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1. INTRODUCTIOM

"Numerical Scfeware” 13 a term thet is used racher liberally today |
to describe a range of activities. Tn this talk T want to address the
nuestions: "Is there anything %eing done under the headieg Mumerical
Sofeware chat wag not dene in past years when we just called it
prograwming?", "Are those thinga being done tmportant?™, amd “Are they a
aclence?™ First, T will look at the vature of numerical software and
then discuss what {5 particularly difficult akout it. The third part of
the talk Ybriefly exanioee the science behind such software, and Einally

we will look at the the areas where that scfience doea oot help wa.

Humecical softwate production 1ls viewed by many people elther =21 a
rogtine programming task or as a by=product of that dull subjecr,
numerical analysis, which itself falls somevhere hetween mathematics and
computey science, too applied for the one and too Iréelevant to the
other. However, 1 want ko ghow that there iz a significant difference
hetween the concern and approach of elther & numericrl analyst or of a
programmer on the one hamni, and a person who writes numerical software
on the other. I will call the latter person a3 "momeriesian” for want of

a berter name.

By and large, moet hig numerlcal codea are not written by numerical
analyste, or even by computer acientists, hut by engineers, physicists,
and other large computer yyers. These people tend to wnderestimate the
Aiffleulty of producing reliable code, hut In apite of this, or perchaps
becayess of 1t, they have been reaponsikle for moat of the important
nethoda that have been developed in the past {for example, most
integration metheods, the relaxation methed, and the Efnite element
method) . When these people had a real prohlen ko solve, they could not
afford én be deterred by minor wathematical Aifficultiesn, so they
invented new methods. There has been a tendency for numarical analysta
and conputer scientists o ignore or disparége the accomplishments of

the writers of large proklem—oriented packages—"juat hack programming,”

alchough many major developments in our {leld have started with hack
programming; the structured, polished programs and proofs have appeared
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muoch Later Eor diseribucion and publication. ' Many of the large codeas
utilize a fine blend of "enginearing inaipht™ and applicable theary ta
ohtain results that could notr be ohtained by a aumerical analyst or
computat sclantist. (In fack, ona of the great difficulties facing us
fs how to codify such "inzight" so that it can be applied to the
development of penaral purposs methods and packagas.)} Part of the
challenge of numeelcal acftware Is to peoduce codes which can be
embadded within large packapea to handle acandard operations auch aa the
golution of #iFFerantial equatfona. Alrhough zome modera nwmerical
gofeware fa Efar more reliahle than the cortegponding sactions of tha
larpe prohlem=nelented packagesz, theae packapgez do not genervally uae
library softwars becausa the lattar 1s insuffisiently flexihle ta ba
tailored to a particular slaas of applicatfons and atfll ratain
efficfency. Unfartunately, many of ws per roos invoelved in our smm
thearetical intaraats toa produce usaful codas for the large hody of
usare. UYe produce computer sclence tralned programmars who ara mora
Lnterested in clever gzarbape collection than in avoiding generating
funetrional zarbage in the firat place, or numerical analysts who
hibernate tn Hilbert space.

It i3 cectainly not true that all numerical code writtea by the
user has desirable properties. Vast nunbers of amall problems are
"aolved" everyday by ordinary users In ways that are aot only painful to
the theoretician, but which are wvrong sufficiently oftea that we should
he concerned. Regrettably, much of thia code has found Lts way Into
computer librarlea Iin the past, although not anly 1a it not sultable for
a pablic Library, it is often too crude for most adult bookstorea! The
wrang angwers arise Lecause, as Shampine* haz polnted out, crude
nurerical methods are often not adequate for solving crude numerical
models. WVhereas, when a user 1s faced with a very large Job, time is
invested to trcy out many methodes and at least wmake an empirical choice,
a uger faced with a small job tends to choose the first siople method
that appears to work=-that 1s, wvhich pives an answer close to one
¥ —many commentd In EHix tralk are taken from ja%}upginath-

ers, n the case that they have not appeare £, T
will not give an acrtusl refe¥en¢e, but wiil acknowl edpe the

gource of the wladon.
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expected. These results are fncorrect for preclsﬁly theae problems
which are of more than normal interest t¢ the wger, namely those
problens which have an unexpected behaviour not detected by 2 crude
method. Thus the small wser haa a great need for reliable software
which will solve large classes of problema. Efficlency is oot axz
important for small problems hecauvse the human time presenting the
prohlem eo the computer is the more expensive resource. The desire for
reliabllicy is obvious; the need {or broad applicability is less obvious
hut equally imporcant, because, 1f 8 user has to select between a large
set of codes on the basis of the characteriatics of the methods and
their applicaction to the problem at hand, the choice made will most
likely be wrong. It is unreasonable to sxpect a user to wndecstand
large bodies of knowledge In other areas, in this cagse in numerical
analysis and compuler sclence.

e zee that some of the ateributes needed In numerical software are
raliabilitv, afffciency, and broad applicahility. 1Is there any raazon
vhy this type of code cannot he, or is not, writtén by numerical
analysts? Im a gense {t is becauss tha sclientists/engineavs/programmers
are the people vho cowld be 3ald to be tha trus numerical analyses as
they practice numerical analysais in the sense that they analyas problems
numerically. However, the term "numericanl apalysis" hag come to mean
something diffecent, the study of nuneefeal methods themsalves, and that
s what roday"s numerical analystr does, moatly studying the methods
ariginally devaloped by the apgineer or gefentige. Today”2 numerical
aralyat does not write cede (1F it ecan be avolded)=-=-that 15 a job for a
ptagrammet; hut nat to write code 14 ta ignore a véery important atep I(n
the twe gtape activity we find in almosat a2ll intellectnal endeavor;

analveig and synthesgis. In this cage, w» nhust analyse £lasses of

problems and classes of methods, but before the result ia of any
atility, the result of the analysis must he aynthesized into & computer
code, A numericlan 1% a person intereated in both of these activiciesa.
The analys#is is the sclence and the synthesia is the art, oc alchenmy.

