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Abstract

Reducing power consumption has become a major challenge in the design and opetation of
day’s computer systems. This chapter describes different techrsddeessing this challenge at
different levels of system hardware, such as CPU, memuadyingernal interconnection network,

as well as at different levels of software components, such asleqgraperating system and user
applications. These techniques can be broadly categorized into two Byesign time power
analysis versus run-time dynamic power management. Mechanismdiiattbategory use ana-
Iytical energy models that are integrated into existing simulaimmseasure the system’s power
consumption and thus help engineers to test power-conscious hardwasefamare during de-
sign time. On the other hand, dynamic power management techniques ard dppilig run-
time, and are used to monitor system workload and adapt the sy&tenagior dynamically to

save energy.
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ACPI: Advanced Configuration and Power Interface
APM: Advanced Power Management

AVS: Automatic Voltage Scaler

BIOS: Basic Input/Output Services

CMOS: Complementary Metal Oxide Semiconductor
COPPER: Compiler-controlled continuous Power-Performanc
CPU: Central Processing Unit

CVS: Coordinated Voltage Scaling

DLS: Dynamic Link Shutdown

DPM: Dynamic Power Management

DVSL Dynamic Voltage Scaling
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DVS-PD: DVS with Predicting Decoding time

Flops: Floating-point Operation Per Second

GOP: Group Of Pictures
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IVS: Independent Voltage Scaling

JVM: Java Virtual Machine

LCD: Liquid-Crystal Display

MPEG: Moving Pictures Expert Group

os: Operating System

PLL: Phase-Locked Loop

POSE: Palm Operating System Emulator

RTL: Register Transfer Language
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1. Introduction

Information processing engines are really seen as
just “heat engines.”
Mead and Conway lfitroduction to VLSI Systenid980

Innovations and improvements have long been made in computeysaach @architectures to es-
sentially increase the computing power truly observing the ®&edraw for more than three dec-
ades. Improvements in semiconductor technology make it possilieorporate millions of
transistors on a very small die and to clock themeay high speeds. Architecture and system
software technology also offer tremendous performance imprenes by exploiting parallelism
in a variety of forms. While the demand for even more pfulveomputers would be hindered
by the physics of computational systems such as the limigsltage and switching speed [39], a
more critical and imminent obstacle is the power consumptioithe corresponding thermal and
reliability concerns [27]. This applies not only to low-ermmttpble systems but also to high-end
system designs.

Since portable systems such as laptop computers anghogles draw power from bat-
teries, reducing power consumption to extend their operatimgstis one of the most critical
product specifications. This is also a challenge for -eigth system designers because high
power consumption raises temperature, which deteriorategmpance and reliability. In some
extreme cases, this requires an expensive, separate faoility, as in theEarth Simulatorf18],
which achieves a peak performance of 40 Tflops but dissipatd¥dits of power.

This chapter provides a comprehensive survey of power analydigptimization tech-
niques proposed in the literature. Techniques for powliegiesft computer systems can be
broadly categorized into two typedffline power analysisnddynamic power managemesth-
niques. Offline power analysitechniques are based on analyteEa¢rgy modelghat are incorpo-
rated into existing performance-oriented simulatorshitain power and performance information

and help system architects select the best system farardaring design timeDynamic power



managemen{DPM) schemes monitor system workload and adapt the systeh&vior to save
energy. These techniques are dynamic, run-time schereestiog at different levels of a com-
puter system. They includ&ynamic Voltage Scalin(PVS schemes that adjust the supply volt-
age and operating frequency of a processor to save pdveer it is idle [27, 68]. A similar idea
can be applied to I/O devices by monitoring their actividied turning them off or slowing them
down when the demand on these devices is low [7, 14, 28]. Anotk&bility to conserve en-
ergy at run-time is when a system has more than onaresof the same kind, which is typically
found in parallel and networked cluster systems. Indase, applying a DPM scheme in a coor-
dinated way rather than applying it to individual resouindspendently can better manage the
entire system. For instance, the DVS technique caextended to a cluster system of multiple
nodes by coordinating multiple DVS decisions [19].

This chapter is organized as follows: Section 2 discussezral energy models and the
corresponding power analysis and optimization techniquegriiied into existing simulation
environments. These energy models cover various levels otearsydth a varying degree of
granularity and accuracy, which includes CPU-level, esypdevel, and parallel system-level
power analysis techniquesSection 3 presents various hardware and software Cdehhigues
that also differ in granularity as well as accura¢yne-grained monitoring and power manage-
ment is possible at a smaller scale but it may not béfeas a larger scale because of the corre-
sponding overhead of gathering information and making poweedeticisions. Therefore, this
section presents the various CPU-level, system-levelparallel system-level DPM techniques.

Section 4 provides a conclusion and discusses possible fusesrch.

2. Power Analysis and Optimization Using Energy Models

Power dissipation has emerged as a major constraiheidldsign of processors and computer

systems. Power optimization, just as with performaneguires careful design at several levels



of the system architecture. The first step toward dpiitg power consumption is to understand
the sources of energy consumption at different levels.iodarenergy models have been devel-
oped and integrated with existing simulators or measant tools to provide accurate power es-
timation, which can be used to optimize the system design.

Section 2.1 describes processor-based energy models thattegiower consumption at
cycle- or instruction-level. Section 2.2 discusses syst@ped energy models that study power
consumption of both hardware and software components. FiSabfion 2.3 targets multiproc-
essor—based or cluster-based energy models. These stugasigular focus on the system in-
terconnect since energy performance of individual processarsdes can be estimated based on
techniques described in Sections 2.1 and 2.2. Table 1 suremé#rese energy model-based off-

line approaches.

Table 1: Taxonomy of power analysis techniques using energy models.

Type Level of detail Energy models Simulation tools Section
CPU Cycle level or Power density-based or ca- | PowerTimer{9], Wattch 211
RTL pacitance-based model for | [10] andSimplePowef70]
cycle-level simulation
Instruction level | Instruction-based energy Power profiles fointel 2.1.2
model with the measurement| 486DX2 Fujitsu SPAR-
of instruction counts Clite'934[65] and
PowerPC[49]
System | Hardware com- | State-based modet.Q, POSE(Palm OS Emulator) | 2.2.1
ponent level sleep/doze/ busy) for func- | [16]
tional simulation
Software com- | Process-based model with | Time driven sampling, 2.2.2
ponent level time-driven and energy-driven PowerScop¢20], and en-
sampling ergy driven sampling [12]
Hardware and Component-specific energy | SoftWattbuilt uponSimOS | 2.2.3
software compo-| models for complete system | system simulator [27]
nent level simulation
Parallel | Interconnection | Bit energy model for bit-level | Simulinkbased tool [71] 2.3
system | network archi- | simulation
tecture level Message-based energy modelOrion, the simulator for 2.3
for simulating interconnection power-performance inter-
network connection networks [67]




2.1 CPU-level Energy Models

Power consumed by the CPU is a major part of the totakipoansumption of a computer sys-
tem and thus has been the main target of power consumpttysia [9, 10, 49, 65, 70]. Several
power models have been developed and integrated into exigif@ymance simulators in order
to investigate power consumption of CPU either on a functiandl basis or processor as a
whole. These analyses are based on two abstraction leydks:level(or register-transfer levél

andinstruction-levelas described in the following two subsections, respédgtive

2.1.1 Cycle-level CPU energy model

Energy consumption of a processor can be estimated by ysileglevel architecture simulators.
This is done by identifying the active (or busy) microaegiitre-level units or blocks during
every execution cycle of the simulated processor [9, 10, 70Jese cycle-by-cycle resource
usage statistics can then be used to estimate the pomsrmption. An energy model describing
how each unit or block consumes energy is a key component ipamgr-aware cycle-level

simulators. Figure 1 illustrates a high-level block theg of power-aware cycle-level simulators.

