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Abstract

The paper deals with features of a 2-D point set which are invariant with respect to a projective transform. First,
projective invariants for five-point sets, which are simultaneously invariant to the projective transform and to permuta-
tion of the points, are derived. They are expressed as functions of five-point cross-ratios. Then, the invariants for more
than five points are derived. The algorithm for searching the correspondence between the points of two 2-D point sets is
presented. The algorithm is based on the comparison of two projective and permutation invariants of five-tuples of the
points. The best-matched five tuples are then used for the computation of the projective transformation and that with the
maximum of corresponding points is used. Stability and discriminability of the features and behavior of the searching
algorithm are demonstrated by numerical experiments. © 1999 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

One of the important tasks in image processing and
computer vision is a recognition of objects on images
captured under different viewing angles. However, this
problem cannot be solved in a general case [1]. Never-
theless, if we restrict ourselves to planar objects only,
then the distortion between two frames can be described
by projective transform (sometimes called perspective pro-
Jection)

X' = (a0 + a1x + a;p)/(1 4 c1x + ¢2),
V' = (bo + b1x + byy)/(1 4 c1x + c,Y), (1)

where x and y are the coordinates in the first frame and x’

and y" are the coordinates in the second one.
Feature-based recognition of such objects requires fea-

tures invariant to projective transform (1). Several differ-
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ent approaches to this problem have been published in
recent works. One of them is based on the assumption
that the non-linear term of the perspective projection is
relatively small and thus the projective transform can be
approximated by an affine transform. This assumption is
true, if the distance from the sensor to the object is much
greater than the size of the object. In such cases, various
affine invariants can be applied such as moment invari-
ants [2,3] or Fourier descriptors [4,5].

However, in some cases the projection cannot be ap-
proximated by the affine transform and therefore the use
of exact projective invariants is required. The invariants,
which have been developed for this purpose, can be
categorized into two groups: differential invariants and
point-based ones.

Differential invariants are applicable only if the object
boundary is a smooth continuous curve. A set of invari-
ants based on boundary derivatives up to the sixth order
was presented by Weiss [6]. Unfortunately, these invari-
ants are not defined for such important curves as straight
lines or conics. Weiss’s invariants are numerically unstable
because of the high-order derivatives. To overcome this
difficulty, several improvements were presented [7-9].
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The second group of invariants is defined on point
sets [10], on sets composed both from points and
straight lines [11,12] and on triangle pairs [13]. A
detailed survey of the point-based methods can be
found [14].

Another problem to be solved is to establish the corre-
spondence between two point sets, which are projectively
deformed. To calculate the invariants, we have to order
those sets somehow. The solution when the points are
vertices of a polygon has been published [15]. Another
solution is to use features also invariant to the order or
labeling of the points. Five-point projective and permuta-
tion invariants are presented [2,16]. This approach is
also used in this paper.

The plane transformed by projective transform (1) con-
tains a straight line

1 +c¢i1x + ey =0, 2

which is not mapped into the second plane (more precise-
ly it is mapped into infinity) and which divides the plane
into two parts. If all elements of our point set lie in one
half-plane, then some additional theorems about topol-
ogy of the set hold for the transform, e.g. the convex hull
is preserved during the transform in that case. This fact
can be used to derive invariants with lower computa-
tional complexity [17].

This paper deals with a general case of the projective
transform, when the points can lie in both parts of the
plane. The convex hull is not preserved under the trans-
form and all possibilities of the positions of the points
must be taken into account. The only assumption is that
the points do not lie directly on straight line (2).

A projective invariant can be defined for at least five
points. The simplest one is a five-point cross-ratio

P(1,2,3)P(1, 4, 5)

1,2,3,4,5)=——22"" > >~
0(1,2,3,4,5) (L2, 4)P(L.3.5)

©)

where P(A4, B, C) is the area of the triangle with vertices
A, B and C.

The point No. 1 is included in all four triangles and it is
called the common point of the cross-ratio.

