to simplify the statement of the
method.

2. Classical Hough transform

2.1. Evidence gathering procedure

A brief overview of CHT is presented, but we only
consider a context in which the domain is a bounded box
of R2 points, i.e., a conventional image.

Each pixel in image I is represented by its coordinates
(i, j) that map real positions (x

i
, y

j
) in the image. Let us

assume that in this image we look for a set of curves
de"ned by the function f (x, y, P)"0, where vector P of
size n is the parameter.

If we consider that E represents a bounded subset of
image points that are assumed to belong to one of the
sought-after curvatures, then at E the Hough transform
maps a function h de"ned on R/.

Many Hough transforms have been described in the
literature, all of them are highly combinational. The
1-to-m Hough transform [9] is the most computationally
e$cient version, and involves mapping a number of E
points to each P point in the parameter space, such that
f (x, y, P)"0. h acts as a counter function and the array
it produces is called an accumulator array. Image curves
in the parameter space are characterized by peaks in the
h function.

It would not be bene"cial to assess the h function for
the entire Rn space given that the image is a bounded
subset. Therefore, h is evaluated on a bounded subset
) of Rn, since the boundaries of this subset can be directly
deduced from the image boundary by the function f.

For practical purposes, the parameter space is sub-
divided into a number of cells in the subset ). Otherwise,
evaluation of h within an in"nite number of ) points
would give rise to several problems, including complex
calculations.

Using the 1-to-m Hough transform to map a cell % of
) involves calculating the cardinal number of the subset
E

p
for all the points of E that &&obviously'' belong to any

of the forms that arise from the box % and the function f.
This is given by (x, y)

E
, such that:

(x, y)3E
p
Q &P3%/f (x, y, P)"0. (1)

Eq. (1) clearly demonstrates that (x, y) belongs to the
subset En and also that

h(%)" +
(x, y)|E

+
P|%

f( f (x, y, P))" +
(x, y)|E

s
E%

(x, y)

" +
(x, y)|I

MIN(s
E
(x, y), s

E%
(x, y))

with f(uO0)"0 and f(0)"1. s
E

is the characteristic
function of E subset.

We limited the present study to the detection of
straight lines in an image to simplify statement of the
method.

2.2. Detection of straight lines in an image

Since the studies of Duda and Hart [3], it is a common
practice to de"ne the membership of a point (x, y) in the
plane to a straight line by the following relation:

f (x, y, o, h)"o!x cos h!y sin h"0

with (o, h)3R][0, p],

where h represents the orientation of the vector normal
to the line, and o denotes the distance from the straight
line to the origin.

Polar representation of a straight line (Fig. 1) is doubly
useful because it is homogeneous and facilitates de"ni-
tion of a bounded variation space ). The space ) is
subdivided into the same-sized cells (2Lo]2Lh), such that

[o
p
!Lo, o

p
#Lo]][h

q
!Lh, h

q
#Lh]"P

p
]#

q
.

Except for a few exceptions described later, the l-to-m
Hough transform is used to analyze each cell as follows:
for each point (x

i
, y

j
) of E, and for each h

q
, the distance

o from the straight line to the origin is simply determined
by

o"x
i
cos h

q
#y

j
sin h

q
.

Fig. 1. Polar representation of a straight line.
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The accumulator function h is then incremented in the
cell (P

p
]#

q
) such that o3[o

p
!Lo, o

p
#Lo]. Now that

this formulation is stated, several further questions arise:

f How can the subset E be extracted from the image
points that theoretically belong to a straight line?

f Are the detection features of the transform a!ected by
the size of the cells in the parameter space? If so, can an
optimal size be de"ned?

f How can peaks in the transform array be detected?
Can this detection be assessed for con"dence?

f How precise is the transform in detecting straight
lines? Can this precision be enhanced?

In Section 4, we demonstrate that these questions can
be neatly answered by fuzzy subset theory. This theory is
brie#y outlined in Section 3.

3. An update on the fuzzy concept

Some of the tenets of fuzzy subset theory are now
reviewed to set the stage for the discussion that follows.
Further details on fuzzy subsets are given in [16,17].

3.1. Fuzzy intervals

Fuzzy subsets of R are called fuzzy quantities.
A fuzzy interval Q is a fuzzy convex quantity, which

means that the membership function is quasi-concave:

∀(u, v)3R2

∀w3[u, v]H k
Q
(w)*MIN(k

Q
(u), k

Q
(v)).

A fuzzy quantity Q can also be considered as a fuzzy
interval if all of its a-cuts are crisp intervals. Moreover, if
the fuzzy interval support is bounded, then the fuzzy
interval itself is bounded. Fuzzy intervals (Fig. 2) can
generally be conveniently denoted using an LR repres-
entation [17]. A fuzzy interval can thus be fully charac-
terized by its kernel and support.