Hardware |

parameters l i
> Energy model
Program ! Cycle-level Cycle-by-cycle (Powe%imer[l], ;
caime{ wetomarce | CLEZOE | CowTIEl | L o
or Trace | for each unit . ' estimation
: (Turandot[84] or SimplePowef3]) :
5 SimpleScalaf18]) . Performance
estimation

Figure 1: Block diagram of a power-aware, cycle-level shou.



Brookset al. presented two types of energy models for tReiwerTimersimulator [9]:

(i) Power density-based energy model is used for components aétaited power and area
measurements are available; and (ii) analytical energgels are used for the rest of the compo-
nents in a CPU. Analytical equations formulate therggnecharacteristics in terms of
microarchitecture-level design parameters such as cas)egpeline length, number of registers,
etc. These two types of energy models were used in cdigumwith a generic, parameterized,
out-of-order superscalar processor simulator calladcandot [44]. Using PowerTimey it is
possible to study the power-performance trade-offs fdiergifit system configurations with
varying resource sizes of caches, issue queues, reryisters, and branch predictor tables,
which will help in building power-aware microarchitectures.

Wattch [10] and SimplePower[70] are two other CPU-level power-monitoring tools
based on fhpleScalarf11], which is the most popular microarchitecture simulatlr Wattch
the energy models depend on the internal capacitances dfdhigscthat make up each unit of
the processor. Each modeled unit falls into one of theviigllg four categories: Array structures,
memories, combinational logic and wires, and the clockigtgvork. A different power model is
used for each category and integrated inSimepleScalasimulator to provide a variety of met-
rics such as power, performance, energy, and energy-deldygbr Table 2 shows the energy

expenditure of various components from measurements as r@hatheWattchsimulator.

Table 2: Comparison of power breakdowns between measuremenra (Z1@64) and analytical
energy model in the Wattch simulator [10].

Hardware structure Measurement Analytical model

(Alpha 21264) (Wattch)
Caches 16.1% 15.3%

Out-of-order issue logic 19.3% 20.6%
Memory 8.6% 11.7%

Memory management unit 10.8% 11.0%

Floating point execution unit 10.8% 11.0%
Clocking network 34.4% 30.4%




SimplePower on the other hand, is based wansition-sensitive energy modethere
each modeled functional unit has its own switch capacitéorcevery possible input transition
[70]. This is then used to calculate the power consumedgarticular functional unit based on
the input transition while executing a given instructi@implePoweis used to evaluate the im-
pact of an architectural modification as well as theafbf a high-level compiler optimization
technigue on system power. Example useSiimiplePoweinclude selective gated pipeline tech-
nique to reduce the datapath switch capacitance, loopagadrensformation to reduce the mem-

ory system power, and register relabeling to conservermpanvihe data buses [70].

2.1.2 Instruction-level CPU energy model

In contrast to the fine-graioycle-leveltechniques, coarse-graimstruction-levelpower analysis
technigues estimate the total energy cost of a prograaddiyng the energy consumed while exe-
cuting instructions of a program [65, 9]. Instruction-bytrimstion energy costs, callégse costs
can be measured for individual instructions for a tapgetessor. However, there is extra power
consumption due to “interaction” between successiveucsons caused mainly by pipeline and
cache effects. The base costs of individual instructiodstiam power cost dhter-instruction
effectsare determined based on the experimental procedure usiograrp containing several
instances of the targeted instruction (for base cossmement) and an alternating sequence of
instructions (for inter-instruction effects costs). blea3 illustrates a subset of the base costs for
Intel 486DX2 and Fujitsu SPARCIite'934 [65]. A similar studgshalso been conducted for

PowerPC microprocessor [49].
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Table 3: Base costs for Intel 486DX2 and Fujitsu SPARCA4d processors [65]. (Cycles and
energy numbers in the table are per-instruction values.)

Intel 486DX2 Fujitsu SPARClite ‘934
Instruction | Current Cycles Energy Instruction Current | Cycles Energy

(mA) (108 J) (mA) (108 J)
nop 276 1 2.27 nop 198 1 3.26
mov dx,[bx] 428 1 3.53 Id [10],i0 213 1 3.51
mov dx,bx 302 1 2.49 or g0,i0,10 198 1 3.26
mov [bx],dx 522 1 4.30 st i0,[10] 346 2 11.4
add dx,bx 314 1 2.59 add i0,00,10 199 1 3.28
add dx,[bx] 400 2 6.60 mul g0,r29,r47 198 1 3.26
imp 373 3 9.23 srli0,1,10 197 1 3.25

Once the instruction-by-instruction energy model is constructed fparticular proces-
sor, the total energy codp, of any given prograng, is given by:

Er =2 (Base* N + 2 (Inter;; * N;;) + 2« Ex 1)
whereBase is the base cost of instructiorandN; is the number of executions of instruction
Inter;; is the inter-instructiopower overhead when instructioms followed by instructior, and
N;; is the number of times thijj pair is executed. Finall¥ is the energy contribution of other

inter-instruction effects due to pipeline stalls ancheamisses.

2.2 Complete System-level Energy Models

There is little benefit in studying and optimizing only ®BBU core if other componentave
significant effect on or even dominate the energy consumpfiberefore, it is necessary to con-
sider other critical components to reduce the overall systergy. Subsection 2.2.1 discusses
thehardware state-level modela/here the total energy consumption of the entire systesati-
mated based on the state each device is in or transititoifngm. Here, it is assumed that each
device is capable of switching into one of several power-sastiigs, such as sleep state, de-
pending on the demand on that particular device [16]. This diyp@busually provided in port-

able systems to extend their lifetimes as longer as posSbleware-basedpproaches presented
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in Subsection 2.2.2 identify energy hotspots in applicationsopachting system procedures and
thus allow software programmers to remove bottlenecks aatifinthe software to be energy-
aware. Finally, @omplete system lev&imulation tool, which models the hardware components,
such as CPU, memory hierarchy, and a low power disk sansyas well as software compo-

nents, such as OS and application, is presented in Suips22i3.

2.2.1 Hardware state-based energy model
Cignetti et al. presented a system-wide energy optimization technigue avihardware state-
based energy model [16]. This power model encapsulates lowdietedls of each hardware sub-
system by defining a set of power stateg ( sleep, doze or busy for CPU) for each device. Each
power state is characterized by the power consumption diatisevare during the state, which is
called steady state power In addition, each transition between states is assigneenergy
consumption cost, callelansient energy Since transitions between states occur as a m&sult
system calls, the corresponding energy can be measureeeping track of system calls. The
total energy consumed by the system is then determineddaygathe power of each device state
multiplied by the time spent in that state plus the ®t&rgy consumption for all the transitions.
The abovementioned state-based energy model was implemerdadeagension to the
Palm OS Emulato(POSH [48], which is a Windows based application that simulaiesfunc-
tionalities of a Palm device. POSE emuld®asém OSand instruction execution of tidotorola
Dragonball microprocessor [43]. To quantify the power consumption @édce and to provide
parameters to the simulator, measurements were takedén to capture transient energy con-
sumption as well as steady state power consumption as teekse able 4 [16]. A Palm device
from IBM was connected to a power supply with an oscillosecopasuring the voltage across a
small resistor. The power consumption of the basic hasdaalbsystems, such as CPU, LCD,
backlight, buttons, pen, and serial link, was measuretuseasurement programs callawer

andMillywatt [40].
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Table 4: Steady state and transient power of a Palm deosiod BM. (Steady state power shown
is the relative value to the default state; CPU doze, b@Dbacklight off, pen and but-
ton up. State transition is caused by system calls, wdrielrshown on the right hand

side.)
Steady state power Transient energy
Device State Power (mW) System Call Transient energy (mJ)
CPU Busy 104.502 CPU Sleep 2.025
Idle 0.0 CPU Wake 11.170
Sleep -44.371 LCD Wake 11.727
LCD On 0.0 Key Sleep 2.974
Off -20.961 Pen Open 1.935
Backlight On 94.262
Off 0.0
Button Pushed 45.796
Pen On Screen 82.952
Graffitti 86.029

2.2.2 Process-based energy model
Since software is the main determinant for the actwite hardware components, such as the
processor core, memory system and buses, there is a meedefiigating energy-oriented soft-
ware techniques and their interaction and integration pétfiormance-oriented software design.
This subsection presents process-based power measurenmengues for system optimization
[12, 20]. Using specially designed monitoring tools, these uneagent-based techniques target
the power consumption of the entire system and try to painthe hotspots in applications and
operating system procedures. It is noted that tleeseiques are process-based in the sense that
they assume different processes consume differentranobenergy not only because they exe-
cute for different amount of time or different numbérinstructions but also because they use
different sets of resources in different sequences.