The resnlt will he nunerical software If properly done.

What 1 am really saying ls that "Humerical software does it
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better." Llet me compare the situation with the the telephone systenm.
Forty years apo the projeccion "everybody will be a telephone cperator
in thilrty vears" could he made on the basis of the growth of the syatem.
In the last decade we could make the same projection ahout programming:
"Fyerybody will he a programmer in twenty yeare." The fact of the matter
iz that everybody 15 & telephone operator today, at least in the westetn
world. Alrost everybody connects thefr own calls. OF course, they use
a laoruape that lg high-level compared to the actual conmnections that
have to he made, In the same way, everybody will be a programmer very
shortly, but they will be using laoguages that are very high-level
compared to vhat computer acfientiaes thipk of as high level., Thess
languages will allow access to the software tools that zolve a range of
problems automaticallys The job of the numerician 1s toc aynthesalze
codes that can solve numerpical proprams sutomatically. {(However, this
iz not teo sugpgest chat the solutdon to the sorts of problems I am
concerned with ls the deslgn of yet snother language. Far from {t. Too
many people are fond of designing new languages, languages which have
wonderful structures for handling the "n + 1/2 loop" problem. What we
have is not the "n + 1/2 loop" problem, but the "n + 1/2 languape”
problem. We zlready have n laopuapes, and there 1s always another

half-aszed proposal being made.]

2. WHAT IS NUMERICAL SOFTWARE AND WWY 1S5 IT DIFFICULT?

The previous rematks apply equally well o any form of scoftware if
we substitute “"conputer sclencisc" for "numerical analyst." What is
gpecial abour nuwmerical scftware oether chan cthat i1t deals «wich numbers?

First and forenosc, numerical sofeware musc tolerace errors. The word

o

" 4s an unfcttunate one hecauvse numerical errors are wot errors in

“error
the usuzl sense of the word, hut differences between zpprozimationa that
can he computed in a Finite length of time and the true satucion.
Wilkinson relates an incident in which he was visiting a univeristy to
give a talk. At dimmer the previcus nighe he found himself sitcing next
toc ancther guest of the wniversity, a bishop. Opening conversaticon, the
hishop enquired the subject of Wilkinson’s talk. "“Error," replied
Wilkinson. "That’s a caincidence,” replied the hiohop, "that's my topic
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alan, hue 1 eall i =in." Numerical errer ix unavoidehle: it need not he

gin.
Yumerical szcftware has Lwo principle characterilatics:
{1) It deals with approximationes to real numbers.

{11) Tt 13 eszahle on A range of computers which have different

approximation capabilities.

The faet that {r deale with approximatione to the real mmbars
cauzee the dimension of all aspeces of zofeware production te inceeass.
Fon=numerical eoftware deale wiech finite or countahle sets, be they
numbera or wmot. In it we ara concerned with the deaign and analysia of
an alaorithm. Fxecution time studies are done on the alporithm. Memory
space studies are done on the algorithm. Program procEs are preparad "
for tha algorirhm. The algorithm either "fits™ inco the computer, {that
1¢, the range of integers and nmemory apace is adequate), or it does not.
If i fits, the analysia of the algoriehm carries over to the hehavior
of the computer program. In numerical softwar=, the characteristics of
the algorithm are only one of the aet of problems to be studied; the
hahavior of the actual implamentatfon of the alporithm on a computer

must also be analyzad.

The fact that computers differ 1o thelr treatment of Elecating~-point
numbers means that we muat he concerned with classes of conputera. Aa
F.+ Batrtiate has pointed out, twn decades ago we concerned ourselves
mainly with the algorithm, a decade latur we were alsc concerned about
its enbodiment on a particular computer, while today we are concerned
ahont ita eabodiment on classes of computers in classes of languages.
These classes of computars have differeat numeric ranges, different
precisions, and different vound—off properties. HNumerical software is
written bo work in these varying environments. It miat be sensitive to
the precision of the computer so chat it doea not Lry ko achleve more
accuracy than is possihle on a particular machine. 1t must he senaitive

to the range of numbers ao that 1t can avoid upnecessary overflowa and

underflows. Tt wust he aware of the peculiaricies of round=off. It
mist also work around the difficuleles of many computer laaguages. A
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gond example of this is one aiven by I. Gudy~[2] in which he needed to
compute l.M -~ X withour any wnnecessary rounding error. If X 18 in the
range 0,5 to 1.0, this can he done without error on 4 computer that uses
a puard digit during additionfsubtraction. TIf noc, 1t can he done by
torming (N5 = X) + .5. Howaver, most optimizing conpllers will
"improve” thixz for the user--hack eo the original forms This can he