Finally, a generalization of the Cartesian product no-
tion can be de"ned. If we consider Q

1
and Q

2
as two fuzzy

intervals characterized by their membership functions
k
1

and k
2
, then the fuzzy box Q

1
]Q

2
, the Cartesian

Fig. 2. LR-type fuzzy interval.

product of Q
1

and Q
2
, is denoted by k

Q1CQ2
, such that

k
Q1CQ2

(x
1
, x

2
)"MIN(k

1
(x

1
), k

2
(x

2
)).

3.2. Extension principle

In this section, we present a generalization of the
extension principle as applied to error calculus.

The extension principle addresses the following prob-
lem. Let f be a function of N fuzzy variables x

n
. The

variation domain of x
n

is the fuzzy subset characterized
by its membership function k

n
(x). Using the extension

principle, we can de"ne the variation domain of the
variable y where y"f (x

1
,2, x

N
).

Assuming that x
n

variables are non-interactive (i.e., if
the variation domain of variable x

i
does not depend on

the values of the other variables x
j
for all pairs (i, j)

iEj
),

then the variation domain of y is de"ned by k
f

(y), such
that

k
f

(y)"SUP
x12xN

MMIN(k
1
(x

1
),2,k

N
(x

N
))/ f (x

1
,2,x

N
)"yN.

Assuming that the variation domain of each x
n

is an
LR-type fuzzy interval X

n
, then the variation domain of

(x
1
, 2, x

n
) is a fuzzy box X of RN, the Cartesian product

of N fuzzy intervals X
n
.

In the light of a few reasonable hypotheses on the size
of box X, the variation domain of y can be estimated by
an LR-type fuzzy interval. Since it is not always possible
to precisely calculate k

f
, we obtain a

y
, b

y
, a

y
and b

y
which

de"ne k6
f

an approximation of k
f

via a limited "rst-order
development of f [17].

a
y
"f (a

1
,2, a

N
),

a
y
"

Lf

Lx
1

(a
1
, 2, a

N
)a

1
#2#

Lf

Lx
N

(a
1
,2, a

N
)a

N
,

b
y
"f (b

1
,2, b

N
),

b
y
"

Lf

Lx
1

(b
1
, 2, b

N
)b

1
#2#

Lf

Lx
N

(b
1
, 2, b

N
)b

N
.

We often use the notational misnomer f (X) to denote
the fuzzy subset de"ned by the function f and the fuzzy
subset X.

4. Fuzzy Hough transform

The Hough transform will now be analyzed according
to fuzzy subset theory.

4.1. Thresholding

Users of the HT "rst have to face the problem of
de"ning the subset E of image points that supposedly
belong to the sought-after straight lines.
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4.1.1. Binary thresholding
Image pixels can generally be separated into two subsets

E and EM according to grey level, gradient and curvature
properties. E is the subset of points belonging to one of
the sought-after straight lines, and its complement EM is the
subset of points that do not belong to any straight line.

Automatic search algorithms for a grey-level threshold
s that allows this separation are generally based on
statistical signal separation properties [18].

There are no problems with such procedures when an
optimal image, i.e., a clear, uniform and well-contrasted
image, is analyzed.

When the image is suboptimal, the operator is obliged
to over- or under-estimate the threshold. With an
over-estimated threshold, many points belonging to
sought-after forms are not taken into account. With an
underestimated threshold, the E subset contains points
that belong to none of the sought-after forms (back-
ground noise). In this case, many peaks appear in the HT
which do not match any real straight lines in the image.

Many solutions have been proposed to overcome this
problem, including that of Ref. [19], whereby grey-level
values are used directly to weigh HT votes.

We use a similar technique to de"ne E as a fuzzy subset
of the original image. This calls for further details on
threshold detection procedures.

4.1.2. Separation threshold detection
Two hypotheses can be put forward for each pixel (i, j):

f the null hypothesisH
0
: &&the pixel belongs to one of the

sought-after lines'' i.e., (i, j)3E,
f the alternative hypothesis H

1
: &&the pixel does not

belong to one of the sought-after lines'', i.e., (i, j)3EM .

When looking for black lines on a white background, it
is possible to determine whether (i, j) belongs to E or
EM via the grey-level threshold s. The null hypothesis is
accepted if ng(i, j)(s. Conversely, the alternative hy-
pothesis is accepted if ng(i, j)'s.

Assuming that the grey levels of each pixel represent its
probability of membership to E (or to EM ), two types of
risk can be de"ned [20]

f the "rst a-type, involving rejection of an E pixel when
it actually belongs to E: a"P(reject H

0
/real H

0
),

f the second b-type, involving rejection of an EM pixel
when it actually belongs to: EM : b"P(reject H

1
/

real H
1
).