In PowerScopg20], atime-driven statistical samples used to determine what fraction
of the total energy is consumed, during a certain tiereg, due to specific processes in the sys-
tem. This technique can be further extended to determinendrgy consumption of different

procedures within a process. By providing such a fine-gidiexdbackPowerScopéelps focus
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on those system components responsible for the bulk of enengyroption. Changt al. pre-
sented a similar tool but it is basedamrergy-driven statistical samplinghich uses energy con-
sumption to drive sample collection [12]. Timeltimeter[20] (or theenergy countef12]) moni-
tors the power consumption of the system and the software testidoy generating an interrupt
for each time interval [20] (or each energy quanta [1ZDis interrupt will prompt the system to
record the process ID of the currently running process Bssvéo collect a current [20] (or en-
ergy [12]) sample. After the experiment, the collealath,i.e. process IDs and current/energy
sample, is analyzed offline to match the processesthdttenergy samples to create the energy
profile.

The result from this study showed that a non-trivial amai energy was spent by the
operating system compared to other user processes. itioadihere are often significant differ-
ences between time-driven and energy-driven profiles andftiner it is necessary to carefully

combine both sampling methods to obtain more accurateyepeije information.

2.2.3 Component-specific energy model

Power profiling techniques mentioned above provide energy coskéauting a certain program
but without understanding the overall system behaviors in mirffidetail to capture the interac-
tions among all the system components. A complete systemr simulator SoftWatf27] over-
comes this problem by modeling hardware components suchl3sh@Pnory hierarchy, and disk
subsystem, and quantifying the power behavior of both applicatifiware and operating sys-
tem. SoftWattwas built on top oBimOSinfrastructure [55], which provides detailed simulation
of both the hardware and software including HREX operating system [30]. In order to capture
the complete system power behavisoftWattintegrates different analytical power models avail-
able from other studies into the different hardware comper@@®imOS The modeled units in
Softwattinclude cache-structure, datapath, clock generation amibdigin network, memory,

and hard drive.
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Experience withSoftwattrunning JVM98 benchmark suite [59] fror8PEC (Standard
Performance Evaluation Corporatipri62] emphasized the importance of a complete system
simulation to analyze the power impact of both archirecand OS on the execution of applica-
tions. From a system hardware perspective, the digleisihgle largest power consumer of the
entire system. However, with the adoption of a low-powsk,dhe power hotspot was shifted to
the CPU clock distribution and generation network (simigults are shown in Table 2). Also,
the cachesubsystem was found to consume more power than the processorFrom the soft-
ware point of view, the user mode consumes more powetlikdgernel mode. However, certain
kernel services are called so frequently that thepwded for significant energy consumption in
the processor and memory hierarchy. Thus, taking ic¢oumt the energy consumption of the
kernel code is critical for reducing the overall energy cdsnally, transitioning the CPU and
memory subsystem to a low-power mode or even halting thegsocwhen executing an idle

process can considerably reduce power consumption.

2.3 Interconnect-level Energy Models in Parallel Systems

After presenting energy models at the CPU-level (Sectionad Yhe system-level (Section 2.2),
this section describes energy models at the paralleihsylstesl with the focus on interconnection
networks. With the ever-increasing demand for computing pgwecessors are becoming more
and more interconnected to create large clusters oputars communicating through intercon-
nection networks. Wanet al. showed that the power consumption of these communication co
ponents is becoming more critical, especially with iaseein network bandwidth and capacity to
the gigabit and terabit domains [67]. Thus, power anailydtis area usually targets the building
blocks inside a network router and a switch fabric.

Bit energymodel [71] considers the energy consumed for each bit, movaideirthe

switch fabric from the input to the output ports, as the satiom of the bit energy consumed on

each of the following three components; (i) the internal revdiches that direct a packet from
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one intermediate stage to the next until it reaches thendgsti port; (ii) the internal buffer
gueues that store packets with lower priorities whemettion occurs; and (iii) the interconnect
wires that dissipate power when the bit transmittedhenvtire flips polarity from the previous
bit. Different models were employed for each one of theggonents based on their character-
istics. For example, the bit energy of a node switchaigstependent; it depends on the presence
or absence of packets on other input ports. On the other pawdr consumption of the internal
buffer can be expressed as the sum of data access ereadyatd write) and the memory re-
freshing operation. Finally, the bit energy of interconnéots depends on the wire capacitance,
length, and coupling between adjacent wires. The bit en@mayel was incorporated into a
Simulink[56] based bit-level simulation platform to trace theaflaw of every packet in the net-
work to summarize the total energy consumption in tre¥donnect.

As opposed to the bit-level approach mentioned above, aitegtahe-level network
power-performance simulatoQrion, was presented in [67]. Orion models an interconnection
network as comprising of message generating (such as souraesporting (router buffers,
crossbars, arbiters, and link components), and consuniikg)sgents. Each of these agents is
a building block of the interconnection network, and is repres] by an architecture-level en-
ergy model. This energy model is based on the switch capeeibf each component including
both gate and wire capacitances. Themgacitance equations are combined with the switching
activity estimation to compute the energy consumption per compaoperation. Orion can be
used to plug-and-play router and link components to formrdiifenetwork fabric architectures,
run varying communication workloads, and study their impaabverall network power and per-

formance.
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3. Dynamic Power Management (DPM) Techniques

While the simulation and measurement techniques describ@dcition 2 aim to optimize power
performance at design time, DPM techniques target ememgumption reduction at run-time by
selectively turning off or slowing down components when théesys is idle or serving light
workloads. As in Section 2, DPM techniques are appliadifierent ways and at different levels.
For exampleDynamic Voltage ScalinpVS technique operates at the CPU-level and changes
processor’'s supply voltage and operating frequency at rendsna method of power manage-
ment [68]. A similar technique, callédynamic Link Shutdow(DLS), operates at the intercon-
nect-level and puts communication switches in a clusteemsysito a low-power mode to save
energy [32]. DPM techniques can also be used for shutting aievifO devices [49], or even
nodes of server clusters [19, 50].

As summarized in Table 5, this section discusses DPhhigges that are classified
based on the implementation level. Section 3.1 discu3B#4 techniques applied at ti@PU-
level In Section 3.2system-leveDPM approaches that consider other system components
(memory, hard drive, I/O devices, display, etc.) thatl@Re discussed. Finally, Section 3.3 pre-
sents DPM techniques proposed parallel systemswhere multiple nodes collaborate to save

the overall power while collectively performing a given paiatsk.
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Table 5: Taxonomy of dynamic power management techniques.