circumvented in some systems by coding

T <= 0.5 - %
P =T + 0,5

but a alightly better optimizing compiler will still cblige with the
improvement. In many cases, the compliler can be outsmarted by adding a
atatement label tn the secundkatatement (I hope the pute conputer
scientists present will pardon such consctructs). However, LE the
compiler does a flow analysls we are folled again. Worse yet, we may
g8t an ercor message "URNECESSARY STATEMENT LABEL Or LINE nnn™.
(fometimes it meems that the system programmer cannot leave well =nough
atone. 1 am reminded of the story about the priest, lawyer, and system
proprammer waiting to po to the guillotine. The priest went firsc, was
asked whether he wished to lie face up or face down, and chose face up
to look ar heaven. The hlade fell aod miracelously scopped a millimecer
from his neck, 20 he went free. The lawyer went next, and, wvawilling to
break precedent, choae to 1ie the same way. Again the blade stopped a
millimeter short. The system programmer wept last, and chose face up
becauvse he was fntereated in examining the mechanism. ™ah," he ssid, "I
see rthe problem. The rope 1am”t on rthe pulley correctly.”" The other
viewpolnt 13 seen in the prohably crue story of a programmer working for
an atrcraft company some Lwenty yeara apo. UChserving that the aquare
rook roctine was happily returniog a value even when the argument was
negative, he changed it s0 it would trap and warn the user. The
inevitable result was that program= which had previously worked
“perfectly"” before now failed. MNesdless ta say, the dactston of the
management wasa ta restore the routine to its previous staete in whieh 1t
pave no unpleasant suggestion that all might not be well.)

Numerical moftware can he particularly difficulc to design because,
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even hefore precislon, range, and vound-off prohlems ate conafdered,
many pumerical tasks are, In a sense, unaolvakle. It 1a no uae telling
the user that the prohlem s theotretically impossible; it has to be
"solved." A numerical program can come to one of three outcomes: answers
correct to withie the tolerance requested or expected by the user; a
statement by the pregram that the task la impesaible; or answers not
within toalerznce. The latter are more commenly called wrong answers.
Ideally, we don"t want wrong anawevs, and many usera ave pregared to ask
that they not occur. However, the hest we can usually ask is that we
minimize the frequency of cccurence of wrcog anewers, sven at the
expense of tellling the uaer thac the Job {8 impomsihle more frequently.
It 15 uot ttue that "sowe answer I better than onone.™ In most cases, a
wrong answer is much worse than no answer. Suppose the user thereby
makes a wronp decision: 1t Is clearly better not to build a plane thaa

te build one that will ot fly.

Uhy ie it mo 4difficult for numerical algorithms to distinguish
hetusen possikle and impossibls cases? In some cases 1t isn‘ej it
depends on the type of prohlem. The types of numerical problems can be
clagsified aceording to three criteria! data propercies, algorithm
properties, and rouvnd-off error properties. The firet subdivigicn 1% eon
the hasls of the intrial data provided by the user tc specify the
problem. Thia data could take the form (in ascending order of
difficulty €for the computation):

in 4 set of isclated values, such as the coefflclents of a system of

1inear equaticns or the arpument to a sine function.

(2] Symbolic data, such as the specification of a differential

equation.

{31) 4 "black box" pregram which will compute any aspecific value of a

function for specified wvalues of ita arpuments.

The fieak two Forme of data pive a complete apecificarion of the
prohlem, although congiderable {non-numeric) menipulation may he
required £f the data is in the secend form. If the data is in rhe third
Errm, we must accept that absalute reliahility ia impossihle without
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additional assumptions. For example, if we write a program to compukte
tha value of the integral of a function f{x} by forming a weighted sum
of values of the function f for various values of {ts arpumenc x, we
will only sample £ at a finite number of points, say x,, Ky see X
We can substitute anether fuanctlon g(x) which is ldentical o f{x} at
these polnta, and the integral of g will be "identical"™ (numerically) to

that of f. For axanple, let

p{x} = f{x) + (x = xljz{: - xz}1¢.;{x - xnjz

The second subhdiviaion L& on the haafs of the relation between the
glgorithm and the problem, and is indepeadent of round=-off ecror
prohlema. Tt leads to the hraakdown lnto the four groups:

(A) The problem can be golved hy a finite aeguence of calculacions in
real number arfchmeric (that fa, fnfinfre praciasion arithmeticl.

Linear equation solution is an example of cthis.

(B} The problem canaot he solved exactly in a Finite sequence of
arichmectc operatinna, but there exiata one or more finlte sets of
atepa For which everything needed to complete an ervor analyeia
and pget error bounda Lla konown. Ap example of thia fa a program

for coasine.

(C) Brror bhounds can he given In terms of onknown characteriatics.
These characteristics are values auch as the bounds on derivatives
which caaonct be conputed. Examples of this {nclude the solution
of the ordinary diffesrential equation y*=f£{y) and the salution of
the non«linear equation f({x)}=0, where f 1a a functlon given by
another program.] Mote that 1n these examples there 1s aa
assumptien that certain derivativea axiat and are bounded. These

assumptlons are usually correct but cannot he verified.

(D) All known proofs of error bounds depend on assumptifons that not
anly canmot be verlfied, but which are often not true. An exaople
fs a program for partial differential equationa. Moat theoriea
rely on linearlty or small deviations from linearity, but
practical problems that do nat aatiafy these aasumptiena are often



solved.

