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ABSTRACT
Performance prediction of computer vision algorithms is of increasing interest whenever robustness to illumination
variations, shadows and different weather conditions has to be ensured. The statistical model which is presented in
this contribution predicts the algorithm performance under the presence of noise, image clutter and perturbations
and therefore provides an algorithm-specific measure of the underlying image quality.

For the prediction of the detection performance logistic regression using covariates defined by the properties of
the vehicle signatures is used. This approach provides an estimate of the probability of a single vehicle signature
being detected by a given detection algorithm. To describe the relationship between background clutter and the false
alarm rate of the algorithm a severity measure of the image background is presented.

After the construction of the algorithm model, the probability of a vehicle signature being detected and the false
alarm rate are estimated on new data. The model is evaluated and compared to the true algorithm performance.

Keywords: Automatic target detection, performance prediction, algorithm assessment, logistic regression, clutter
measure.

1. INTRODUCTION
In recent years the computer vision community has been focussed not only on the development but also on the
assessment of algorithms.13

Therefore, methods have been compared and the suitability of algorithms has been investigated, but also expla-
nations why an algorithm works better than another have been tried to be found. Many reasons may cause the
algorithm to fail: Data features corresponding to a different object due to noise, inconsistent description of object
features, missing contrast, imprecise edge detection and background clutter.4 Object or target hypotheses are
seldomly consistent with all data, not even on a subset for which an algorithm is trained.

Therefore, the characteristics of the targets have been analyzed under different noise and clutter conditions and
the performance of automatic algorithms has been compared to the performance of human observers.5'6 Schmieder
and Weathersby7 first noticed the relevance of the relationship between target signature and background texture for
target detection applications. They defined image clutter C as the average gray value standard deviation a of all N
contiguous cells in the scene, where each cell is square and has twice the height of the targets. Therefore, clutter is
defined as follows: _________

C=a
The "signal-to-clutter ratio" (SCR) was then defined by

8CR = Imax 41

where 'max is the maximum target intensity value and 4 the average background intensity. The detection capacity
of human observers versus the 8CR and several target resolutions have been analyzed. Ratches et al.8 stated that
the signal-to-noise ratio SNR has a basic influence on the detection performance. They defined the signal-to-noise
ratio as

SNR= (It—4)
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where I is the average intensity of the target and lb the average intensity of the background.
Human preattentive vision has been modeled by Conners and Ng9 on the basis of gray level cooccurrence matrices.

These matrices have been used by Shirvaikar and Trivedi1° to describe the amount of clutter contained in an image
using a texture-based image clutter measure (TIC) . This clutter measure has been related to the detection and false
alarm rates of a vehicle detection algorithm. Another approach is pursued by Waldman et al. .' They found that
spatial extent, contrast, clutter, movement, shape, number of targets and color play a main role in performance
prediction.

A first approach to model the performance of corner detection and matching algorithms using probability density
functions is given in.12 Each probability function models a single layer of the algorithm and is derived by applying
the algorithm to a large number of synthetic images. But beside this approach criteria to predict the relationship
between algorithm performance and image quality aspects are rarely found.

However, all measures of image quality considered so far have not been found to be useful to generally explain
algorithm success or failure. Therefore, Ratches et al.8 claimed that "an active image science that provides image
metrics - especially clutter measures -, understanding of scene information, and models- and that performs experi-
ments to generate data that lead to model formulation and validation is needed to indicate the most fruitful scientific
endeavors for rapid progress."

Following this guideline the goal of this contribution is to qualify signatures of vehicle targets according to their
difficulty in being detected and to model a performance predicition rule for an automatic vehicle detection algorithm.
The main topics are the quantification of the influence of noise and perturbations on the detection probability with
respect to a given algorithm and the design of a model of the performance variation. Once such a model is constructed
it will be possible

. to estimate the probability of a vehicle's signature being detected and to predict the number of false alarms
due to background clutter on new data.

. to specify requirements on the vehicle's signature and the background structure to guarantee a good algorithm
performance.

. to describe the image quality for the algorithm under consideration.

. to decide how image perturbations influence the algorithm performance.

S to define requirements for imaging sensor systems.

Additionally, such models are extremly important in empirical algorithm assessment to explain and to predict per-
formance differences due to the application of the algorithm to different test data sets.