Type Implemen- Monitoring mechanism Control mechanism Section
tation level
CPU CPU-level | Monitor internal bus activity to | Different encoding schemes | 3.1.1
reduce switching activity [29, 61, 69], compiler-based

scheduling [31, 63, 66]
Monitor CPU instruction in exe-{ Clock gating for CPU compo-| 3.1.2
cution to control clock supply tg nents [21, 26]
each component
Monitor CPU workload to adjust DVS with interval-based or | 3.1.3
supply voltage to CPU history-based scheduler [25,
52, 58, 68], compiler-based
scheduler [4, 5, 22, 54]

System | Hardware Monitor device activities to shut Timeout, predictive or sto- 3.21
device-based it or slow it down chastic policies [7, 8, 14, 15,
17, 24, 28, 51, 57, 60]
Software- Monitor device activity via ap- | Prediction of future utilization| 3.2.2
based plication or system software to | of device [24, 35, 36, 38],
shut it or slow it down ACPI [1, 2, 47]
Parallel | Hardware- | Monitor multiple CPU's work- | CVS (Coordinated DVS) [19]| 3.3.1
system | based loads to cooperatively adjust
supply voltages
Monitor switch/router activity to| History-based DVS on 3.3.1
rearrange connectivity or put | switch/router [53], Dynamic
into reduced power mode Link Shutdown [32]
Software- Monitor synchronization activi- | Thrifty barrier [34] 3.3.2
based ties to power down spinning
nodes
Monitor workload distribution tg Load unbalancing [50] 3.3.3

shut off some nodes

3.2 CPU-level DPM
The intuition behind power saving at the CPU-level comes fthe basic energy consumption
characteristics of digital static CMOS circuits, whislgiven by

E [JCeVfeik @)
whereCg is the effective switching capacitance of the operatas,the supply voltage, arig «
is the clock frequency [25]. The DPM techniques presentéus section reduce the power con-
sumption by targeting one or more of these parameters. Giobs8.1.1 discusses techniques to
reduce the switching activity of the processor, mainly atdétapath and buses. In Subsection

3.1.2,clock gatingtechniques are discussed, which reduce power consumptionniiygt off the
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idle component’s clock,e. fc.x = 0. Finally, Subsection 3.1.3 presents one of the mostigrom
ing, and also the most complicated, CPU-level DPM teclenizpsed on DVS. DVS scales both
V andfc k to serve the processor workload with the minimum regupower. If applied prop-

erly, DVS allows substantial energy saving without affegferformance.

3.1.1 Reducing switching activity
As discussed earlier, reducing switching activity playsagor role in reducing power consump-
tion. A number of such optimization techniques have lpeeposed to reduce switching activity
of internal buses [29, 61, 69] and functional units [31, 63, 6@] pfocessor. In case of buses,
energy is consumed when wires change states (betweenl). abdfferent techniques are used
to reduce the switching activity on buses by reducing the auwibwire transitions. Stan and
Burleson proposebdus-invert codingwvhere the bus value is inverted when more than half the
wires are changing state [61]. In other words, when thevadwe to be transmitted on the bus
differs by more than half of its bits from the previoadue, then all the bits are inverted before
transmission. This reduces the number of state chamgiée wire, and thus, save energy.

Henkel and Lekatsas proposed a more complicated apprdeerk eache tables are used
on the sending and receiving sides of the channel to furthereré@unsitions [29]. That is, when
a value “hit” is observed at the input of the channel, yistesn will only send the index of the
cache entry instead of the whole data value, which adllice the number of transitions. Finally,
Wenet al. usedbus transcodindo reduce bus traffic and thus power based on data compression
on bus wires [69]. As an enhancement to this technimaesition codingwas also proposed
where the encoding of data represents the wire changes ttathaghe absolute value, which sim-
plifies the energy optimization problem.

On the other hand, the processor’s switching activityatem be reduced by using power-
aware compiler techniques. Although applied at compile,tiimese are considered as DPM

technigues because their effect is closely tied toykEs1’s run-time behavior. For example, in
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instruction schedulingechniqud63, 66], instructions are reordered to reduce the switcttig-

ity between successive instructions. More specificéllypinimizes the switching activity of a
data bus between the on-chip cache and main memory wharciitircache misses occur [66].
Cold schedulind63] prioritizes the selection of the next instruction tooete based on the en-
ergy cost of placing that instruction into the schedudamother compiler based technique called
register assignmerjB1] focuses on reducing the switching activity on the bus dgheling the
register fields of the compiler-generated instructioAssimulator, such aSimplePowel70], is
used to parameterize the compiler with sample tracesothler words, it records the transition
frequencies between register labels in the instructsesuted in consecutive cycles and this in-
formation is then used to obtain a better encodingshfordgisters such that the switching activ-

ity and consequently the energy consumption on the bususaed

3.1.2 Clock gating
Clock gatinginvolves freezing the clock of an idle component. Energgved because no sig-
nal or data will propagate in these frozen units. Clating is widely used because it is concep-
tually simple; the clock can be restarted by simply derisg the clock-freezing signal. There-
fore, only a small overhead in terms of additional cirguié needed, and the component can
transit from an idle to an active state in only a fgeles. This technique has been implemented
in several commercial processors such as Alpha 21264 [26P@ndrPC 603 [21]. The Alpha
21264 uses a hierarchical clocking architecture with gatemk€l Depending on the instruction
to be executed, each CPU umtg, floating point unit) is able to freeze the clock tositdcom-
ponents €.g, adder, divider and multiplier in floating point unit).

The PowerPC 603 processor supports several sleep modesohasledk gating. For
this purpose, it has two types of clock controllgiebal andlocal. Clocks to some components
are globally controlled while others are locally coedl For example, consid&LL (Phase

Locked Loop that acts mainly as a frequency stabilizer and doesiewend on global clock.
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Even though clocks to all units are globally disabled &edprocessor is in sleep state, the PLL
can continue to function which makes a quick wake-uph{witen clock cycles) possible. On the
other hand, if the PLL is also turned off, maximum powsaiirgawould be achieved but the

wake-up time could be as long as 1800 allow the PLL to relock to the external clock.

3.1.3 Dynamic Voltage Scaling (DVS)

In contrast to clock gating, which can only be applieilte components, DVS targets compo-
nents that are in active state, but serving a light watklolt has been proposed as a mean for a
processor to deliver high performance when required,ewdignificantly reducing power con-
sumption during low workload periods. The advantage of D&She observed from the power

consumption characteristics of digital static CMOS cisc() and the clock frequency equation:

(V _Vk )a
VA 3)

Vv
delayl:'m and fCLK U

k
whereV is the supply voltage, arfg.« is the clock frequencya ranges from 1 to 2, and de-
pends on threshold voltage at whigHocity saturatiohoccurs [25].

Decreasing the power supply voltage would reduce power consungptéminatically as
shown in Equation (2). However, this would create a highepagation delay and at the same
time force a reduction in clock frequency as shown inafign (3). While it is generally desir-
able to have the frequency set as high as possible fer fastruction execution, the clock fre-
guency and supply voltage can be reduced for some taske mg&mum execution speed is not
required. Since processor activity is variable, tleeeidle periods when no useful work is being
performed and DVS can be used to eliminate these powstingadle times by lowering the

processor’s voltage and frequency.

! Velocity saturation is related to the semicondugtitage threshold after which saturation occurs the transistor’s behavior be-
comes non-linear.
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In order to clearly show the advantage of DVS techniquesy&i@ compares DVS with
the simple On/Off scheme, where the processor simplg stawn when it is idle (during time
2~4, 5~7 and 8.5~11 in the figure). DVS reduces the voltagé&emaency, spreading the work-
load to a longer period, but more thguradratically reducing energy consumption. A quick cal-
culation from Figure 2 shows about 82% reduction in power baseduati&n (2) becaudesys/
Eonoi = (4%(0.5) + 3x(0.33f + 4x(0.375%) / (2x1° + 1x13 + (1.5K1% = 0.82/4.5 = 0.18. Note
that each task workload, which is represented by #eeiaside the rectangle in Figure 2, remains

the same for both the simple On/Off and DVS mechanisms.