As s drops, a decreases and b increases. Hence, estab-
lishing a threshold means "nding a good trade-o! be-
tween a and b risks, or favoring one hypothesis over the
other.

The results of this type of trade-o! closely depend on
the hypotheses put forward concerning the grey-level
distribution in the image.

4.1.3. Fuzzy thresholding
In contrast, two thresholds s` and s~ are readily

de"ned by setting equivalent probability thresholds for
each risk (a"b). Two subsets E

1
LE and E

2
LEM can

thus be extracted from the image. Hence, with certainty,
E
1

represents points belonging to a line (risk(thre-
shold), and E

2
represents the set of points belonging to

no line. The membership status of points with grey levels
between these two thresholds is not as clearcut.

This vague membership situation is easily taken into
account by considering E as a fuzzy subset. Hence, E con-
tains all E

1
points, no E

2
points, and to various extents

can contain points that do not belong to E
1

or E
2
.

E
1

and E
2

can be considered as empty subsets without
any loss of generality, which means that no image thre-
sholds are de"ned.

When searching for black lines on a white background,
the membership k

E
(x

i
, y

j
) of a pixel (i, j) with a grey level

ng(i, j) to a fuzzy subset E could be de"ned from a L-
function by

k
E
(x

i
, y

j
)"1 if ng(i, j)(s~,

k
E
(x

i
, y

j
)"LA

ng(i, j)!s~

s`!s~ B if s~(ng(i, j)(s`,

k
E
(x

i
, y

j
)"0 if s`(ng(i, j).

When I
pq

, the crisp subset of I, is denoted by

I
pq
"M(x, y)3I D Dx cos(h

q
)#y sin(h

q
)!o

p
D(LoN

then, in assessing the P
p
]#

q
cell, the HT is equal to the

fuzzy cardinal of the subset EWI
pq
"E

pq
.

h(P
p
]#

q
)"CARD(E

pq
)" +

(x, y)|Ipq

k
E
(x, y).

In practice, when the image grey-level distribution is
unknown, it is better to use a linear function:

L(u)"1!u if u3[0, 1] (Fig. 3)

Fig. 3. Fuzzy thresholding.

However, if the image contrast is known, it can be
taken into account by using semantic modixers for mem-
bership of the subset to E [16].

4.2. Quantization

In practice, we noted that use of the HT subdivides
) into a certain number of cells. A counter is associated
with each cell which indicates the number of image
points that belong to any of the straight lines de"ned by
this cell.
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Many papers have rightly focused on the problem of
quantization of ).

There are two objectives in adjusting quantization:

f enhanced computation performance (less storage
memory required, reduced computation time),

f enhanced algorithm performance (precision, con"-
dence).

The "rst objective reduces the cell number (increased
quantization), while the status of the second is not as
clearcut, and is the focus of the present study.

4.2.1. Imprecision/uncertainty
Although the aim is to increase line detection precision,

quantization is clearly reduced. This reduction can also
be motivated by a high density of lines in the image. In
addition to a substantial increase in computation time,
there will be a lower accumulator coe$cient, thus in-
creasing uncertainty in detecting each straight line. When
this phenomenon is exaggerated with an excessive quant-
ization, the accumulator array will only contain a max-
imum of one point per cell.

Conversely, if we intend to tolerate a poor "t between
the model and reality, then it would be better to increase
quantization. This increases the values of the accumu-
lators associated with each cell, thus increasing the
con"dence that straight lines are present in the image.
However, enhancing the certainty in the detection of each
line will increase the imprecision of this detection.

The main reason for this dichotomy between the ex-
pected line detection precision and the certainty that the
line is present in the image is the binary aspect of the vote
in CHT.

Many authors have o!ered solutions to bu!er the
e!ects of this duality. They can be classi"ed into "ve
categories:

f optimal quantization [21],
f non-uniform quantization [22],
f multi-scale quantization [18],
f adaptive quantization [23],
f distribution of votes to neighboring cells [15].

The aim of the latter method is to account for the
uncertainty of detecting characteristic points by in-
crementing the accumulators of all cells whose represen-
tative lines intersect the uncertainty zone (Fig. 4).

The fuzzy vote is associated with this technique, as
described in Ref. [14]. The uncertainty zone attached to
each characteristic point is represented by a fuzzy subset
with a uniform isotropic membership function. In prac-
tice, the vote of each characteristic point is weighted
according to the Euclidean distance that separates it
from the ideal straight line represented by the cell.

This method is innovative but does not di!erentiate
between imprecision in pixel detection (intrinsic to image

Fig. 4. Uncertainty in detecting a pixel.

sensors) and expected imprecision which is intrinsic to
line detection objectives set by the operator.