Group {A) problems are trivial at the algorichm level, as there is
no analytical praoblem to consider. Heither do graup (B} problems cause
difficylties at the algonrithm level; a code can be designed using a
nunher of satepa determined by the accuracy needed. This 1s not to say
that the {mplementation of growp (A) and {B) problems on an actuel
computer la crivial: there arve still the problens of precirion, range,
and round—off to consfder. (These are discussed for a vaciety of
functions in the previously cleed paper of Cody.) Fowever, the
difffcnlties are saluble.

firaup {{) problemg are the first to axhihit serions difficulries.
Huch sofrware allows the user to request answers within a given error
tolerance. However, the errar hounda that can be computed depend on
unknown quanticlea. Although these quantcities can be estimated, and
that is what numerical aoftware does, there can he no guarantee that
these estimates are correct. Consequently, a wrong answer 1s always a
posaihility, Since a key objective of numerical scftware 1is
rellability, the most the pumerician can hope to do i3 to keep the
probability of wrong answers low. IFf instead, we can “get hold" of the
function by requiving the uger to specify form (2) data, we might be
ahle ta move the problem into group (A} or {8). Aleernacively, 1t ia
gsametimes posaible Lo convert a group (C) problem to one in group (B) by
requiring the user o provide addifional information. For example, in
solving the equatfon f{x)=0 we could alsp ask the user to provide a
subroutine which will give a hound on the derivative aof f({x} over a
range of values of x+. In rthat case, we can compute error boumds ¢1f
round-off error is ignored) and can write programs chat make staternents

such as “there are no roots of £{x}=0 in the range specified."

It 1a anly receatly that numerical software has been attempted for
ptoeblems in group {D), both because of the great difficulty in providing
mueh eetiab{lity, and becanse it 1a still difficule co konow how to
handle many aspects of such prohlems. For example, mwany partial
differential esquatfons have te he solved in regions with very irregular
boundaries. These give difficulties boeth In specification and Iin
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numerical teeatment. Consequently, we find &' number of softwvare
packages on the market at the moment, each sulted to a particular
comhination of a2quationa types and boundary conditions. Sse, For
example, the Fllpack project [I0]. {Advances in mathematfcal

underatanding may cause group (B) prablems to move to pgroup (Ch.)

The third criterion by which we can cateporize problems 1a by their
dependence on ropnd=off errors. This leads te a subdiviston inke the

types:

(ad Onea in which a priaril bounds can be computed on the effects of
round=-aff errors. Thia accurs, For example, 1f we wish to compute

a coalne over a limited range of fta arpument.

{b} Mnes 1n whilch we can compute hounds on the affeccs of round-off
errors onca we know the data for a particular problem. Linear
equatiens are a case of thils 1f we want to determine the esrror Ln

the answer.

£ Mes fn which no hounds can be spaciffed on the effects of round~-
of f errors. Thia usvally arises with problems in Goups (£} and
{}) hecausa the effect nf the propogatisn of round-off error is

dependent on unknown characterisciecs of the actual prohlem.

I have talked ahaut the "effects" of round=off error without heing very

L

specific. PRy "affact,” most users mean the chanpge to the answer.

Founding the change to an answer 1s called forward error analyais

hecause it compotes: the esffect of the arrar as it propogaces farward
with the solution process. In this type of analysis, the arror ar the
end of the calculaflon will depend on the way in which it is amplifiled
or reduced by the problem and the solution process. I the problem ia
soch that amall errors are amplified greatly, the prohlem is called
ill=conditioned, becaunse small changes in the initial daca, whether by

error or user perturbation, cause large changes in the answers. An
example of an ill=conditioned problem is the problem of compoting the
trajectory aof a rocket with no guldance aystem Fired frm{ earth and
almed at Mars. A very amall error will send it past Mars and prabably

inta the sun, causing about & 1M} arror Ln the result! There is no way
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of avoiding prowth of errués if rhe problem i3 ill-condit{oned. TIf rhe
wathod 18 such that 1t causes amall errars to ha amplified even thouph
tha ynderlying problem does not, swe aay that the method iz ungeabls,
Inatahle methods ave to be avoided! The other type of error analysis
that is very populsr with numerical analyats {s backward eresr analysis.
Thiz tries to datermine the amallest change to the {nput data whieh
could lead co the answer obrained. Expresased mathematically, we have a
problam, Ray Pld,x], where 4 12 a get of input daca and x iz the
unknown. Ideally, we would 1ike to solve this, that £3, ta Eind a value
¥ auch that

Pld,y] = 0

Unfortunactely, we compute a mmerical anawer z. In forwacd ercor
apalyala we try tp determine the afze of £ - ¥, whereaa In hackward
error analysis, we ask how big & has to be in ocder thac

Pld + &d,z] = O

The advantage of backward error analyailg 1a that it 1a often possibla to
goet bwounda on the backward error that are independent of the prohlem
datax, even 1f the proklem 1a ill=conditioned. In the rocket example, 1E
may happen that the rocket would actually hic Mare, bot a numerical
computation of the Erajectory ahows that Ehe tocket oill wmiza and crash
inta the sun. Howevar, we can gay that the computation produced the
correct answer to a problem with very sliphtly diFferent data. For a
nore dawm=to=earth example, suppose we want to compute the sine of a
large number, say sin(lﬂﬁi}. In a gaven=dieit precizion computer, we
will compuce SIM{3I1415%2). Will chis be zero? OfF course not, Ita
correct value is abhout =~0,608, but with round=off error, we coold pet
any anawer betussn =] and +1. Thoawe, a bound in forward error acalysis
will be of little value. Howaver, a bound in hackward error analyais
will tell uz that we have the aine of a noaber that s within one part
in aboor ﬂ.?xlﬂ“ﬁ af the glven argunent bacauza, evan with the worst