Voltage/frequency ... On/Off
A
—— DVS

L I rTTTTTTo !

05 : . | i

0.375_‘_ 1 1 !
0.3: 1+ | '

Task 1 Task 2 Task 3
» Time
2 4 5 7 8.5 11

Figure2: Voltagescheduling graph with On/Off and DVS meanisms

Current custom and commercial CMOS chips are capable otopgreliably over a
range of supply voltages [46, 64] and there are a number of exniatly available processors
that support DVS mechanisms. Table 6 shows the Mobile Rastium 11l processor with 11
frequency levels and 6 voltage levels with two perforreanodesMaximum performancmode
andbattery optimized performangrode [41]. The maximum performance mode is designed to
provide the best performance while the battery optimizeipeance mode provides the balance

between performance and battery lifetim@usoeprocessor from Transmeta, Inc. also has vari-

able voltage and frequency as presented in TaB&J7 [
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Table 6: Clock frequency versus supply voltage for the Mdbikd Pentium Il processor [41].

Maximum performance mode Battery optimized mode
Frequency | Voltage | Max. power con- | Frequency Voltage (V) Max. power con-
(MHz) V) sumption (Watt) (MHz) sumption (Watt)
500 1.10 8.1 300 .975 4.5
600 1.10 9.7 300 .975 4.5
600 1.35 14.4 500 1.10 8.1
600 1.60 20.0 500 1.35 12.2
650 1.60 21.5 500 1.35 12.2
700 1.60 23.0 550 1.35 13.2
750 1.35 17.2 500 1.10 8.1
750 1.60 24.6 550 1.35 13.2
800 1.60 25.9 650 1.35 15.1
850 1.60 27.5 700 1.35 16.1
900 1.70 30.7 700 1.35 16.1
1000 1.70 34.0 700 1.35 16.1

Table 7: Clock frequency versus supply voltage for the Tratas@misoe processor [33].

Frequenc Power consumption
(MH2) / VelEge (V) (Watt) i
667 1.6 5.3
600 1.5 4.2
533 1.35 3.0
400 1.225 1.9
300 1.2 1.3

The main challenge in applying DVS is to know when and hosc#te the voltage and
frequency. In the following discussion, three differentage schedulers are presenteterval-
based inter-task and intra-task scheduler. Interval-based scheduler is a time-based &oltag
scheduler that predicts the future workload using the workhistdry. Inter-task and intra-task
schedulers target real-time applications with deadlineméet for tasks. Inter-task scheduler
changes speed at each task boundary, while intra-tasiusehehanges speed within a single
task with the help from compilers. Inter-task approachake use of a prior knowledge of the

application to produce predictions for the given task, wihila-task approaches try to take ad-
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vantage of slack time that results from the differengaragram execution path caused by condi-

tional statements.

Interval-based scheduler
Interval-basedvoltage schedulers [25, 68] divide time into uniform lengtierivals and analyze
CPU uitilization of the previous intervals to determine theagafrequency of the next interval.
Gouvil et al.discussed and compared seven such algorithms [25]: (i) RA&&Tthe recent past as
a predictor of the future. (ii) FLAT simply tries toeoth the processor speed to a global aver-
age. (iii) LONG_SHORT attempts to find a golden mean betvike most recent behavior and a
more long-term average. (iv) AGED_AVERAGES employs an exp@alesmoothing method,
attempting to predict via a weighted average. (v) CYCLE& iinore sophisticated prediction algo-
rithm that tries to take advantage of previoua_percentvalues that have cyclical behavior,
whererun_percents the fraction of cycles in an interval during which ®RU is active. (vi)
PATTERN is a generalized form of CYCLE that attempt&lentify the most recemtin_percent
values as a repeating pattern. (vii) PEAK is a nspecialized version of PATTERN and uses
the following heuristics based on observation on narrow péagseasingrun_percentsvould
fall but decreasingun_percentsvould continue falling [25].

According to their simulation studies, simple algorithmseblasn rational smoothing
rather than complicated prediction schemes showed bettermparfce. Their study also shows
that further possibilities exist by improving predictionsgis as sorting past information by proc-

ess-type or providing useful information by applications [25].

Inter-task techniques for real-time applications
Interval-based scheduler is simple and easy to implebdnit often incorrectly predicts future
workloads and degrades the quality of service. In nortiraal applications, unfinished task

from the previous interval would be completed in latéerivals and does not cause any serious
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problems. However, in real-time applications, tasks peeiied by the task start time, the com-
putational resources required, and the task deadlinegefbhe, the voltage/frequency scaling
must be carried out under the constraint that no deadlinesissed. An optimal schedule is de-
fined to be the one for which all tasks complete on orrbefeadlines and the total energy con-
sumed is minimized.

For a set of tasks with the given timing parameters, agctieadlines, constructing the
optimal voltage schedule requires super-linear algorithmspdexity. One simple heuristic al-
gorithm is to identify the task with the earliest deadlmel find the minimum constant speed
needed to complete the task within the time interval eedeadline. Repeating the same proce-
dure for all tasks provides a voltage schedule. Quan asdidggested a more efficient inter-task
scheduling algorithm for real-time applications [52]. Thppraach tries to find the critical inter-
vals using the given timing parameters, such as start amésdeadlines, which can be bottle-
necks in executing a set of tasks. Then, a voltage skehisdproduced for the set of critical in-
tervals, and a complete low-energy voltage schedule stramted based on the minimum con-
stant speed found during any critical interval. Althoukis greedy approach guarantees mini-
mum peak power consumption, it may not always produce thenonimienergy schedule.

Another inter-task DVS technique has been proposed $pedific real-time application,
MPEG player [13, 58]. The task here is to decode an MP&®Gefor egroup of pictureGOP)
[45]. Since different frames require an order of défércomputational overhead for decoding, it
is more beneficial to change the supply voltage and operfriggency depending on frames
rather than GOP. The main difficulty is to predict tiext workload €.g9, decoding the next
frame) in order to assign a proper voltage and frequentigge If the next workload (frame de-
coding time) is underestimated, a voltage/frequency wikhdsigned that is lower than required,
and the job will not meet its deadline causing eith&ritor frames to be dropped and the video

qguality will degrade. On the other hand, if the next worklda overestimated, a volt-
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age/frequency that is higher than required will be asdigeading to more power consumption
than necessary.

Sonet al. proposed two heuristic DVS algorithms for MPEG decoding [B8]S-DM
(DVS with delay and drop rate minimizing algorithemd DVS-PD (DVS with decoding time
prediction). DVS-DM is an interval-based DVS in the sense thathedules voltage at every
GOP boundary based on parameters (mainly delay and drophbtd@)ed from previous decod-
ing history. DVS-PD determines the voltage based on infaom&om the next GOP (like frame
sizes and frame types) as well as previous histonceSrames exhibit different characteristics
depending on the frame type, DVS-PD offers higher predictionracy for future workload
compared to DVS-DM [58].

Chedid proposed another set of techniques for power awREQVdecoding [13]re-
gression range-avgandrange-max Theregressiontechnique is based on the observation that
the frame-size/decoding-time distribution follows a linegression model [6] with high accu-
racy as shown in Figure 3. The regression line is builaayeally at run-time by calculating the
slope of the frame-size/decoding-time relationship based sinhigtory. The other two tech-
nigues,range-avgandrange-max alleviate the computational overhead found in the regress
algorithm. These approaches divide the decoding-time/frareadisizibution into several ranges
as in Figure 3 and make estimation decision based on thegaveecoding timegnge-avg or
the maximum decoding timeahge-ma¥k in each range. The accuracy of these two techniques i
only slightly worse than regression, but has the advasitaigewer complexity and being able to
dynamically increase or decrease the range size in ardmattier respond to any system require-
ment such as more power reduction or better video quih8ly

Table 8 summarizes the different inter-task DVS techniqaesVPEG decoding dis-

cussed in the previous paragraphs.
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Figure 3: Decode time as a function of frame size (basd¢ideomovie, “Undersiege”).