Moreover, we believe that the hypothesis of an iso-
tropic pixel membership function is unfounded and pre-
fer to view the image as a fuzzy tiling1 of R2 points; the
) tiling is also considered as fuzzy.

4.2.2. Distributed vote
In a classical Hough transform (CHT) [24], each pixel

(i, j) is considered as an intersection point of coordinates
(x

i
, y

j
) in the image ILR2. The parameter space is sub-

divided into (2Lo, 2Lh)-sized boxes P
p
]#

q
centered on

(o
p
, h

q
).

Each pixel (x
i
, y

j
) gives rise to a sine curvature in )

space. The Hough transform is assessed by incrementing,
for each characteristic point (i.e., (x

i
, y

j
)3E), accumula-

tors associated with ) boxes that intersect the sine curva-
ture in a non-null manner (Fig. 5).

Fig. 5. Sine curvature "tted to an image point (x
i
, y

j
).

In practice, this means calculating the o values match-
ing each h

q
value of h: o

p
"(x

i
cos h

q
#y

j
sin h

q
) and

incrementing the P
p
]#

q
cell accumulator, such that

o3[o
p
!Lo, o

p
#Lo].

To account for uncertainty in detecting characteristic
points, it is necessary to consider each pixel (i, j) as
a (2Lx, 2Ly)-sized box X

i
]>

j
of the image ILR2

centered on (x
i
, y

j
).

A box X
i
]>

j
of I maps a sine curvature set in para-

meter space (Fig. 6). It is thus essential to increment
accumulators associated with all boxes that intersect at

1Finite disjoint union of fuzzy boxes.
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least one sine curvature of this set in a non-null manner.
This is termed the distributed vote (Fig. 6).

Fig. 6. Sine curves "tted to an image box X
i
]>

j
.

A "rst-order approximation can simplify this intersec-
tion calculation. Hence, for each h

q
value, we evaluate the

interval [o!*o, o#*o], such that

o"(x
i
cos h

q
#y

j
sin h

q
) and

*o"DLx cos h
q
D#DLy sin h

q
D#D(y

j
cos h

q
!x

i
sin h

q
)LhD.

The P
p
]#

q
cell accumulator is then incremented, for

which

[o!*o,o#*o]W[o
p
!Lo, o

p
#Lo]O0. (2)

Eq. (2) states that (x, y, o, h)3X
i
]>

j
]P

p
]#

q
exists,

such that o"(x cos h#y sin h), indicating that the rela-
tion f (x, y, o, h)"0 is entirely possible in this box.

The all-or-none aspect of this incrementation can be
astutely reduced by incrementing the accumulator asso-
ciated with the P

p
]#

q
cell using a proportional value,

whereby the [o!*o, o#*o] interval overlaps each
P
p

interval. The fuzzy Hough transform formalizes this
heuristic process.

4.2.3. Fuzzy vote
Let us consider that each pixel (i, j) is a fuzzy box, i.e.,

a product of two fuzzy intervals X
i
and >

j
. X

i
(rsp. >

j
) is

a symmetrical fuzzy interval centered on x
i
(rsp. y

j
) with

kernel [x
i
!Lx, x

i
#Lx] (rsp. [y

j
!Ly, y

j
#Ly]) and

spread p
x

(rsp. p
y
) (Fig. 7).

Therefore, the sine curve set produced by each pixel in
) is an induced fuzzy set (Fig. 8).

Each ) cell is stated in the same manner as the Car-
tesian (fuzzy) product of two fuzzy intervals P

p
and #

q
.

P
p

(rsp. #
q
) is the fuzzy interval with a kernel [o

p
!Lo,

o
p
#Lo] (rsp. [h

q
!Lh, h

q
#Lh]), and spread po (rsp. ph).

We "nd that, for each X
i
]>

j
box of E, the relation

f (x, y, o, h)"0 is possible for P
p
]#

q
cells with in-

cremented accumulators. This potential is shown by the
fact that the value 0 belongs to the variation domain of
/"f (x, y, o, h) when variables x, y, o and h are re-
stricted by their variation domain.

Variation domains in the FHT are fuzzy. Hence, when
(x, y, o, h) belongs to X

i
]>

j
]P

p
]#

q
, the range of the

variable / is the fuzzy variation domain '
ijpq

. According
to the extension principle, when k'ijpq

is the membership

Fig. 7. Fuzzy pixel (fuzzy image box).

Fig. 8. Fuzzy sine curve set "tted to a fuzzy image box X
i
]>

j
.

function of '
ijpq

, we can state

k'ijpq
(/)" SUP

x|Xiy|Yi
p|Pp

h|#
q

MMIN[k
Xj

(x), k
Yj
(y), k

pp
(o), k#q

(h)]/

f (x, y, o, #)"/N.