Reiss [2] proposes to use the median of all possible
values of 0. A more precise description of the relations
between various cross-ratio values under permutations
of the given points can be found [16].

After the correspondence between the individual
points in both sets has been established, we use them as
the control points for image-to-image registration. How-
ever, there are often some points having no counterpart
in the other image. An approach to solve this problem
can be found [18], but that method becomes unstable if
the number of the “wrong” points increases.

The goal of this paper is to derive projective and
permutation invariants of point sets. Five-point projec-

tive and permutation invariants are derived in Section 2,
they are generalized for more than five points in Sec-
tion 3 and the sets with wrong points are discussed in
Section 4. Experiments showing the numerical properties
of the invariants as well as their usage for image registra-
tion are shown in Section 5.

2. Five-point permutation invariants
2.1. The derivation of the invariants

First we derive permutation invariants by the simplest
way and then more detailed analysis will be performed.
The main principle is to use addition or multiplication
(or another symmetric function) of all possible values of
the projective invariants over the permutations of the
points. The order of terms and factors is only changed
during permutations, but the result stays invariant.

To obtain permutation invariants, we can employ vari-
ous functions of cross-ratio (3). Reiss [2] used the func-
tion o + @ ~!, which is unstable near zero. If some triplet
of five points in Eq. (3) is collinear, then the function
o + ¢! is infinite. Thus the more suitable function is
W =2/(0c+0 Y)=20/c*+1). If o or o~ is zero,
then the function ¥ is zero.

The function ¢ can have only three distinct values
during permutations of four points, therefore the func-
tions:

F(1,2,3,4,5) =¥(1,2,3,4,5 + y(1,2,3,5,4)
+v(1,2,4,5,3),
F(1,2,3,4,5 =¥(1,2,3,4,5y(1,2,3,5,4)
¥(1,2,4,5,3) 4)

are invariant to the choice of labeling of the last four
points, but the point No. 1 must be common at all
cross-ratios. To obtain full invariance to the choice of
labeling, we must alternate all five points as common
ones:

I, (1,2,3,4,5) = F(1,2,3,4,5)s,F,,(2,3,4,5, 1)
s, F(3,4,5,1,2)5,F,(4,5,1,2,3)
S2FS1(5’ 1’ 2a 37 4)’ (5)

where s; and s, are either sign + or -

The set of n points has 2n degrees of freedom and the
projective transform has eight parameters. Therefore, the
set can have only

m=2n—28 (6)

independent invariants to the projective transform. That
is why only two of the four invariants I.,I.,,1,. and
I.. can be independent.
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2.2. The roots of the invariants

Lenz and Meer [16] dealt with the five-point projec-
tive and permutation invariants in detail. They dis-
covered that if the common point stays the same and the
other points are permuted, then the values of the cross-
ratios are

1 1
01=0, 02=—, 03=1—-90, 0s=—
0 1—o

0s=-2 0e=2 o)
o—1 o
If we construct a function F(p), which has the same
value for all these values of 0(01, 03, ..., Q¢), it is invari-
ant to the permutation of four points. If we change the
common point, we receive another value of the cross-
ratio, let us say o, and the function

K(0,0) = F(0) + F(0) + F<i> n F<Q - 1>

o—1

olc—1)
+ F(a e 1)> (8)

is a five-point projective and permutation invariant.

As our study implies, if the function F(g) is constructed
as the quotient of two polynomials and g is its root, then
each of the values 0, 05, ..., 0 must be its root. We can
consider it in the form

Py
Flo) = 1 o)
Pi(o)=(0 —01)@e — 020 — 23)(0 — 04)
x(0 —0s)@ — 06) (10)

and similarly for P,(o) (when all roots differ from zero).

It is advantageous if F(p) is defined for any real o.
Thus, P,(0) should not have real roots. Two such invari-
ants are proposed [16]

20 —60° +90* — 803 +90% — 60 +2
0°—30° +30*—03+30%2—03+1"°

(e*—0o +1)°
0% —30°+503-30+1

F14:

(11)

F15=

(12)

The following Theorem describes the properties of the
roots of P,(0).