The approach presented here is divided into two parts. The first part defines properties of the vehicle signatures
and investigates their influence on detection probability. The second part investigates background clutter and relates
the background properties to the false alarm rate of an automatic vehicle detection algorithm. The models are then
applied to estimate the algorithm performance on new and perturbed data. Finally, the predicted and the true
algorithm performance is compared.

1.1. Detection algorithm task
For vehicle detection algorithms the main performance measures are the detection rate and the false alarm rate.
To compute the detection rate and the false alarm rate achieved by the application of a detection algorithm to a
test data set, adequate ground truth data must be available. Then the algorithm results can be compared to this
ground truth and the corresponding rates can be calculated. The ground truth was given as polygons surrounding
each vehicle signature (see Fig. 1). The algorithm's task is to provide the vehicle's centroids. The algorithm results
can now be checked if they are located inside (detection) or outside a truth polygon (false alarm). Truth polygons
without any vehicle centroid inside are called non-detections.
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Figure 1. Clip of an infrared image for vehicle detection. Overlaid onto the image clip are the white ground truth
polygons and three algorithm results. Note that there is one detection, one non-detection and two false alarms.

2. DETECTION PERFORMANCE MODELING
In order to construct a mathematical model of the detection performance based on several vehicle signature properties
logistic regression is suggested.'3 In logistic regression these properties are called covariates. These covariates are
computed using the ground truth of the data set to which the algorithm is applied.

To be detectable, a vehicle should differ significantly from its background. Because the background varies on the
image range, a description of the local background has to be used. Therefore, a rectangle tightly surrounding each
vehicle is used as local background area (see Fig. 2) . The white regions correspond to the vehicle's signature, the
black lines form the surrounding truth polygons whilst the light gray area is the associated local background area of
each vehicle.

Various covariates may be used to describe the difference between the vehicle signature and the local background.14
Here, the following covariates x, i = 1, 2, 3, indicating the detectability of each vehicle have been used:

. x1 : Edge pixel difference EPD = lEt — Eb I
where E denotes the number of edge pixels of the vehicle area

and Eb the number of edge pixels of the local background. For the computation of the edge pixels the Sobel
operator has been used with an adaptive threshold for the gradient magnitude.

. x2 : Variance difference VD = a? — c where cr denotes the variance of the gray values of the vehicle area
and a, denotes the gray value variance of the local background.

• x3: The number of pixels belonging to the vehicle area. This number is denoted by FIX.

The relationship of the covariate vector x = (x1, x2, x3)t and the detection probability PD of a single vehicle has now
to be estimated. Thus the covariate vector x has to be related with the dichotomous outcome of the comparison
between the truth data (polygons) and the algorithm results (vehicle centroid hypotheses) on the given image data
set. Therefore, logistic regression is used which provides an algorithm-specific formula of the relationship between
the algorithm's detection performance and the image quality described in terms of the covariates.

2.1. Review of logistic regression
Over the last decade logistic regression has become an integral component of data analysis by modeling the relation-
ship between a discrete dichotomous response variable (e.g. vehicle detected or not) and one or more independent
explanatory variables (e.g. the above defined covariates).13
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Figure 2. Clip of a test image. The regions used to compute the vehicle's image features are displayed: White
regions correspond to the vehicle location, the black lines form the truth polygons whilst the light gray area defines
the associated local background area for each vehicle.

In the following the probability of a vehicle being detected or missed due to the covariates is modeled on the basis
of a given image data set and the dichotomous information, whether the corresponding vehicles have been detected
or missed by the algorithm. The prediction rule is constructed using a likelihood function, which maximizes the
probability of obtaining the observed data.

Suppose a p-dimensional input random variable X and a scalar dichotomous outcome Y (vehicle detected or not
detected) are given. Each of the n observations is assumed to be independent and described by the pair (xi, yj),
= 1, ..., ii where the x are realizations of X and the yi denote the dichotomous outcome, which is assumed to be

coded as 1 if a vehicle has been detected and 0 if a vehicle has been missed.