Table 8: Inter-task DVS techniques for a real-time appbo (MPEG player).

Technique | Implementation| Method used to pre- Advantages Disadvantages
level dict future workload
DVS-DM GOP (Group of| Previous history of | Easy to implement Inaccurate if decdd-
Pictures) delay and drop rate ing workload fluc-
tuates
DVS-PD GOP (Group of| Weighted average of| More accurate and lesg Vulnerable to fluc-
Pictures) previous history and | vulnerable to fluctua- | tuations between
next GOP informa- | tions thanDVS-DM frames within each
tion GOP
Regression| Picture frame | Dynamic regression Highly accurate predic Computationally
of previous history | tion expensive
and next frame in-
formation
Range-avg | Picture frame | Average workload af Easy to implement and| Less accurate than
past picture frames | flexible in balancing Regression
with similar frame between power saving
type and size and video quality
Range-max| Picture frame | Maximum workload| Easy to implement and| Less accurate than
of past picture frames more flexible than Regressiorand
with similar frame Range-avg Range-avg
type and size

Intra-task techniques for real-time applications
As opposed to the inter-task DVS techniques mentioned abneee voltage/frequency changes
occur between consecutive tasks, intra-task DVS technameespplied during the execution of a

task with the help of a power-aware compiler. The compdientifies different possible execu-
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tion paths within a task, each requiring a differentoamt of work and thus different volt-
age/frequency setting. Consider an example of a raaltsk and its flow graph in Figure 4. In
Figure 4(b), each node represents a basic bRckf this task and the number in each node de-
notes the number of execution cycles required to comfiietblock. The total number of cycles
varies for the same task depending on the chosen patheanektltant slack time is the target of

optimization in the following intra-task techniques.

B1; e

if (condl) B2;

else e ®
{B3;

while (cond2)
{if (cond3) B4;
B5;

BS;

}
if (cond4) B6; e
else B7; @ i ‘

(@) (b)

Figure 4: Intra-task paths. (a) Example program andglilpow graph (each circle representing a
basic block of a task and the number representing thecialexecute the block).

Azevedoet al.introduced an intra-task DVS technique ugimggram checkpointander
compiler control [5]. Checkpoints indicate places in agpm where the processor volt-
age/frequency should be re-calculated and scaled.prblgeam is profiled, using a representative
input data set, and information about minimum/maximumgndissipated and cycle count be-
tween checkpoints is collected. This informationged in a run-time voltage scheduler to adjust

the voltage in an energy efficient way, while meeting thelldea
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Similarly, Shin and Kim proposed a compiler-based conwertnol, calledAutomatic
Voltage ScalefAVY, that converts DVS-unaware programs into DVS-aware 5#s The
compiler profiles a program during compile-time and annstieRemaining Worst-case Execu-
tion Cycles(RWEQ information, which represents the remaining worst-aasecution cycles
among all the execution paths that start from each corresgpotieckpoint. It automates the
development of real-time power-aware programs on a vanaltiege processor in a way com-
pletely transparent to software developers.

In the previously discussed approaches, voltage/frequencggaalist be computed and
executed at every checkpoint, which may introduce an trudladle overhead at run-time.
Ghazaletet al.reported a similar compiler-based approach but requiliehoration between the
compiler and the operating system [22]. As before, timpier annotates the checkpoints with
the RWEC temporal information. During program executibe, dperating system periodically
adapts the processor’s voltage and frequency based dartipsral information. Therefore, this
approach separates the checkpoints into two categotiedirst one is only used to compute the
temporal information and adjust the dynamic run-time infolonat The second one is used by
the OS (which has more information on the overall applicatielmavior) to execute the volt-
age/frequency change. This approach relies on the stresfgblath the compiler and OS to ob-
tain fine-grain information about an application’s exemuto optimally apply DVS.

COPPER(Compiler-controlled continuous Power-Performang§ is another compiler-
based approach that also relies on the characterigtittee anicroarchitecture to optimize the
power performance of the application. Among many possibjlitifecuses on combining dy-
namic register file reconfiguration with voltage/freqoerscaling. During compile time, differ-
ent versions of the given program code are produced undengaaythitectural parameters,
mainly the number of available registers, and theespnding power profiles are evaluated us-
ing energy simulator such as Wattch presented in Subsécfidn Since running a code version

compiled for less number of registers may lead teetoanergy consumption but higher execution
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delay, it is possible to tradeoff between the average poamesumption and the execution time
with code versioning. The run-time system selects a coddometo help achieve performance

goals within a given energy constraints.

3.2 Complete system-level DPM

As discussed before, the CPU does not dominate the powerngatixu of the entire system.
Other system components, such as disk drives and displayes,ahemuch larger contribution.
Therefore, it is nhecessary to consider all of thacatittomponents of the system to effectively
optimize power. A well-known system-level power managerteattnique is shutting down hard
drives and displays when they are idle. A similar ideaatso be applied to other 1/O devices to
save energy. However, changing power states of hardwarponents incurs not only time de-
lay but also energy overhead. Consequently, a devicédsheuut to sleep only if the energy
saved justifies the overhead. Thus, the main challengecitessfully applying this technique is
to know when to shut down the devices and to wake them up.

A straightforward method is to have individual devices nm&leh decisions by monitor-
ing their own utilization. One clear advantage of this debiased scheme (Subsection 3.2.1) is
transparencyi.e., energy saving is achieved without involving or changing applicair system
software. On the contrary, this scheme may performlypdacause it is unaware of the tasks
requesting the service of the device. Software-based DEfitries (Subsection 3.2.2) have
been proposed to alleviate this problem. Applicationystesn software takes full responsibility
on power-related decisions assuming that devices can ojrersgeeral low power modes using

control interfaces such @slvanced Configuration and Power Interfg@eCPl) [2].

3.2.1 Hardware device-based DPM policies
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Hardware device-based policies observe hardware actidgitidsworkloads of the target device
and change power states accordingly. They are usually iraptechin hardware or device driv-
ers without direct interaction with application or systeoftware as illustrated in Figure 5. Based
on prediction mechanisms for future device usage, these msetdamdbe classified into three

categoriesTime-out Predictive andStochastigolicies [7, 37].

J-[Request
\'

Device driver
vV _A
Power Manager
y v
Hardware device

Request

<——

<

Figure 5: Hardware device-based DPM.

For time-out policiesbreak-even timeTgg, is defined as the minimum time length of an
idle period during which shutting down a particular device wéle power. When transition
power,Prr, and transition timelrr, (required when changing power states of the device) gre ne
ligible, Tge is zero because there is no delay and energy overheadifinglilown and waking
up the device. In practic&ge is calculated based d#tg andT+r as in Figure 6. Time-out poli-
cies work as follows: When an idle period begins, atiia started with a predefined duration
Tumeous Which is usually set as a certain fractionTgf. If the device remains idle aft@§meous
then the power manager makes the transition to the low-povedi siate because it assumes that
the device will remain idle for at least anotfige seconds. These policies are relatively easy to
implement but they have two major drawbacks. Firstrgelamount of energy is wasted waiting

for the timeout to expire, during which the device is idledtilitfully powered. Second, there is
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always a performance penalty to wakeup devices upon receivimguast signal. Devices typi-

cally have a long wakeup time, and thus the request to wakeyjincur significant delays.

Trg: transition time required to enterdilor) and exit (bron) the inactive state

Prg: transition power

Pon, Pos: power when device is On and Off

Tge: break-even time, the minimum length of an idle periodnduwhich shutting down the device will
save power.