Theorem 1. If the roots of P,(0) are imaginary, then they
lie on the following curves:

a?l +b?=1,

(a—1)*+b3=1,

as =13, (13)

Fig. 1. Ilustration of Theorem 1. The circles and the straight
line show possible positions of the roots of the invariants in the
complex plane (a is real part and b imaginary part).

where there are the following relations between the roots:
by b
(a; — 12+ b2 a}+bF
(14)

ay=1—ay, by =by,b;=

where a; and b, i = 1, 2, 3 are real and imaginary parts of
the roots.

The theorem is illustrated in Fig. 1.

Proof. If we express P,(¢) in the form
Py(o) = (0 — a1 — bsi)f@ — a1 + byi)(@ — a; — bsi)
x(0 — az + bsi)(0 — as — bsi)(@ — as + bsi),

=1, (15)

then there are 6! = 720 possibilities of assignment be-
tween a; + bqi, a, + b,i, az + biiand 9 ,-906 in Eq. (7). If
we use the assignment

a; +bi=o,, (16)
a; —byi=0,, (17
a, + byi = g, (18)
ay — byi = 03, (19)
as + bii = 04 (20)
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and
as —bsi = gs, 21
then from Egs. (7) and (16)
1 1 a; — bll

- = = 22
2 T b @t b 22)
and from Eq. (17)

aq — b1

=— =—. 23

NEE Y a4 b3 @3)

Therefore the first two roots must lie on the circle
a? + b? = 1. From Eq. (7)

_Ql—l_al—1+b1i_a%—a1+b%+b1i

Qo 01 a; + byi ai + b3 (24)
and

o3=1—90;=1—a; —bi (25)
from Egs. (18), (23) and (24)

2 2

s =%1;;bl= 1 —a, b, =a%lj:b%=b1 (26)
and from Egs. (19) and (26)

a,=1—ay, by =by, (27)

therefore the second two roots must lie on the circle
(a; — 1)*> + b3 = 1. From Eq. (7)

1 1 1 —ay + byi
= = = 28
T o, I—ai—bi (—a)y+h @8)
and
bqi — b? — byi
05 = Q1 _ a + 11'=a1 a1+21 211’ (29)
o1—1 ay—1+bji (1 —ay)” + by
from Egs. (20), (23) and (28)
l_al 1 b bl b2
a3=————>=—, = =
T —a)+bt 2 7 (1—a)’+b3 a3+b3
(30)
and from Egs. (21) and (29)
_a%—al—i-bf_l B by B b,
BTA a2+ 2 P —a) +b a+bl
31)

therefore the third two roots must lie on the straight line
as =1

We cannot investigate all other 719 possibilities be-
cause of insufficient space. The number of cases can be
reduced significantly, if we consider mutual relations
among the roots only. Thus, we have to deal with
5! =120 cases only. The other 600 cases are just permu-

tations. We treated all of the 120 cases and we proved

that each individual case falls into one of the following
categories:

1. The result is some permutation of the previous case.
2. The result is only a finite set of values, typically

i
3. The case has no solution.

Thus, there is no other solution and the theorem has
been proven. [

Our invariants have the form in this context

. 20 2(1 —o) 20/(0 — 1)
Fyo= 2 2 2 2
oo+l (1—9)+1 o fle—1" +1
B 0% —30° +30* —0* +30%—30 +1
20° —60° 4+ 110* — 1203 + 1192 — 60+ 2’
oo (—8)e*(1 — o)
(1+0%)(2—20 +0)(1 —20 +20%
—80%(1 — 0)?