To represent the conditional probability PD that a vehicle is detected given x, the logistic regression model is
used, which is defined by

g(x)
PD(X) =

1 + eg(x)

where g(x) denotes a polynomial and is refered to as the logit. Here, in case of continuous covariates, the logit is
given by

g(x) = + 13i. xi+ ... + fl
The regression coefficient vector /3 = (/o, ...,$), in the case under consideration p = 3, has to be estimated from the
given data. The conditional probability that the realization y of V is equal to zero given x is expressed by 1— PD(X).
Thus, the contribution of each pair (xi, y), yj e {0,1), i = 1, ..., n to the likelihood function is expressed by

f \ / \y•I / \lly f PD(xj) if yj = 1= Di) — Di)J —
1 1 — PD(xj) if yj = 0

Since the observations are assumed to be independent, the likelihood function l(fl) is obtained by

l(/3) =
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estimated coeff. /3 S.E.(/3) (fi/S.E.(fl))2 (Wald) Sig.
EPD 0.0498 0.0220 5.1 0.023
VD 0.1122 0.0431 6.7 0.009
PIX 0.0014 0.0009 2.4 0.140

const. -2.956 1.0775 7.5 0.006

Table 1. Estimated logistic regression coefficients /3, i = 0, 1, 2, 3 and the corresponding standard error (SE.). Also the
univariate Wald-statistic and the achieved significance level (Sig.) are given.

To simplify mathematical handling, the log likelihood function L is used, which is defined by

L(3) = ln[l(/3)J

The task is now to find a value of $ that maximizes the log likelihood function. Therefore, the p + 1 likelihood
equations are computed by differentiating the log likelihood function L with respect to /3 and are set to zero, i.e.

=1 Yi PD(xj) = 0

>I:i=1 Xij[yi — PD(xj)] = 0 j = 1, ...,p with p = 3

where x = (x1 , x2,x3). An iterative algorithm to solve these nonlinear equations can be found in16 and is
implemented in most statistical software packages.

2.2. Detection model estimation
From the covariates mentioned above, a logistic regression model has been estimated for the algorithm KLMDET15
and a test data set consisting of 51 real infrared images containing 106 vehicles. The estimated coefficients /3,
i = 0,1, 2, 3 and the corresponding standard errors (SE.)17 are shown in Tab. 1. Additionally, for every coefficient
/3i the iinivariate Wald-statistic (fl/S.E.(3))2 is given which is 2-distributed.13 With this statistic the hypothesis
that a single coefficient is zero is tested. The achieved significance level of this test is given for each coefficient in the
column Sig. of Tab. 1 indicating a high significance for EPD and VD. A lower significance is given for PIX.

The final model which describes the correspondence of the detection probability PD of a vehicle due to its signature
described by the covariate vector x is given by equation (1) with the following logit:

g(x) = —2.9566 + 0.0498 . EPD + 0.1122 . VD + 0.0014 . PIX

For example, suppose given a single vehicle with signature description EPD = 30, VD = 13 and PIX = 900. This
yields a logit of

g(x) = 1.256

The probability of this vehicle being detected by the algorithm KLMDET is estimated by the model equation 1

e1256
PD(X) =

e1256
= 0.78

The detection performance of an algorithm on a new set of data can be estimated by computing the covariate vectors
xi, i = 1, ...,n for each vehicle in the image data set. Then the corresponding detection probabilities have to be
computed using the logistic regression formula. An estimate of the detection rate of the algorithm on the whole
data set is given by the mean of the individual detection probabilities. Results of such a performance prediction are
discussed in Section 4.

Very often desired is a guideline, how vehicle signatures must look like to be detected with a high reliability. This
is of major interest e.g. when a specification of an optimal algorithm-adapted sensor configuration is needed or the
quality of the vehicle signatures has to be determined.

The values of EPD, VD and PIX yielding a detection probability larger than e.g. 95 % can be easily computed
by a simple Monte-Carlo-Simulation. Therefore, many random values of EPD, VD and PIX have been produced.
The admissible range of these random values corresponds to the range of EPD, VD and PIX on the given data set.
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Figure 3. Vehicle properties in terms of the described covariates yielding a probability to be detected of 95 %. 20000

Monte Carlo samples have been nsed here.

Then the corresponding detection probability of the vehicles has been computed by the estimated logistic regression
formula. All combinations of EPD, VD, and PIX yielding a lower detection probability have been rejected. Fig. 3
shows all signature property combinations yielding a detection probabiblity � 95 %. These values specify the vehicle
signature properties corresponding to a high probability of a vehicle being detected. Additionally, the clustering of
these set of points indicate a robust and stable behaviour of the logistic regression model.