Trr = Ton,oft + Tofton
Prr = (Ton,oft Pon,or+ Tort,on Poton) / Trr

Tee = T _if Prr < Pon
Tir+ Trr (Prr—Pon) / (Pon—Por)  if Prr>Pon

where Trr (Prr — Pon) / (Pon — Por)” represents the additional time needed to spend in thet&e to
compensate the excess power consumed during state dransiti

Figure 6: Calculation of break-even tinTgg [7].

Predictive policiesounter the drawbacks of the time-out policies using tedlesiguch
as predictive shutdowril5, 17, 24, 60] angbredictive wakeuf28]. The predictive shutdown
policy eliminates the time-out period by predicting the lengthan idle period beforehand.
Srivastaveet al. suggested that the length of an idle period can be prddigt¢he length of the
previous busy period [60]. Chumyg al. observed the pattern of idle periods, and then the length
of the current idle period is predicted by matching the ctuseguence that led to this idle period
with the observed history of idle periods [15]. In [17, 2ékearchers suggested dynamically
adjusting Timeout based on whether the previous predictions were correcttor T predictive
wakeup policy reduces the performance penalty by waking ugdetviee on time so that it be-
comes ready when the next request arrives. Hvedrg. employed theexponential-average
(weighted-average with exponential weight values) approagredict the wake-up time based
on past history [28]. This policy may increase power comgion but will decrease the delay for

serving the first request after an idle period.
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One of the shortcomings of predictive policies is that tlesyime a deterministic arrival
of device requests.Stochastic policiesnodel the arrival of requests and device power-state
changes as stochastic processeas, Markov processesBeniniet al. modeled the arrival of 1/0
requests using stationary discrete-time Markov proce8$esThis model was used to achieve
optimal energy saving by shutting down and waking up a devitkeirmost efficient way in
terms of energy as well as performance. In this moitked is divided into small intervals with
the assumption that the system can only change its stéite &eginning of a time interval.
Chung et al. extended the model by considering non-stationary processes [y pre-
computed the optimal schedule for different I/O requetepss, and at run-time these schedules
are used to more accurately estimate the next I/0 retjones

However, for discrete-time Markov models, the power managetsne send control
signals to the components every time interval, which reayltin heavy signal traffic and there-
fore more power dissipation. Qai al. used continuous-time Markov models to help prevent this
“periodic evaluation” and instead uses event-triggered evaluggidn They consider both re-
guest arrival and request service events, upon whictytem determines whether or not to shut
down a device. Finally, Simuniet al. suggested adding timeout to continuous-time Markov
models so that a device would be shut down if it has beetinaously idle for a predefined
timeout duration [57]. In general, stochastic policies/ig® better performance than predictive
and time-out policies. In addition, they are capable afiaging multiple power states, making
decisions not onlyhento perform state transition but alshichtransition should be made. The
main disadvantage of these policies is that they reaffline preprocessing and are more com-
plicated to implement. For a detailed comparison of abeméobned device-based DPM

schemes, please refer to [7, 37].

3.2.2 Software-based DPM policies
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While hardware device-based power management policies cianizgoenergy-performance of
individual devices, they do not consider system-wide energyogton due to the absence of
global information. Therefore, software-based DPM jedidiave been proposed to handle sys-
tem-level power managemenidvanced Configuration and Power Interfa@CPI) [2], pro-
posed as an industrial standard by Intel, Microsoft Boshiba, provides a software-hardware
interface allowing power managers to control the powemdbus system components. Applica-
tion and operating system-based DPM techniques, whichbwillliscussed later in this section,
utilize such interface to conserve power. Although apjdinatased schemes can be the most
effective because future workloads are best known to applisatOS-based schemes have a

benefit that existing applications do not need to be ramrfor energy savings.

Advanced Configuration and Power Interface (ACPI)

ACPI [2] evolved from the oldeAdvanced Power Managemeg@tPM) standard targeting desk-
top PCs [3]. Implemented at the BIOS (Basic I/0O Sesjitevel, APM policies are rather simple
and deterministic. Application and OS make normal BIOB taaccess a device and the APM-
aware BIOS serve the 1/O requests while conserving enedye advantage of APM is that the
whole process is transparent to application and OS seftwaCPl is a substitute for APM at the
system software level. Unlike APM, ACPI does not disediéal with power management. In-
stead, it exposes the power management interfacearious hardware devices to the OS and the
responsibility of power management is left to applicatioop@rating system software. Figure 7
overviews the interactions among system components in ACPIT}2% front-end of the ACPI is
the ACPI-compliant device driver. It maps kernel requess@Bl commands and maps ACPI
responses to I/O interrupts or kernel signals. Note tieakérnel may also interact with non-

ACPI-compliant hardware through other device drivers.
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Figure 7: Interaction among system components with ACPI [2].

The ACPI specification defines figlobal system power states: GO represents the work-
ing state, G1 to G3 represent the sleeping states,aatlg bne legacy state for non-ACPI-
compliant devices. The specification also refines thegslgestate by defining additional four
sleepingstates (S1-S4) within the state G1 as shown in Tabla @ddition to the global states,
ACPI also defines foudevice(D0-D3) and foumprocessorstates (CO-C3). Different states differ
in the power they consume and the time needed for wake upex&mple, a deep sleep state,

such as S4 state in Table 9, saves more power but takes lomgse up.
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Table 9: ACPI global states [2].

>

Global states Description 4 g %

G3 Mechanical off: no power consumption, system off. T g

G2 Soft off: full OS reboot needed to restore working state § 5

Sleeping | Sleeping: system appears to be Off, and will returndcking state in an | = =
states | amount of time that increases with the inverse of p@easumption.

c1 S4 Longest wake-up latency and lowest power. All devicep@sered off. 5

S3 Low wake-up latency. All system contexts are lost ex@egtem memory| % §

S2 Low wake-up latency. Only CPU and system cache costkost. O ©

S1 Lowest wake-up latency. No system context is lost. g §

GO Working: system On and fully operational. v =

Legacy Legacy: entered when system is non-ACPI compliant

Application-based DPM

Application-based DPM policies were made possible by thergence of the ACPI standard
state above. Theses policies move the power managerHedevice or hardware level to the
application level. The application, which is the source o$tmequests to the target device, is
now in charge of commanding the power states of that devibese policies allow application
programs to put a device in the fully working state, setm sleep mode, wake it up, or receive
notice about the device power-state changes. For exampéepddit's OnNow [47] and
ACPI4Linux[1] support power management for ACPI-compliant devicegur€ 8(a) illustrates

the application-based DPM scheme.

& &

Process Manager

Request ar Request ar | v |
Power commar Power cmmant 1 OS Power Manager !
: - :

V—t —V 1 v 1

Device driver | Device driver '

* e *_ ________ _______.!

Hardware device Hardware device

(a) Application-level power management (b) OS-level power management

Figure 8: Software-based DPM policies.
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Alternatively, Luet al. proposed a software architecture that exports powaagement
mechanisms to the application level through a template [38]is scheme makes power state
decisions based on information about the system parameatdrsas power at each state, transi-
tion energy, delay, and future workload. This softwaohigecture differs from the ACPI-based
technigues in that the power management is centralizedeg@pplication, which makes it safer

and more efficient in a single application system.

Operating system-based DPM

Application-based power management has several drawbacist, ti¢y require modifications
to existing applications, and thus implementing these pslisi# place additional burden on the
programmers. Second, advances in technology constantly chandygare parameters, which
make a policy optimized for a certain environment inefficaditer a device is replaced. Finally,
different programs may set the same device to different pstates causing the system become
unstable. OS-based DPM techniques use the operatingng/dteowledge of all the running
processes and their interaction with the hardware tonz® energy performance. A number of
OS-based DPM schemes have been proposed in the litgf28u@5, 36]. Figure 8(b) illustrates
the implementation of OS-based power management.