T 20%—60° + 110* — 1203 + 1102 — 60 +2° (32)

The choice of the invariant has one degree of freedom,
we can choose one root of the denominator on some
curve from Fig. 1, other roots must be defined by
Theorem 1 and the numerator defines the range of
values of the invariant. Since both F’,. and F’ have
the same denominator (roots 1 +1i, +1i and 0.5 £ 0.5i),
it is suitable to change one of them. The other can be

(0* — ¢ + 1)* with roots 0.5 £ i3, Then, if we want the
range of values of the consequential invariants I, ; and
1., from O to 1, our invariants will be

8 o*(1—o)
S S5(e*—o+ 1)

30°(1 — o)
F. =
20% — 60° 4+ 110* — 1203 + 119% — 60 +2

F.

(33)

and relations to the original invariants will be
F, =16 —1/(6 — F})) and F. = — 3F".

2.3. The normalization of the invariants

The invariants I; = I, and I, = I.; corresponding
to the functions F, and F. utilize the feature space
ineffectively (see Fig. 2).

A better result can be reached by the sum and the
difference (see Fig. 3)

Iy = + )2, Ip=(I, — I, + 0.006) 53, (34)

but the best utilization of the given range is reached by

subtraction and division by the polynomials (see Fig. 4)
1 —15+ p(IY)

=1, Ij=—"2"21 35

1 1 2 d( ,1) ( )
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0 02 04 06 0s 1

I,

Fig. 2. Possible range of values of the invariants I, I,. It was
acquired numerically by computing invariants for all combina-
tions of five points with integer coordinates from 0 to 511.

Fig. 3. Possible range of values of the invariants I, I’.

Exact coefficients of the polynomials p(I}) and d(I})
are shown in Appendix B. This normalization is
not necessary, but it makes possible to use a simpler
classifier.

1
o 0z

Fig. 4. Possible range of values of the invariants I7, I5.

3. Invariants for more than five points

There is a number of approaches to the problem of the
generalization of the invariants from the previous section
to n points (n > 5). One of them, yielding good experi-
mental results, consists in summation of powers of the
invariants I7, I over all possible combinations of 5 from
n points C%.

Theorem 2.

L= Y I'(Q), L= ) I"M0)

QeCs QeCs
k=1,2,..n—4 (36)

are projective and permutation invariants of a set of n
points.

Proof. I'] and I3 are projective invariants (see Eq. (3)) and
an arbitrary function of invariants is also invariant (if it
does not depend on the parameters of the transform),
therefore I,, and I,;, are also projective invariants.
I7 and I5 are also 5-point permutation invariants and
summation over all combinations guarantees permuta-
tion invariance of the I{ and I5. O

The number of these invariants is chosen as 2n — 8
according to Eq. (6). The computing complexity is ap-
proximately (4T, ie. O(n®), where T is the computing
complexity of one five-point invariant. However, the
number of the terms is very high and that is why a
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normalization of the results is suitable. To preserve the
values inside acceptable intervals, we can use

="t / () S 1740 (37)
5/gcct

where s =1 or 2.
Another, perhaps more sophisticated, normalization is
the following. We can consider the five-point invariants
1, I5 as independent random variables with uniform
distribution in the interval from O to 1. Then the distribu-
tion function Fi(x) of the kth power of the invariant is

Fi(x)=0 from — oo to O,
Fi(x) = x'* from 0 to 1, (38)
Fi(x)=1 from 1 to oo

with the mean value p, = 1/(1 + k) and the variance
o2 = k*/(1 + k)*(1 + 2k). The number of terms in sum
(36) is relatively high and the Central Limit Theorem
implies that the distribution of the sum is approximately
Gaussian, its mean value is the sum of its mean values
W, and the variance is the sum of the variances ¢7. The
given range is the best utilized in case of uniform distribu-
tion of the resulting invariants and therefore we can
normalize the invariants with Gaussian distribution
function

G(x; u, 6) = f e~ w2e g (39)

1
J2no J -
with the mean value u=(%)/(1 + k), the variance
a? = (Hk*/(1 + k)*(1 + 2k) and the standard deviation

o =k/(1+k)/(5)/1 + 2k)
;’k = G(Is,k; ,ua U). (40)

An approximate substitution of the function G is used in
practice.