So far, only the detection probabilities have been considered, although the false alarm rate is equally important.
The following section concentrates on a description of the background structure which is related to the achieved false
alarm rate.

3. BACKGROUND CLUTTER DESCRIPTION
In a very general sense the amount of clutter in an image is given by the set of signatures which are wrongly guessed
by the algorithm to belong to a vehicle. If an algorithm works perfectly on an image data set, one cannot say
that there is clutter in the image anymore. Therefore, a definition of the amount of clutter is always related to the
algorithm under consideration. In the following, statistical parameters of the features which are extracted by the
algorithm on its low-level processing stage are used to construct a false alarm prediction model.

To get an adequate description of the structure of the image background, gradient direction blobs have been
used. Such gradient direction blobs are also used by KLMDET for a knowledge-based construction of the detection
hypotheses. 1n18 these gradient direction blobs are called line-support regions. The computation of these line-
support regions requires the gradient directions and the gradient magnitude at each pixel. Here, they are computed
using the Sobel-Operator. Pixels with similar gradient direction are combined to regions. The 360°-range of the
gradient directions is divided into four sections and each pixel is assigned to such a partition according to its gradient
orientation. Adjacent pixels which belong to the same partition are grouped to simple-connected components. A
selection of the direction blobs due to their attribute sets (e.g. size, average gradient magnitude, maximum pixel
intensity) provides a decomposition of the background into finer and coarser structures.

A fast visualization of these direction blobs can be achieved by intersecting two planes. Therefore, the gray value
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level is approximated by the following skew plane19:fx\ f\ fi\ /0
I Y ) = ( )+q( 0 )+r.( 1\zJ \n) \xJ \gy

where and describe the centroid coordinates and iY the mean gray value of the direction blob. This plane is
intersected by the horizontal plane defined by the mean gray value #i of the direction blob. Lastly, the intersecting
line is projected into the image. The line-visualization of selected regions according to the attribute "size" are shown
in Fig. 4. From this visualization one can see, that by the variation of the attribute "size" of the line-support regions
a decomposition of the underlying textural background structure is provided.

3.1. False alarm prediction
Highly related to the false alarms are direction blobs having attributes which may occur also on the vehicle signatures.
For this reason the statistical distribution of such direction blobs in the image background is investigated. In this
section two easily computable image statistics are combined to a prediction rule for the false alarm rate with respect
to the considered KLMDET-algorithm.15

As the first statistical image background parameter which is computed for each image, the number db of direction
blobs consisting of more than n pixels is used. The number rt equals to the pixel size of the direction blobs which are
provided by the vehicles in the image data set. Additionally, for each direction blob an average gradient magnitude
higher than a threshold depending on the gray value variance of the image is required.

The second image background statistical parameter used here is the variance of the average gradient orientation
0db of the selected direction blobs. The higher the variability 0db of the orientations, the more false alarms will be
expected.

For the false alarm prediction the derived image statistics are linked by means of transformations which are
well-known in knowledge-based fuzzy-set applications.20 The image statistics db and 0db were both rescaled and
transformed to the interval [0, 1] by fuzzy membership functions T and T0, respectively. The type of fuzzy member-
ship function used here is shown in Fig. 5. Then they are combined to a severity measure S =min[T(ndb),T0(oj)]
E [0, 1] such that for a difficult background structure a large number of selected direction blobs as well as a high
orientation variability has to be present. A high value of the severity measure S indicates a high difficulty of the
background, a lower value indicates an easy job for the algorithm. A data flow diagram of the construction process
of the false alarm model is given in Fig. 6. The relationship of this severity measure S and the number of false

Figure 4. Line-visualization of direction blobs according to the attribute "size". The image clip on the left-hand side
shows all direction blobs of size 21-5 pixels, the image clip on the right-hand side is overlaid by the line-visualization
of all direction blobs larger than j5 pixels. The variation of the attribute "size" provides a decomposition of the
background from finer to coarser structures.
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Figure 5. Fuzzy membership function T2(.), i E {n, o}, which is used to transform the number of direction blobs
per image db and the orientation variance 0db to the interval [0, 1]. To transform ndb to [0, 1], min = 20 and
max = 200 have been found to be appropriate. For 0db mm0 =300 and max0 = 2000 have been used.