Lu et al. proposedtask-basedoower management, which uses process IDs at the OS-
level to differentiate tasks that make I/O requests 8&8. This has a major advantage over de-
vice-based policies in that it offers a better understandiirdgevice utilization as well its future
usage pattern. For example, an OS-based DPM schelteé, praver-oriented process schedul-
ing, schedules tasks by clustering idle periods to rechvecaumber of power-state transitions and
state-transition overhead [35]. Finally, Gniaatyal. proposed to use program counters to predict
I/O activities in the operating system [23]. Thaeipgram-counter access predictdynamically

learns the access patterns of an application using patti-baselation to match a particular se-
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guence of program counters leading to each idle pefdis information is then used to predict

future occurrences of this idle period and thus optimizespow

3.3 Parallel System-level DPM

Most of the power related research topics are devoteaitprocessor systems. However, due
the co-operative nature of computation in a parallel computiwigganment, the most energy-
efficient execution for each individual processor may noessarily lead to the best overall en-
ergy-efficient execution. Reducing power consumption not ceyices the operation cost for
cooling but also increases reliability, which is ofteitically important for these high-end sys-
tems. This section introduces DPM techniques for mrajistems proposed in the literature.
First, hardware-based power optimization techniques aschoordinated DVS [19] and low-
power interconnection networks [32, 53] in cluster systemspaegented in Subsection 3.3.1.
Second, software-based DPM techniques such as energy-symargonization for multiproces-
sors systems [34] are introduced in Subsection 3.3.2s ditisection also presents DPM tech-
niques used in server clusters to reduce the energy conearpptihe whole cluster by coordi-

nating and distributing the workload among all available n{&l¥s

3.3.1 Hardware-based DPM techniques

Coordinated dynamic voltage scaling (CVS)

Elnozahyet al. also proposed to use the DVS scheme discussed in Sohsgdti3 in a cluster
system [19]. They presented five such policies for commarisThe first policyndependent
Voltage Scaling(IVS) simply uses voltage scaled processors, where each ndedpeindently
manages its own power consumption. The second policyddaterdinated Voltage Scaling
(CVYS, uses DVS in a coordinated manner so that all clustees operate very close to the aver-
age frequency setting across the cluster in order to eetthecoverall energy cost. This can be

achieved by periodically computing the average frequendygeit all active nodes by a central-
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ized monitor and broadcasting it to all the nodes in thstet. The third policy, calledary-
on/vary-off(VOVO), turns off some nodes so that only the minimum numbeodes required to
support the workload are kept alive. The fourth policy, ddlembined Policycombines IVS
and VOVO, while the fifth policy, calle@€oordinated Policy uses a combination of CVS and
VOVO. According to their evaluation, the last two police$er the most energy savings.
Among the two, theCoordinated Policy(CVS-VOVO) saves more energy at the expense of a

more complicated implementation.

Network interconnect-based DPM
One of the most critical power drains in parallel systésnghe communication links between
nodes, which is an important differentiating factor coragato uni-processor systems. The
communication facilities (switches, buses, network cagtls) consume a large amount of the
power budget of a cluster system [32, 53], which is particuteuly with the increasing demand
for network bandwidth in such systems. Shanhgl. proposed to apply DVS to the internetwork-
ing links [53]. The intuition is that if network bandwidtbuld be tuned accurately to follow the
link usage, huge power saving can be achievedistory-based DVPolicy uses past network
traffic in terms of link utilization and receiver inputfier utilization to predict future traffic. It
then dynamically adjusts the voltage and frequency of the caimation links to minimize the
network power consumption while maintaining high performance.

An alternative DPM scheme applied to interconnection lirks suggested by Kiet al.
[32]. They addressed the potential problem of perfoomategradation, particularly in low to
medium workload situations. This may result in more buitéization which also increases the
overall leakage energy consumption. Their method cdllgdamic Link Shutdowr{DLS)
schemeattempts to alleviate the problem based on the fact teabset of under-utilized links
(with utilization under a certain threshold) could be ptately shut down assuming another sub-

set of highly used links can be found to provide connectivitiemetwork.
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3.3.2 Software-based DPM techniques

Barrier operation-based DPM

As discussed in the previous subsection, interconnectionrtiakgsbe the most critical bottleneck
in parallel systems with respect to energy consumptiametisas computing performance. From
the perspective of application software, collective commtinica such adarriers are often
considered the most critical bottleneck during the executian mdrallel application [42]. In a
conventional multiprocessor system, an early arrivingathisgops (typically by spin-waiting) at
the barrier and waits for all slower threads to arbgtore proceeding with the execution past the
barrier. This barrier spin-waiting is highly inefficienh@e power is wasted performing unpro-
ductive computations.

Li et al. proposedhrifty barrier [34], where an early arriving thread tries to put itscpr
essor into a low power state instead of just spinningpeM\the last thread arrives, dormant proc-
essors are woken up and all the threads proceed pdstirtier. However, as discussed earlier in
Subsection 3.2.1, power state transitions should justifyptiveer saving versus the delay time
incurred in the process. Therefore, each threadathiaes early should predict the length of the
pending stall time and decide whether to transit to low petate or not, and if so, choose the
best low power state. At the same time, the wake up itinr&t also be predicted to tradeoff
power saving versus performance degradation. To tackle phelskems, the thrifty barrier uses
the past history of interval time between two conseeubarriers to predict the stall time at the
barrier [34]. The main objective is to wake up dormantattisgust in time for the proceeding
execution, thereby achieving significant energy savings witbhausing performance degrada-

tion.

DPM with load balancing
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In a cluster system, load balancing is a technique usedetdy distribute the workload over all
available nodes in a way that all idle nodes are effigianilized. Pinheircet al. used the con-
cept ofload unbalancingo reduce power consumption of a cluster system [50]. k&idiad bal-
ancing, it concentrates work in fewer nodes while idbtigers that can be turned off, which will
lead to power saving but at the same time may degradermpearice. Their algorithm periodi-
cally evaluates whether some nodes should be removed froddexd & the cluster based on the
predicted power consumption and the given total workload ietpos the cluster with different
cluster configurations. If nodes are underutilized, someeshiwill be removed, and if nodes are
overused, new nodes should be added. In both cases, thighaigadistributes the existing
workload to the active nodes in the cluster. Significant poe@uction was reported with only

negligible performance degradation [50].

4. Conclusion

The need for robust power-performance modeling and optiimizat all system levels will con-
tinue to grow with tomorrow’s workload and performaneguirements for both low-end and
high-end systems. Such models, providing design-time or men-diptimizations, will enable
designers to make the right choices in defining the future géredtenergy efficient systems.
This chapter discussed different ideas and techniques g the literature with the
goal of developing power-aware computer systeifige various methods surveyed were differ-
entiated by design timpower analysisand run-timedynamic power managemetgchniques.
Power analysis techniques are mainly based on simulatiometimes assisted by measurements.
These techniques integrate various energy models intongxisthulation tools and analyze and
profile the power consumption on different levels of a compspstem at design time in order to
help build power efficient hardware and software syste@s. the other hand, dynamic power

management techniques are applied during run-time. Tloeyton the system workload to pre-
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dict the future computational requirements and try to dyndiyiadapt the system behavior ac-
cordingly.

Successful design and evaluation of power management dnidzapion techniques are
highly dependent on the availability of a broad and accuett®f power analysis tools, which
will be crucial in any future study. While the focus showddniore on the overall system behav-
ior capturing the interaction between different systemmponents, it is also important to have a
better and more accurate understanding of particular hagdwanponents or software programs
with respect to power consumption. While power efficergtem design is important in low-end
portable systems, this is also true in high-end paraiiciustered systems. This is because high
power consumption raises temperature and thus deteripexfesmance and reliability. There-
fore, a holistic approach that considers all the comperierguch systems will need to be further

investigated.
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