cage arror of 1.608, we know that
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sin[(10% + 0.5 M ] = 1.0

and

108 + 0.5} - 3141592, 08x10~5

Consequently, hackward ecror analysia is a very appealing concept for
the numerfcal analyst; it passesa the buck back te the vaers who, after
a2ll, cannot expect pood answera te bad problems. If we give chem an
anawer Lo a very close problem, what more can they ask? Unfortunately,
even 1ln a sinple example such as linear esquations, the meaning of "very
clase™ may depend heavily on the problem area. For exampla, a simple
linear elecerical nstwork of resistors leads to a system of liosar
equaticns. It {s poszible to say for a reasonahle code that the answer
ahtatned 18 the anawer to the system of eguations changed by a small
amount. However, to an electrical engineer, a "small change"™ meana that
the network differs from the origzinal only by =zore small changes to
registor values. hfortunately, the numerical analyst means that there
may .also he some addittonal small resistors, or rthat Kiccheff’s laws are
only sarified approximacely. The enpineer may not apgrae that che new

network 15 in any sense close to the original onel

It is imporzant to raalize that the classificarion of a prahlam is
depandent on the demand the uger places on the arror. IF a backward
ecror bound is sufficient, the prablem may be computationally much
simpler. Thus, with a hackward errar hound, a linear equation prohlem
fa 1Aa {rlass 1, group A, type a), but with a forward error bound, ir 1=
1Ah,

Barlier 1 sald that a key attribote of software Ls reliability.
How do we get this? Trndi:innélly. testing has plaved a major rola in
checking for raliability; today, program proof tachniques are taking a
role in checking non=-numerical software. Can they be applied o

numerical zoftware? Generally speaking, oo, for & three reasons:

{1) We can"t prove theorems {f we don't knoow what we want to prove.
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{1i) Ue can’t prove thaorema For algorithms 1f we rcan’t even prove

theorems for the underlying mathematical problen.

{111} Theorems have to be proved for computer Implementations using

fnexack conmputer arithmetic.

The First statement is true For proofs of any subject matter! In
terms of good programming practice, it ia veually expressed in the
statement "we should oot write sany line of code until we know exactly
vhat wa would like to prove aboot it." The di1€ficolty with numerical
problen solving is that we frequantly don’t know just what it 1a that
can he proved. ‘The user i+« Inclined tc say that the only reasoneble
resnlt 18 & statenmant indicating the maximum errar Iin the answers. This
i, of course, just a forvard ecvor houwnd., In other cases, however, 1t
12 not 2 reasonable demand and a hackward ervor bownd is much
prefevable. More gsericu= {2 the Eact that in many veal prohlems, we
have no idea what {2 meant by ervor. The following example was pivan hy
A. Frisman. An engineer was examining zome reselts provided by the
friendly local computer center staff, and comparing them wirh the true
anlution for a rcage in which the latter was knowm. Fipure ] below showe
the twe "splutions”, the aumer{cal one iz dashed. The computer ceanter
ctaff were somewhat dicouraged by the apparént diffatéence hetuwen the
two aonlutions. Fortunately, the engineet was quite happy with the
resulte,. "It has about the ssme number of oscillatione, they damp out
in about the same way, and they reach the same asymptotic valus," was
hig response. Mathematiciana do not know how to measure error so that
the twe salutions shown are close, and unt1l we know thatbt, we can not

hope to prove theorems about such programs.

We can’t prove theorems for general classes of problems shout
wethods that do not work for some undetermined subclass of those
problems. This means that we can forget ahout proving results for
prohlems in group (0), and the most we can hope to do for group (C) 1s
co prove results in the presence of additional asaumptions which can
only he tested vather than verified. Note that this means that even
when we have accepted the idea chat the program may give "no

answer”--that fs, it may return with the nessage "I can’t sclve this
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prohlem,” we sti1ll can’t expect to prove that the program never lies Lf
the problem ig in group (C) or (D). Thus we are Lleft with the
poasihilicy of proving resulte Eor the Eilrat two groups. Exambination of
codas for problems in these growps reveals that they are relatively
glmple lozlically. The complexity aclses In the related mathematics.
(FPor axample, the fact that a code to solve linear eguations will work
may depend on the poslitive definiteness of a matrix, a fact which will
imply some algebralic {dentities which preveat averflow or divide by
zero.) Becauvse group (A) and {B) algorithma are noc cemplex, the wvtility
af proof technigues for codes {n the first two groups 1s low; ahout the
hesy they can hope to do 18 te provide a mechanicazl verificationm of the
steps In a mathematical prool and to check that the code macches those

sTeps.

If we waant to prove results for actual codasz, we moat he able to
make precise statemeats about the propertiea of floating-poiat
arfthmetic when auch properties are used in a program. Such sBtatements
are beyond the capabllity of mast computer manufacturers—-take a look at
their machine degeription manuals: the only way to conclude thar IRM
manuals are well written is to read a CDD manual. Either the
manubacturary are hopelesaly Incompatent when fr comea to deacription ov
it i3 very Jdifficult to desceibe the design. IF 1t 18 the latter case,
a5 gseams likely, there 1z litele hope of achieving a apacification
usaful for an automatic theotem prover such as we might use e verify

programs .