Figure 6. Data flow diagram of the development of the false alarm prediction rule. Firstly, the image statistics
are derived from the image and are combined to a fuzzy severity measure S. The false alarm rate of the considered
algorithm on the test data set is computed by comparing the truth data to the algorithm results. Finally, a regression
function is used to model the relationship between the false alarm rate and the severity measure S.

alarms NF of the algorithm KLMDET for the 51 infrared vehicle images is shown in Fig. 7. Also, the first order
regression NF(S) = —1.4 + 49.5 . S and the second order regression NF(S) = 2.4 + 17.2 . S + 49.9 S2 are displayed.
Both regression functions may be used as a false alarm prediction model. A comparison of the first and second order
regression function shows that the second order false alarm model yields a reduction of the residual mean square
error from 25 to 24. This indicates a robust behaviour of the model.

4. RESULTS
To illustrate the power of the prediction models, the 51 infrared images on which the models have been estimated
have been perturbed with JPEG data compression, white noise addition and contrast reduction. For the JPEG
compression a compression factor of 10 has been used. In Fig. 8 and Fig. 9 this data set is denoted by jplO. For the
noise-perturbation white noise with standard deviation o- e{3,6, 9} has been added (wn3, wn6, wn9). The contrast

mm. max.I I image statistic db' °db

false alarm prediction rule

Proc. SPIE Vol. 4379 371



45

40

) 35
Co

0

. 30
LLz

25
0
z

20
CO

0)
15

LL

10

5

0

Figure 7. Relationship between the severity measure S and the number offalse alarms NF(S) for the infrared vehicle data
set. Also the first and second order regression functions are displayed. These functions are used as false alarm prediction
models.

reduction has been introduced computing the mean gray value of the image and reducing the distance of each gray
value to the mean value to 90, 80, .. . , 50 per cent of its original distance. These data sets where denoted by c90, ...,
c50.

Then the covariates and the direction blobs have been computed as described above. The detection rate has
been estimated using the logistic regression model and the false alarm rate has been estimated using the first order
regression. Finally, the algorithm KLMDET has been applied to the perturbed data sets and the achieved rates have
been compared to the predicted ones. This comparison is illustrated in Fig. 8 and Fig. 9. These figures show that
in the considered cases the detection model was able to predict the detection rate with an error of less than 10 %
depending on the perturbation. Higher accuracy is given for the JPEG data compression and the contrast reduction,
lower accuracy up to an error of 16 % is achieved for the white noise addition. For the false alarm prediction high
accuracy is given for every considered perturbation.

5. CONCLUSION
In this contribution an algorithm-dependent performance model has been developed. The model consists of two
parts.

The detection model considers the influence of vehicle signature characteristics on their probability of detection
using logistic regression. Once such a model is constructed, the algorithm's detection performance can be estimated
due to the vehicle characteristic. The accuracy of the detection model varies depending on the perturbation. This
shows that some sort of noise are not well-intercepted by the covariates. Therefore, a replacement of covariates or
the inclusion of additional ones might be useful.

The second part of the model concentrates on false alarms caused by background clutter. A prediction of the
number of false alarms is computed using image background statistics which are combined to a fuzzy degree of
severity.

This framework can be used in a wide area of computer vision applications to predict and to model the algorithm
performance. In general, in the case of modeling various algorithms or working with different imagery, different
covariates or an improvement of the background clutter description might be required.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Severity S
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Figure 8. Predicted and actually achieved detection rates in percent for the perturbed data sets. The JPEG com-
pressed data set is denoted by jplO, the data sets with white noise added are denoted by wn3, wn6, and wn9, where
e.g. wn3 indicates white noise with a standard deviation of a = 3. The contrast reduced data sets are denoted by
c90, . . .,c50, where e.g. c90 indicates a reduction of the contrast to 90 per cent.

Figure 9. Predicted and actually achieved false alarm rates for the perturbed data sets. The JPEG compressed data
set is denoted by jplO, the data sets with white noise added are denoted by wn3, wn6, and wn9, where e.g. wn3
indicates white noise with a standard deviation of a = 3. The contrast reduced data sets are denoted by c90, .. .,c50,
where e.g. c90 indicates a reduction of the contrast to 90 per cent.
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The covariates computed from the vehicle's signatures and the severity of the background can be used as quality
measures for the images with respect to a given algorithm. These measures indicate whether or not the image is a
difficult or an easy job for the algorithm.