The possibility of membership of a pixel (i, j) to the
fuzzy line represented by the cell (p, q) is clearly member-
ship of the value 0 to the fuzzy set '

ijpq
:

n(i, j, p, q)"kU
ijpq

(0)

FHT assessment of the fuzzy cell P
p
]#

q
is then de-

"ned, for all fuzzy pixels of E, as the sum of this occur-
rence possibility n(i, j, p, q). Replacing the fuzzy boxes by
crisp boxes will clearly lead to a classical HT.

Now, to evaluate k'ijpq
(/), we will use the properties of

fuzzy intervals in an LR representation. The fuzzy inter-
vals used here are for obvious reasons considered to be
symmetrical. According to the properties of fuzzy inter-
vals, the fuzzy interval '

ijpq
can be de"ned by

'
ijpq

"P
p
!X

i
) cos #

q
!>

j
) sin #

q
.

Taking into account a few restrictions speci"c to lim-
ited developments, '

ijpq
can be mapped with an LR-type

interval, as de"ned by its center /
ijpq

, the half-width of its
kernel L/

ijpq
and its spread p'ijpq

:

/
ijpq

+f (x
i
, y

j
, o

p
, h

q
)"o

p
!x

i
) cos h

q
!y

j
) sin h

q
,

L/
ijpq

+Lo#Dcos h
q
D ) Lx#Dsin h

q
D ) Ly

#Dx
i
sin h

q
!y

j
cos h

q
D ) Lh,

p'ijpq
+p

p
#Dcos h

q
D )p

x
#Dsin h

q
D )p

y
#Dx

i
sin h

q
!y

j
) cos h

q
D )ph.
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The FHT assesses the cell Mp, qN as follows:

h(P
p
]#

q
)" +

XiCYi$I E

k'ijpq
(0)" +

XiCYi$I E

n(i, j, p, q).

The latter equation still has to be corrected to account
for the fact that E is a fuzzy set of I with a membership
function k

E
(X

i
]>

j
):

h(P
p
]#

q
)"+

ij

MIN(n(i, j, p, q), k
E
(X

i
]>

j
)).

HT programming can be substantially simpli"ed if we
consider that, for constant X

i
, >

j
, P

p
and #

q
, detecting

membership of 0 to the fuzzy interval '
ijpq

is the same as
detecting membership of o

p
to the fuzzy set P

ijq
, whose

membership function is that of '
ijpq

translated from
(x

i
) cos h

q
#y

j
) sin h

q
)"o

ijq
(Fig. 9).

Fig. 9. Pixel-induced fuzzy subset.

HT assessment with ) therefore becomes:

FOR EACH IMAGE PIXEL (i, j)
FOR EACH FUZZY INTERVAL #

q
CALCULATE THE FUZZY SUBSET P

ijq
INCREMENT EACH CELL (p, q)
OF THE QUANTITY
n(i, j, p, q)"MIN(k

pijq
(o

p
), k

E
(X

i
]>

j
))

END FOR
END FOR

Calculation can be speeded up by checking, before
each possibility analysis, whether o

p
belongs to S(P

ijq
),

the support of P
ijq

.

4.3. Transform interpretation

4.3.1. Peak detection
The constructed HT accumulator array H has to be

analyzed in order to extract peaks that indicate the
presence of straight lines in the image.

Conventional analysis involves setting a threshold at
the least number of points required for a de"nite straight
line to appear in the image. The set =L) of chosen
cells is obtained by thresholding H.

Many studies have shown that a noisy original image,
or defects in the technique for selecting characteristic
points, reduce the robustness of the method. O'Gorman
and Sanderson [25] propose to use a method that per-
forms a robust detection with few hypotheses. However,
the presence of elongated peaks } that are numerous in
HT } causes misdetections.

Uniform noise in the image gives rise to noise peaks in
the transform array. The appearance of these peaks alters

line detection or leads to detection of non-existent lines in
the image.

To reduce these negative e!ects, Cohen and Toussaint
[22] suggested using a non-uniform threshold propor-
tional to the probability that noise is present in the
image. This requires prior information concerning noise
distribution in the original image. The detection thresh-
old will be overestimated if little is known about this
distribution, thus eliminating short line segments.

Another problem intrinsic to the uncertainty/precision
duality then arises from the lack of correspondence be-
tween the quantization of ) and the real straight line
detection precision in images (&&thick'' lines). In such
cases, each real straight line can map several related cells
from the transform array.

The main methods that have been proposed to over-
come this problem are multi-scale analysis, peak de-
tection with a suitable convolution mask and other
approaches involving consolidation of related cells. By
these techniques, only representative values in each
group of related cells can be chosen.

Line detection can be improved by using redundancy
of local information. Statistical (median, mean, statistical
screening, etc.) and heuristical (in#uence function, etc.)
fusion procedures can be used to improve pinpointing of
straight lines in the image, but such techniques are usu-
ally only empirically warranted.