In many cases, human analvsls of the program is done using less
atringent approximations te the rounding errors than actually occur.
Then, 1t is possihle to prove rezults about codes far problems in groups
(A) and (8)+ An example of this is given by Tekker [4]. I the
floating=-point wnit can be assured to meeb reaszonahle specificarions,
some proofs are posaihle, Dekker examines the problem of finding two
values y and z such that do not differ by more than a given tolerance
and for which f£{y) and f(2) have oppoaice sipns. Tf E(x) i3 continuous,
this pives a zero of f within the apecified tolerance. (lnitlal values
for which f(x) has opposite signs are given, sc thia ts a growp (A) or
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group (B} problem, dependinﬁ on your polnt of view.} Brown [1] has
conatructed a model of Floating-peint computation. The parameters of
the model are chosen sc that anything that can be Jona by the model can
be done by the machine being modelled- Furthermere, the model is
"slean” so Lt can be characterlzed by very few parameters. Howevar,
this approach leaves open the question of proving that the

approximarions made te the rouwnding errora are met by the computer!

Additinnal complicarions arise when andaerflow and ovarflow are
considerad. Hon-numerical problems do not encounter wnderflow, aond they
¢an handle overflow by golng to increased precision using 3 meltiple
pracizion package. HNumezical software should operate whenever pogsible,
chet 1z, 1t should sperate {f the input a3nd answers are In ranpa.  For
example, a plece of mathematical software cannot In general ineluda an
expression such as SQRT(X#%2 + YARZ), Tf all exponents are equally
likely, the answer Is in range almost always, but Intermediate results
ovarflow ahout 447 of the time (if exponent of efither ¥ or Y exceeds
half the wmaximum), and underFlow about &% of the time (if both expoaents
are legs than half the minimum). See Figure }. (It 19 true that thess
are Madizon Avenue statletles; exponents are not equally distributed,
Eortenataly, but rthat doez make the problem go away.) Thiz wmeana thar
even a2imple salenlariona can become gquire sontorfed 1f they are to be

sanarally applicahle.

Thua, we aee that a large part of the difficulty of numerical
zsaftware 1z due co the lack of a scientific hasls. There ig no siople
criterion vhich must be optimized, but a set of Lll=defined poala auch
as reliakilicy, generality, and uwtility which we have 3o far falled to
quantlfy. Consequently, a large part of the work of a numerician fa art

rather than science.
3. THE SCIENCE

When zofcware i3 buile, vacious rechnigquesz are ueed to analyze the
praohlem and desalpn the code. The numerfcian i{a aot only coacerned with

the usual analysis for speed and space, but with:
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(i) Seabhlility analysis
(11} Asymptotic analysais
¢{111) Round-~off error analyais

These use standard technigques f£rom numerical analyaiz. TFirat 1 want to
take a brief look at the ideas in such analyses. Thea, in rthe next
gection, we will see that they are based on Assumptions that are pot
truoe= in many cases, This is when the art of the numerician is needad.

Suppooe we have a praklem cto solve. Let us ignore input parameters

and write 1t aa

Ply] = O

that {2, the answer is y, and 1t satisfies some relationship B Unless
the problem i3 in group {A)}, the algorithm to compute an approximation z

ta y takes some other form, may

Alzl=D

because P involves operations such as differentiation that do not =xist
tn the computer. This "implieit Eorm" may seem like a strange way to
express an algorichm which 13, by definicion, an explicit formulation of
a way to compute the resualt. HRowever, for many preklems, 1t is
ralatively eaay to deviae an expresslon of the form A[z} = O that is
approximately satlsfied by the true solution and which can be solved
explicitly. Por example, 1f we are given the differential eguaticon

- Eix,y) = 0

we can replace the degivative by an diEference approximation to ger

5‘“+h}ﬁ' z{x) _ £(x,2z) = 0

which can he solved explicitly for a s=quence of valuea z(xgtnh} given

z{%xg}. Vaturally, we expect £ £o be cloge to y. We hope Lo archieve
thiz by making & "like" P. There are several ways of asking whether A
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is 1ike P. The tuwo principal onea are
residoals
ard Etruncation error

In the residual approach, we zak whether the numerical solucion z cones
close ta "satisfying"” the problem P, that 1s, whether P1z] is small. In
the truncation error approach we ask if the true solution y comes close
to satisfying the algorithm or code, that 1s, whether A[y] is =mall.

The deFinitions of reafdual and truncation error are

regafidual £ = P[z]
truncation error t = Afy]

By subtracting P[y) and Afz) (both of which are zero) from these, we get

r=Plz) = Ply} = 2Rz -
£ = Alyl - A2l = 3y - o

If wve can invert the partfial derivatives (which are matrices), we gat

SR x
and
oy -

The firse says chat the error 1o the answer {z - v} ig amall if the
residual is small and the quantiey Eg;]'! iz small. The latter guantity
depends on the problem, and we pay that the prohlem iz well-conditioned
if it is small. There are some problems, usually in geoups (A) and (B},
For vhich we can caleulate a residual (for ewxanpls, in linsar equation
gplution). In thpae ecases, we can compuote an ervor bound on the resule
if we have a prohlem whose condition s know. Tor ewample, in the
1inear equation Py = b, we can, in principle, compute the resfdual of
the galution z by forming ¥ = Pz - b, If we do thia in extoendad

precizfon, we can ignores round=off errors In the residual computation.
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Combining this with Py = & = 0} we get z — ¥ » p~lp, Thua, in this case
we can compute both the residual and the conditiom of the problem. In
other problems, parcticularly in groupa (C} and (D), we cannot calculate
a residual because P involves operations auch ae differentiacicn which
cannat he done exactly when the values of Eunctions are available oaly
on discrete points. Inm that case, we usually use the teuncatlon error
approach, and say that the solution error ia small If the troncacion
error 1s small and the quantity I%%l'l is small., If the latter quantity
iz small, we say that the method 13 stable. This 1s the type of
analysis applied to differentlal eqguatlons. In the example glven above,
which happens to be Fuler’s method, the simplest method for solving
differentlal equations, we can substitute the true solution ¥ into the
method and Eind chat the truncatfion ercor 1= hdzyfdxzfi where the second
derivarcive is evaluvated at some unknown point on the solution. In this
case, we can show that the metheod 1a stable {f the original problem 1is
well=condltloned, so that the method 1s a pood one.