Further research will include additional covariates and incorporate additional background information to enlarge
the scope of this method. In addition, a further study of the effects of data compression on image processing
algorithms will be adressed.

Acknowledgements
This work was partly funded by the German Federal Office for Defense Technology and Procurement under Project
E/F41B/V0037/Q5242.

REFERENCES
1. W. Förstner. 10 Pros and Cons Against Performance Characterization of Vision Algorithms. Proceedings of the ECCV

Workshop on Performance Characteristics of Vision Algorithms, Cambridge, UK, April 1996.
2. P. Klausmann, S. Fries, D. Willersinn, U. Stilla, U. Thönnessen. Application-oriented Assessment on Computer Vision

Algorithms. Handbook of Computer Vision and Applications 1999.
3. P. Zamperoni. Plus ça va, moms ça Va. Pattern Recognition Letters, Vol. 17, pp. 671-677, 1996.
4. M. Lindenbaum. An Integrated Model for Evaluating the Amount of Data Required for Reliable Recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 11, pp. 1251-1264, November 1997.
5. E.B. Entin, E.E. Entin. Optimizing Aided Target-Recognition Performance. Proceedings of the Human Factors and

Ergonomics Society, Annual Meeting, 1996.
6. P. Klausmann, E. Peinsipp-Byma, W. Roller, G. Saur, D. Willersinn. Assessment of Machine Assisted Target Detection.

Proc. SPIE, Tnt. Society for Opt. Engineering, Marriott's Orlando World Center, Orlando, FL, USA, 1999.
7. D.E. Schmieder, MR. Weathersby. Detection Performance in Clutter with Variable Resolution. IEEE Transactions on

Aerospace and Electronic Systems, Vol. AES-19, No. 4, pp. 622-630, July 1983.
8. J.A. Ratches, C.P. Walters, R.G. Buser, B.D. Guenther. Aided and Automatic Target Recognition Based Upon Sensory

Inputs From Image Forming Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 9,
pp. 1004-1018, September 1997.

9. R.W. Conners, CT. Ng. Developing a Quantitative Model ofHuman Preattentive Vision. IEEE Transactions on Systems,
Man and Cybernetics, Vol. 19, No. 6, pp. 1384-1407, November-December 1989.

10. MV. Shirvaikar, MM. Trivedi. Developing texture-based image clutter measures for object detection. Optical Engineer-
ing, Vol. 31, No. 12, pp. 2628-2639, December 1992.

11. G. Waldman, J. Wootton, G. Hobson, K. Luetkemeyer. A Normalized Clutter Measure for Images. Computer Vision,
Graphics, and Image Processing, Vol. 42, pp. 137-156, 1988.

12. P. Courtney, N. Thacker, A. F. Clark. Algorithmic modelling for performance evaluation. Machine Vision and Applica-
tions, Vol. 9, pp. 219-228, 1997.

13. D.W. Hosmer, S. Lemeshow. Applied Logisitic Regression. John Wiley & Sons, New York, 1989.
14. R.M. Haralick, K. Shanmugan, I. Dinstein. Textural Features for Image Classification. IEEE Transactions on Systems,

Man, and Cybernetics, Vol. SMC-3, No. 6, November 1973.
15. S. Fries, P. Klausmann, U. Jãger, G. Saur, D. Willersinn. Evaluation Framework for ATR Algorithms. Proc. SPIE, Tnt.

Society for Opt. Engineering, Mariott's Orlando World Center, Orlando, FL, USA, 1999.
16. P. McCullagh, J.A. Nelder. Generalized Linear Models. Chapman & Hall, 1992.
17. B. Efron, R.J. Tibshirani. An introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57,

Chapman & Hall, 1993.
18. J.B. Burns, AR. Hanson, EM. Risemann. Extracting Straight Lines. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 8, No. 4, pp. 425-455, July 1986.
19. R.M. Haralick, L. Watson. A Facet Model for Image Data. Computer Graphics and Image Processing, Vol. 15, pp.

113-129, 1981.
20. L.A. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions

on Systems, Man, and Cybernetics, Vol. SMC-3, No. 1, pp. 28-44, January 1973.

Proc. SPIE Vol. 4379374