4. Point matching

The problem we are dealing with in this section can be
formulated as follows. Let us have two-point sets selected
from two projectively deformed images. The sets can
include some wrong points, i.e. points without a counter-
part in the other set. We look for the parameters of the
projective transform to register the images. We deal with
the methods, which do not consider the image functions,
but only the positions of the points.

4.1. Full search algorithm
The simplest algorithm is the full search of all possibili-

ties of the correspondence. We can examine each four
points from the input image against each four points

from the reference image. If we have n points in the input
image and / points in the reference one, we must examine
(1)(4)4! possibilities.

The examination means the computation of the projec-
tive transform, the transformation of the points in the
input image and judgment of the quality of the transform.
We performed this judgment in the following way. The
two nearest points are found and removed and again two
nearest points from the remaining ones are found. The
search is complete when the distance between the nearest
points exceeds the suitable threshold. The number of
corresponding points is used as the criterion of the qual-
ity of the transform. If the number is the same, the
distance of the last two points is used. The best transform
according to this criterion is used as the solution.

The threshold must correspond to the precision of the
selection of the points. The threshold 5 pixels proved its
suitability in usual situations.

If n and ¢ are approximately the same and high, this
algorithm has the computing complexity O(n'') and in
our experience it is too time consuming.

4.2. Pairing algorithm by means of the projective and
permutation invariants

We can compute the distance in the feature space be-
tween invariants of each five points from the input image
against invariants of each five points in the reference
image. Nevertheless, it was found that wrong five points
often match one another randomly, this false match can be
better than the correct one and we must search not only
the best match, but also each good match.

We carried out experiments with a number of search-
ing algorithms. We consider the following as the best one.
We find the first b best matches and the full search
algorithm from the previous section is applied on each
pair of five tuples corresponding each match. The num-
ber b was chosen as (™>{"")), but this number is not
critical. Note: the total number of pairs of five tuples is
(3)(5).

In Ref. [19] the convex hull constraint is proposed. It
is based on the assumption that the sets lie in one half-
plane of Eq. (2) and that the projective transform
preserves the position of points on or inside the convex
hull. Then the pairs of five-tuples with the different num-
ber of points on the convex hull need not be considered.
As was written in the introduction, we consider the gen-
eral case of the projective transform and therefore this
constraint is not used. In the same work the idea of
partial search is proposed. The authors randomly chose
about one-fifteenth of all pairs and tried to search them
only. They found the decrease of reliability relatively
small. This constraint can be used in our algorithm too,
but the following numerical experiment used the general
algorithm without this constraint, because the amount of
time saved is relatively small.
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5. Numerical experiments

How do we investigate the stability and discriminabil-
ity of the invariants? Let us imagine the following situ-
ation. We have two similar sets of points and we would
like to recognize one from the other, but one of them can
be distorted by the noise in its coordinates and we would
like the noise not to influence the recognition.

The following numerical experiment was carried out to
observe the behavior of invariants (37) and (40) in this
situation.

Let us have three sets of 11 points. One of them was
created by a pseudo-random generator. The point coor-
dinates are uniformly distributed from O to 511. The
second set was created from the first one by moving
one point a relatively large distance. The coordinates of
the movement are also defined by a pseudo-random
generator, but with Gaussian distribution. The third set
was created from the first one by adding small noise to all
point coordinates. The noise is independent with zero-
mean Gaussian distribution and with gradually increas-
ing standard deviation. The standard deviation o, of the
movement in the second set increased from 0 to 190 with
the step 10 and the standard deviation ¢, of the noise in
the third set increased from 0 to 9.5 with the step 0.5. The
distances d between original and noisy set in the space of
the invariants were computed.

Since one experiment would not be representative
enough, 10, 20, 100 and 1000 experiments were gradually
carried out for each standard deviation. A curve of de-
pendency of the distance on the noise standard deviation
was acquired as the average of 1000 experiments, because

0.07 T T T T T T T T T
0.08 ‘ N e
~
0.05F 1
0.04F 1
one point 01
0.03 - — - all pomts 02 1
0.02 1
0.01 Bl
0 i 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200 01

L | ) | L )

o ) 10 15 20 25 0.