We propose replacing binary peak detection with a
fuzzy detection procedure. The hypothesis that = is a
fuzzy subset can thus be put forward.

We call upon the distributed voting principle to en-
hance detection in the neighborhood of each cell ) or
group of cells. This procedure is known as &&defuzzi"ca-
tion''.

4.3.2. Fuzzy detection
We now consider = as a fuzzy set of h peaks on ).

Fuzzy detection now involves assessing the membership
function k

w
of= on ).

Membership of a cell (p, q) to = is characterized by
two properties:

f the accumulator h(P
p
]#

q
) has a higher value than

those of the set of accumulators in the neighborhood
of (p, q),

f the peak mid-points of the minimum and maximum
curvatures are negative and their absolute values are
high.

Two fuzzy subsets=1 and=2 can be de"ned accord-
ing to these two vague premises.=1 is a subset of cells of
a highly negative curvature.=2 is a subset of cells with
a higher value than those of its neighbors.= is the fuzzy
intersection of=1 and =2.

To determine=1 for each cell (p, q), we calculate two
curvature indices H(p, q) and K(p, q), the mean curvature
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Fig. 10. Membership to sharp curvatures.

and the Gaussian curvature, respectively. A peak is iden-
ti"ed when its Gaussian curvature is positive and its
mean curvature negative [26]. Membership of a cell (p, q)
to the=1 subset is greatest with a negative H(p, q) and
positive K(p, q).

Hence, with an L-type function, two fuzzy coe$cients
k
H
(p, q) and k

K
(p, q) are obtained by (Fig. 10)

k
H
(p, q)"LA

MIN(0, H(p, q))

H
MIN

B, H
MIN

"INF
p,q

MH(p, q)N,

k
K
(p, q)"LA

MAX(0, K(p, q))

K
MAX

B, K
MAX

"SUP
p,q

MK(p, q)N.

Then k
W1

(p, q) is de"ned by: k
W1

(p, q)"k
H
(p, q) )k

K
(p, q),

where ` ) a is a conjunction operator, considering that
Gaussian and mean curvatures are computationally lin-
ked variables [17].

The fuzzy subset=2 is de"ned as a fuzzy threshold of
the function h on ). This approach is derived from a
classic method, whereby a smoothing "lter F is passed
over an array H, and only cells (p, q) are used, such that
h(P

p
]#

q
)!F(h(P

p
]#

q
)) are positive k

w2
(p, q), the

membership function of =2, is de"ned by

k
w2

(p, q)"LA
D(p, q)

D
MAX
B (L is a form function),

D(p, q)"MAX(0,(h(P
p
]#

q
)!F(h(P

p
]#

q
)))),

D
MAX

"SUP
p,q

MD(p, q)N.

Membership of the cell (p, q) to the = subset is the
de"ned by

k
w
(p, q)"k

(w1Ww2)
(p, q)"MIN(k

w1
(p, q), k

w2
(p, q)).

4.3.3. Interpretation
Our goal here is to demonstrate how to obtain in-

formation on the real presence of straight lines in an
image from the fuzzy subset=.

According to fuzzy analysis, all straight lines represent-
ed by the cells (p, q) of ) are a priori present in the image
but to di!erent degrees. This degree of presence or possi-
bility of presence is proportional to the membership of the
cell (p, q) in =.

It would be possible to get this by possibility of pres-
ence distribution. However, for most applications, it is

essential to utilize binary information on presence or
non-presence. The lines of the crisp subset =a, whose
possibilities of presence are at least a, thus have to be
deduced from =. This subset is the a-cut of =. An
analysis of = can be carried out to "nd the best cut
(according to a speci"c criterion). In practice, the closest
crisp subset is chosen, i.e., the (1

2
)-level cut.

4.3.4. Defuzzixcation
In the CHT, the value of the assessment h of the cell

(p, q) relative to the array H can be used as a con"dence
index characterizing the presence of one line of the cell
P
p
]#

q
in the real image. This con"dence is derived from

the number of E points that have voted for one line of the
cell P

p
]#

q
.

Conversely, h(P
p
]#

q
) provides no information on the

most likely value of (o, h) of the cell P
p
]#

q
. The pre-

cision in detecting the value of (o, h) depends on the
quantization of ) only.

In the FHT, on the other hand, precision in detecting
the most likely value of (o, h) is only partially related to
the quantization of ) because of distributed voting. If the
quantization is suitable for obtaining clear separation of
straight lines on the image, then increasing or decreasing
this interval will have little e!ect on the results.

Indeed, in the FHT, several ) cells can map a real
straight line on the original image. The value h in each cell
corresponds to the compatibility of a real straight line with
the (fuzzy) subset of straight lines represented by this cell.