If somethfng 1s knosm ahout the condition of the problem, it is
possihie to say gomething about tha ascurary of the answer when 1t is
possihle to compute the remidual. However, it may not ke casy to see
how ko create an algorithm with swmall resfiduals. On the sthar hand, 1k
f=z frequently easy to see how to create an alzorithm with amall
truncation errori then it 1is much more d1ifficult to make the algorichm
grahle.

Truncatlon errora are often analyzed using the techniques of
asymptotic analysis. Fssentially, these are applicarions of Taylor®s
series to appropriate expressionz. When it fs fmposgsible to do an exact
computation for P, even En the absence of round—off error, we usually
have an algorithm which depends on a parameter. Suppose this parameker

is a small number, say h, and the algorithm is

Alh,zl = 0O

For many preblams, particularly those arising in differential equatinns,
the algorithm run rime depends on h, and bhecomes infinite as h
approaches zaro. D the other hand, the algorithm becomes more accurate
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as h reduces because Lt hia been chosen so that it ig exact when h i
zero, that im, so that A[D,¥] = 8. Then we can compute Afh,y] by

Tavlor's serlea to get

- 2,2
Afh,y) = A[D,y] + h32 4 I'zaTh'} + ves

We already have arrangsd to make the [irst term zerc.The remaining Cerma
are the truncation error. tsually we design an algorithm to pake a
numer of the additional terms zero. Suppose all of the terms up tox hl:"'l
are zaro, Then, for small enough h the error i3 close to the first
non-zero term which iz proportional ta h*. Numerical software
fraguently Telies on estimating this term Lo measare the ercor amd to

control h. It ignores higher-~order terms.

Traditional Floatfnp=polint error analyels allows the error
fntroduced in each step in the cosputation to be related to the zize of
the numbera takfapg paet fn that computaclon., Thus, the inftfal arvors
are proportional to the initial data, and subsequant errors are related
ty the intarmediate data values. For this reason, it iz often
straizhtforward to relate the affect of round=-off errors to the affact
af changes in the initial data, siace these tend to propogate
propertlonally theough each intarmediata rasonlt. That 1s why backward
error analyafz L2 2uch a handy eook. For example, {n a gimple
calecilation sueh as B¥(C + D*E}, the value of the roundoff error in the
regult iz a complax exprezsion, whereas it {2 aasy ko aay that the error
in the result 18 no worse than that caused by a small change in the

ioput values.
4. THE ALUCHEMY

Tha crzatlon of numerical software is based on the type of amalysls
diecugged in the previous section, but none of this analysis ig etrictly

valid Iin the real world of compurers.

(i) Stabilicty analysls may be Invalfd because {t depends on the
ditferentiation of codes, not algorithms.
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(ii} Asymptotie analysis may break down because often we canmat he
ecertalin we are wvorking «ith small valuea of tha paramater=-=in

tact, sometimes we know we want to uge large valuesg.

{iii) Round-off error analysis breaks down hecause, in the preasence of

gnderflow, it Is mare complex than the usual analysis indicates.

Magk of the time tha apalyeis 13 not badly In error, bat 2ines tha poal
of a numerical software project 1s rellabilltvy, the auwccess 1s celated

to tha prohability aof avoiding wroag answecrs. An occaslonal bhreakdown

of the analysis may cause a large code to give misleading answers

Erequently.

The differentlation of proarams obviously fafls in the presence of
sipnificant round=-off ercors, hubt fortunately round-off etraora are
frequantly small compared to truncation errars. However,
diffecentiatlion can also Fall hecause many programs are adaptive; that
is, they try to adjust some pacameters to achleve close to optimal
hehavlor. If these parameters hehave In an evcatlc way or arve confined
to discrete values as would happen 1f they represented switching hetween
various metheds, diffeventlatlon appears to have no meanlng, even Ln an
approximate sense, This meaas that a totally differeat approach is
needed for the analysiz of stabflity, There has been Little progress in

this area yet.

Asymptotic analysis also falls when differentiation fs not
meaningful, but the major practlcal diff{cultlies with asympreatic
analysis saem to arise from the "amall h"™ aasumption. When h {2 not
emall, error agtimatez are gnpreliahle 1f nor totally wrong. Recanse of
thiz, some of the toughest problems are thoze fn vhich we vant very
Little accuracy. Ag cantradictory as it may seem, we know how to salve

many problems very accuractely, but we don”t know how to solve them
inaccurately and cheaply. In some rases thia iz simply the statemant

that the fFirst digit 1= the moat expensive to obtain, and others bhetcome
pragressively less expensive, but la other cases, we just caanot Find

Ways to computa low ascuracy answars relisbly. This iz particularly the
cagae in differential equacions where the only Form of error estimates
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known to os are based on as}mptntlc error estimates that break down ar
low accuracy. Consequently we have no ides of the alze of the error
untfl we have computed a very accurate answer. An alternace theory to
asynptotcic analysis i3 needed. Approximacion theory provides a basis
For some cases, but 1t has not been applied successfully to many

problems which curreatly use asymptotic énalysls.