Fig. 5. The distance between the first and second sets (solid line)
and between the first and third sets (dashed line) in the Euclid-
ean space of the invariants normalized by the average and root
as a function of the noise standard deviation.

one point G

- - - all points 02

I I I I I
80 100 120 140 160 180 200 01

L 1 L 1 i

1) S 10 15 20 02

Fig. 6. The distance between the first and second sets (solid line)
and between the first and third sets (dashed line) in the Euclid-
ean space of the invariants normalized by the Gaussian distribu-
tion function as a function of the noise standard deviation.

the average of fewer values was too dependent on the
concrete realization of the noise. The result of invariants
(37) normalized by the average and root is given in Fig. 5.

The scale of the horizontal axis is different for both
cases so the curves were as similar as possible, more
precisely, the area of the square of the difference between
them was minimized. The ratio of the scales is 7.36;
it means if two sets differ by only one point, then the
distance of the points must be at least approximately 7.36
times greater than the noise standard deviation to be
possible to distinguish both sets. In another words, if the
ratio of the standard deviations is 7.36 and their value is
such that the dashed line is under the solid one, the sets
will be recognized correctly. If the ratio increases, the
limit of correct recognition increases too, but if the noise
standard deviation is greater than approximately 9, i.e.
about 2% of the coordinate range, then the sets cannot
be distinguished at all, because the dashed line is always
above the solid one.

The results of invariants (40) normalized by the Gaus-
sian distribution function are given in Fig. 6.

The result is similar to the previous case, the ratio of
the scales is 11.18, that means a little bit worse dis-
criminability. The main difference is the scale on the
vertical axis, which is about twice larger. It means these
invariants utilize the given range better.

The second experiment demonstrates using the pairing
algorithm by means of the projective and permutation
invariants. A cut of a Landsat Thematic Mapper image of
north-east Bohemia (surroundings of the town Trutnov)
from 29 August 1990 (256 x256) was used as the
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Fig. 7. The satellite image used as reference one ( x the control
points with counterparts in the input image, + the points
without counterparts).

reference image (see Fig. 7) and an aerial image from 1984
(180 x 256) with a relatively strong projective distortion
was used as the input one (see Fig. 8).

Sixteen points were selected in the input image (see
their coordinates in Table 1), 18 points were selected in
the reference one (see their coordinates in Table 2) and 10
points in both images had counterparts in the other
image (numbers 1-10 in the input correspond to numbers
9-18 in the reference). The first ('f) = 8568 best matches
was examined and the 476th one was correct. All 10 pairs
of control points were found, the distance of the tenth
pair was 2.23 pixels. The result is shown in Fig. 9. The
final parameters of the transform were computed from all
10 control points by means of the least-square method.
The deviations on the control points were from 0.17 to
1.71 pixels, the average was 0.94 pixels.

The time of the search of the best matches was about
an hour and a half on the workstation HP 9000/700 and
the time of the examination of all 8568 matches was
about two hours and a half, but the correct 476th match
was found in 8 min.

The method supposes plane point sets, that is satisfied
on these images only approximately. In our experi-
ence, if the height of the flight is significantly greater
than altitude differences between hills and wvalleys,
then the influence of the terrain causes only small
perturbations of point coordinates. Owing to the robust-
ness of the algorithm, we can handle those cases satisfac-
torily.

Fig. 8. The aerial image used as the input one (x the control
points with counterparts in the reference image, + the points
without counterparts).