The method used for assessing the most likely line
draws from defuzzixcation principles used in fuzzy con-
trol. It involves retrieving the distributed vote for a line of
the cell (p, q) from the neighboring cells by calculating the
barycenter of the concerned fuzzy subsets [27].

We explain this process for one-dimensional situ-
ations, and our argument is based solely on o (Fig. 11).

kh(oi
) is the con"dence value for a straight line mapped

by the P
i
cell. For kh, we can use the normalized value of

h on ):

kh(oi
)"

h(o
i
)!MIN

k

(h(P
k
))

MAX
k

(h(P
k
)!MIN

k

(h(P
k
))

.

Assuming that information on the real value of o can
be extracted from the two neighbors of the P

i
cell, then

the o( value with the best consensus (in terms of the
barycenter) is such that

o("
:rk

Ri
(r) dr

:k
Ri
(r) dr

.

R
i

is the fuzzy subset whose membership function is
de"ned by

k
Ri
(o)"

i`1
SUP
k/i~1

(MIN(kh(ok
), k

pk
(o

i
))).
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Fig. 11. Defuzzi"cation of the FHT.

From this explanatory formulation, we can easily ex-
tract the two-dimensional case by replacing kh(oi

) by
kh(oi

, h
j
) and k

Ri
(o) by k

RiCQ
(o,h)
j

.

4.3.5. Fusion
In Section 4.2, we illustrated that when there is a defect

in the starting image (fuzzy, poor contrast, etc.), or when
quantization of ) is not suitable for all lines in the
original image (it never is), then a real straight line corres-
ponds to a set of ) cells.

It is thus necessary to consolidate the set of cells that
surpass the chosen con"dence threshold into a set of
related cells. Each group of related cells in the accumula-
tor array maps and approximate straight line in the real
image. This duplication of information can thus be used
to obtain a better estimate of the o and h parameters that
best represent a real straight line on the image.

For the CHT, the most robust procedure for determin-
ing the best candidate involves choosing the one that has
obtained the most votes from the group of related cells.

For the FHT, the neighborhood used in the defuzzi"-
cation process can be extended to the concerned cell set
and fusion can be weighted by the membership function
kh.

We tested an analogous procedure with the CHT; a
mean of related cells is calculated, with each cell weighted
with each of its values h. However, the procedure was
found to be relatively non-robust since in some cases line
detection was degraded by fusion. This problem can be
readily explained by the fact that the value h in a cell
(p, q) represents a con"dence measurement for the ap-
pearance of a set of lines on the image. The values h for
neighboring cells of (p, q) do not contain any information
on the appearance of straight lines for (p, q). Mean
weighted fusion involves scanning a set of related cells for
the best parameter value. This assumes that the con"-
dence measurement provided by h is distributed through-
out these cells, whereas it is actually located in each box.

5. Experiments

We investigated the fuzzy Hough transform to analyze
di!erent grey-level images with various types of noise
(fuzzy, unclear lines, grainy and non-uniform back-
grounds, poor contrast, etc.). It was found that one of the

Fig. 12. Original image of three cables.

main advantages of the FHT over the CHT is a marked
increase in robustness relative to all of the speci"c para-
meters required to conduct an Hough Transform (thre-
sholds, quantization, neighbor detection and fusion).

We will now give a few examples comparing straight
line seeking using the FHT and CHT. These comparative
tests were carried out on a 512]512 pixel image with 256
grey levels. This image shows three black cables against
a white textured, grainy and irregularly-lit background
(Fig. 12).

This example is taken not to prove the validity of FHT
versus CHT but to illustrate the di!erences between
those methods. In fact, experiments have been run on
numerous examples. The setting was chosen because it
includes almost all of the following defects:

f uniform noise due to the background texture,
f non-uniform noise due to the lighting,
f poor correspondence of the line model due to the

unstraight cables,
f unclear grey-level threshold due to shading.

We tried to match each cable with a line passing as
close as possible through its hypothetical center. In this
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Fig. 13. Accumulator arrays for the CHT (a) and the FHT (b).

example, we highlight the robust qualities of the FHT
concerning quantization, thresholding, noise and good-
ness-of-"t of our line model.

In these comparative tests, we used the same set of
parameters for all transforms so as to clearly highlight
speci"c FHT characteristics. For instance, the same
grey-level threshold was used in all cases, which served as
the non-membership threshold (s~) for the FHT. This
meant that E

1
, the kernel of the fuzzy subset E, was taken

as being empty.
Fig. 13 shows the CHT (a) and FHT (b) accumulator

arrays for this image. The grey-level threshold and
) quantization were chosen in order to obtain clear cable
detection (threshold 20, )-quantization 200]200).