Agymptotic analyasiz has another peculiariry in chat if wa use it o
eztimate an arvor we Einlash up with no ervor ezbfmate! The reaaon for
thia ia that if we patimate the e¥ror in a numerical feault, we
natutally subtracr that error from the tesult to pet a "more accurate”
ansyver. However, we now have no arror agtimate for the morve accurats
anawver. WYahan argues that we zhould zolve thia dilemha by compuating an
"uncertainty"” rather than an arror estimate. The uncertainty would
represent the possibls change to the solution due to our lack of marae
prasise knowlaedge of the {npet or wnwillingness to compute more precisa

InfFormarisn abpur the zolutioan.

U
The braakdown of sinple rownd-off error analvsfs can be asen in the

example used earlier, B*{C + D*E)}. Suppose that this is computed iu
floating pofnt using a finite exponent range, OverfClow {m net a serloua
prohlem in that we are told when overflow occurs, and 1t warna us of
trouble. %We could cake the sawe attitude o underflow, but most uzaers
fgnore uaderflows entirely, accepting a zero result. Moat of the time
thia is reasonable. HWowever, augppose that C {3 the zmallest number that
can be represented in the machine, and B 1s its ianverse, assumed
representable. Let T and E be small enough that P*E 1s just less than
C, 80 is underflowed. Then, the cooputed answer for the above
expression fa 1.7, whereas the correct answer L[a almost 2.0. Mention
should be made of an effort waderway by an IEFE awhcommittee on
microprocesaor floating=polnt standards. In additlon to standardizing
[ormats, they are consldering twe proposals which would help with this
underflow problem. One would virtwally eliminace wnderflows and
overflows by using system traps to extend the range of the gxponent when

either pecur. A heap would be maintalmed to keep this addiciomal
{nformatfon, and hit patterns in the data would he used to indicate
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extended exponent trange. Arithmetic 1z likely to be slow for extended
ranpe numbers in this scheme, hut acme of the problems Facing the
numerfcian disappear. The other propasal Introduces the 1dea aof
"eradual underflowe.,”™ This allows numhera with the minimun exponant to
he unnormallzed. The effect of this is that If expressions such as the
one above have a non-zero value, they will not be fn error by more than
onge expects fn a conventional error analyszis [31s In the paat a number
of schemes have heen tried to minimize the tmpact of round-off ercora.
Some of theae have heea designed intoe camputerz hut have not been
effective. For example, afgniflicaant~diric arithmebtfc [B) was tried
about 20 yaars ago. The ldea was to keep as many dielea in the
floatinpg—point mantisaa ags were known to be correct. While the acheme
Afd ant gilve answers that were wronpg, it did give answers with ne
precision left hkecause nest schemea for kounding the effects of round-
ofF arrors lead to answvers that are far koo pessimistic. A more racent
scheme that haz had some auccess {£ interval arithmetic (9] in which an
Interval knowm to contain the cesult 1s computed. Schemes of this form
are, anfortunately, limited to problem that are not fn clazsz {31} or In
groups (CY or (D), o round=-off errors will remaln a problem for the

nunericfan for a long time,

5.  CONGLUSION

thar ia the future direckicon of numerical software? Today ve see a
large amount of activity in areas that will formalize the measurement of
methods, the selection of algorithng, and and the techniques aof testing.
For example, Jackgon et al [4) have used a model prohlem and selected
methods that are optimal over a class of model problems. Rice [1l] has
examined the algorithm gelection problem as an approximation prohlem. A
recent IFIP working conference [5] was deveted to the question of
avaluation of the performance af numerical software. We might ask
vhather numertcal softwara Is a part of computer aclence and should he
studied in computer sclence departments. T believe that computer
sclence Is first and foremost c¢concerned wicth the analysls and synthesls
of the design and uwse of computerz. TFrom thils point of view, I place
pregran design, programming languape deslzn, and architecturs at the
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center af compoter aaienne: Abstract theorv, while virally impgrtant
and interesting in 1its own risht, is only computer sclence when {t ia
cancerned with real computer problems. From thiz point of viaw,
numerical software ie very much a part of computer gc¢lence. It 1a
concerned with automatic problem szolving, that 13, with analyaing
methods and synthesizing technlquea. It has sone salid sclentific
foundatlons, but still involves a lot of judgement because the idealired
goals are not achievable, Thus, the numerician 12 partially reduced to
alchemy; hrewing new concoctions and testliag the resulta., Sometimes
heurlstics are vased (although they are usually called adaptive methoda
and glven something of a scientific foctlag). Many pecple have
commented that the goals of automatlc problem solving and the use of
heuristics suggests a potential affinicy with the AI community. Perhaps
that will bhe true because gor AT colleagues are the owtstanding
alehemlsts of computer sclence. WHowever, the numerlcian 1s usually nore
concerned with writing a package that works reasonably well over a broad
spectrum of prohlems than witk a packape that does remarkably well Enr a
amaller set of problema. Perhaps that will cauwse you to accuse us of a
search for the medlocre. If, by that you mean we are trying to huild
the Mode! & for everybody vather than the custem design for the
few=-=then yes, that is vhat we are trying to do. We want a model thac

runs reliably, smoothly, and can he malntained easily.
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