Table 1
The coordinates of the points marked by x and + in the input
image in Fig. 8

No. X y
1 35 42
2 233 106
3 104 166
4 253 147
5 16 243
[§ 202 235
7 73 39
8 130 40
9 55 111
10 176 67
11 172 197
12 152 215
13 47 122
14 72 86
15 126 118
16 114 146
17 113 181
18 155 182




T. Suk, J. Flusser | Pattern Recognition 33 (2000) 251-261 259

Table 2
The coordinates of the points marked by x and + in the
reference image in Fig. 7

No. X y
1 22 26
2 161 27
3 117 189
4 64 214
5 8 31
6 50 15
7 90 52
8 61 73
9 35 114
10 96 142
11 65 143
12 14 116
13 35 153
14 145 149
15 139 51
16 161 75

Fig. 9. The registered image.

6. Conclusion

The roots of the polynomials in the five-point projec-
tive and permutation invariants have one degree of free-
dom. We can choose one of them and the others must lie
symmetrically on certain curves. The normalization of
these invariants is suitable for improving numerical stab-
ility of following computations with them. The normaliz-
ation of the invariants for more than five points is also

suitable, because then they can be used for recognition in
Euclidean feature space without any additional weights.
The normalization by the Gaussian distribution function
is suitable in case of less noise for better distinguishing of
the sets.

We can use the invariants also for registration of the
images by means of control points. If the affine and
simpler transforms can be used for approximation of the
distortion between the images, other methods are suit-
able. In case of strong projective distortion between the
images, the described algorithm is one of the pos-
sible solutions of the task. The minimum number of
corresponding pairs is six and correspondence between
point sets with less pairs of points cannot be found
principally. In case of six corresponding pairs only once
the wrong correspondence was found during tens of
experiments, in case of more than six corresponding pairs
no error was found. It means that in case of more than six
corresponding pairs the hope of a successful result is very
high.

7. Summary

The paper deals with features of a point set which
are invariant with respect to a projective transform.
First, projective invariants for five-point sets, which
are simultaneously invariant to the projective transform
and to permutation of the points, are derived. They
are expressed as functions of five-point cross-ratios.
The roots of the polynomials in the five-point project-
ive and permutation invariants have one degree of
freedom. We can choose one of them and the others
must lie symmetrically on certain curves. The normaliz-
ation of these invariants is suitable for improving
the numerical stability of following computations with
them.

The invariants for more than five points are
derived. The normalization of the invariants for more
than five points is also suitable, because then they
can be used for recognition in Euclidean feature space
without any additional weights. The normalization by
the Gaussian distribution function is suitable in case
of less noise for better distinguishing of the sets else
the normalization by the average and the root should be
used.

The algorithm for searching the correspondence be-
tween the points of two 2-D point sets is presented. The
algorithm is based on the comparison of two projective
and permutation invariants of five-tuples of the points.
The best-matched five-tuples are then used for the com-
putation of the projective transformation and that with
the maximum of corresponding points is used. Stability
and discriminability of the features and behavior of the
searching algorithm are demonstrated by numerical ex-
periments.
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Appendix A

Sometimes a task on how to save and load information
about combinations to and from a memory may be
required to be solved. We have got the combinations of
k elements from n and we can save this information in the
following way:

a=0
for i:=0;i;<n

for iy=i; +1; i <n

for ikZ =i_q1 + 1, ip<n
{m[a]: = information (i, i, ..., i)
a=a+1}

When information about k-tuple (iy, iy, ..., i) is re-
quired, we need to compute the address a from the
k-tuple. If we sort the indices by size so it holds

i <iy< o <ip

then this address can be computed as

kok—itl o n ij+m
+'§1 go(—l)m <k—j—m—|—1>< m >
(41)

Appendix B

p(I}) = 10.110488 - 175 — 27.936483 - I
+ 31.596612- It* — 16.504259 - I
— 0.32251158- 17 + 3.0473587- I}
— 0.66901966.

If It < 0.475 then

d(Iy) = 17.575974 - I'* — 16.423212- I + 9.111527 - I
— 0.43942294 - I, 4+ 0.016542258

else

d(Iy) = 3.9630392- I'* — 13.941518 - I}? + 21.672754- I
— 17.304971- I} + 5.6198814.
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