There are very few noise peaks in the accumulator
array for the FHT, in contrast to that of the CHT. This
could be explained by joint e!ects of a distributed vote
and fuzzy weighting, thus `smoothinga the transform.

These two accumulator arrays have the same thresh-
olding (binary) with a relative threshold corresponding to
a percentage of the highest peak, designed to eliminate all
secondary peaks in the CHT accumulator array. On the
original image, we overlaid representative straight lines
from the centers of each cell (Fig. 14).

In both cases, the detected lines closely matched real
lines passing through all or part of the set of points for
each cable. The only noteworthy di!erence is the high
number of diagonal lines retained by the THC. This
di!erence can be explained by texture-induced noise in
the extraction of characteristic image points during thresh-
olding.

We then applied HT-speci"c fusion methods, i.e., peak
detection (CHT) and defuzzi"cation (FHT). Despite
a suitable grey-level threshold choice, the combined tex-
ture/non-uniform lighting induced noise peaks on the
CHT. We thus chose an accumulator array binarization
threshold that would eliminate any possible appearance
of these peaks. However, the background noise biased
detection with the CHT (Fig. 15 (a)), while it had no
visible e!ect on the FHT (Fig. 15 (b)).

Fig. 14. Detected straight lines superimposed on the original
image.

Fig. 15. Line detection after fusion.

Fig. 16. Poor quantization of ).
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Fig. 17. Poor grey-level threshold.

For the CHT, line detection precision decreased when
the number of cells covering ) was reduced. For the
FHT, when the sample was large enough to obtain good
cell separation, reduced quantization had little e!ect on
the results. Fig. 16 (a) and (b) compares the behaviors of
the THF and the THC for quantization of ) in 40]40
cells at the same threshold (20).

Finally, for the CHT, background noise had a clear
overriding e!ect when the grey-level threshold chosen to
de"ne the subset E of characteristic points was not cor-
rect (Fig. 17 (a) and (c)). In contrast, for the FHT, the
poorly de"ned threshold had almost no e!ect on line
detection precision (Fig. 17 (b)).

Overall, the results of these tests showed that when
the analyzed image is crisp, well contrasted, with little
noise and quantization is adequate, then there is no
visible improvement in the quality of straight line detec-
tion on the image when using the FHT. However, in the
absence of any of these characteristics, there is clear
detection degradation with the CHT but not with the
FHT. The FHT is therefore more robust than the CHT.

6. Conclusion and discussion

The Hough transform (HT) is a popular technique for
detecting parametric forms such as straight lines in im-
ages. However, it is somewhat di$cult to set up since
several parameters must "rst be de"ned, e.g. quantization
thresholds and intervals. Noisy original images can bias
or even hinder detection. Finally, there is also another
real problem, which we have termed the uncertainty/
precision duality, stated as follows: as detection precision
increases, con"dence in the detection decreases.

The fuzzy Hough transform (FHT) is a new formula-
tion of the classical Hough transform (CHT) which draws
from fuzzy subset theory. There are three major modi"-
cations to the classical theory:

f de"nition of a subset of characteristic image points,
f quantization of the domain and range,
f transform interpretation.

These modi"cations enhance accumulation processes,
upon which the transform is based, and disassociate
detection precision and parametric space quantization.

Finally, the main feature of the FHT is that threshold
and quantization de"nitions have little e!ect on its results.
We can thus state that it is more robust than the CHT.

The obvious drawback of this robustness is the marked
increase in computation time, which can be readily over-
come by reducing parametric space quantization. Such
reductions do not degrade detection precision or the
robust properties of the FHT. However, it decreases its
ability to discern two close lines.

Furthermore, images with many objects, or edges
which are closely parallel, cause confusion in the lines
found by both CHT and FHT. But this problem was not
addressed here and robust solutions have been proposed
(see e.g. [28]).

We speci"cally focused on straight line detection in
images in the present article. Our technique could easily
be extended to detection of other more complex paramet-
ric forms such as second-degree curves. It can also be
improved.

The technique could be further improved in several
ways, in particular with respect to the transform inter-
pretation process. For instance, (fuzzy) segmentation of
the subset of characteristic points could be used as an
alternative to the defuzzi"cation procedure proposed
here. Multi-scale analysis could also be used to dissociate
detection precision and con"dence information con-
tained in the FHT. Finally, a dual transform (contrary
to that proposed here) could be designed, whereby points
of the E-complement set would vote so that a necessity
array associated with fuzzy boxes of ) could be construc-
ted. Then a process very close to the suboptimal method
proposed by [8] could be used. It would consist of
detecting peaks no longer in the FHT accumulator but in
the `test hypothesisa accumulator given by division of
the possiblity array and the necessity array. This would
lead to an improvement of the ability of the Hough
transform to identify very short lines. This would com-
pletely separate precision and certainty.
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