
UIUCDCS-R-79-969

NUMERICAL SOFTWARE: SCIENCE OR ALCHEMY?

by

C. W. Gear NOTICE
This report was prepared as an account of work
sponsored by the United States Government Neither the
United Statet nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractor!, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights

J u n e 1979

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA, ILLINOIS 61801

Suppor t ed i n p a r t by t h e U . S . Depa r tmen t of E n e r g y , G r an t US ENERGY/EY-76-S-02-2383.

^'-^71Q^0PTlaERQ

NT IS DI7UZSITBD

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

1. INTRODUCTION

"Numerical Software" is a term that is used rather liberally today
to describe a range of activities. In this talk I want to address the
questions: "Is there anything being done under the heading Numerical
Software that was not done in past years when we just called it
programming?", "Are those things being done important?", and "Are they a
science?" First, I will look at the nature of numerical software and
then discuss what is particularly difficult about it. The third part of
the talk briefly examines the science behind such software, and finally
we will look at the the areas where that science does not help us.

Numerical software production is viewed by many people either as a
routine programming task or as a by-product of that dull subject,
numerical analysis, which Itself falls somewhere between mathematics and
computer science, too applied for the one and too irrelevant to the
other. However, I want to show that there is a significant difference
between the concern and approach of either a numerical analyst or of a
programmer on the one hand, and a person who writes numerical software
on the other. I will call the latter person a "numerician" for want of
a better name.

By and large, most big numerical codes are not written by numerical
analysts, or even by computer scientists, but by engineers, physicists,
and other large computer users. These people tend to underestimate the
difficulty of producing reliable code, but in spite of this, or perhaps
because of it, they have been responsible for most of the important
methods that have been developed in the past (for example, most
integration methods, the relaxation method, and the finite element
method). When these people had a real problem to solve, they could not
afford to be deterred by minor mathematical difficulties, so they
invented new methods. There has been a tendency for numerical analysts
and computer scientists to Ignore or disparage the accomplishments of
the writers of large problem-oriented packages—"just hack programming,"
although many major developments in our field have started with hack
programming; the structured, polished programs and proofs have appeared

- 2 -

much later for distribution and publication. Many of the large codes
utilize a fine blend of "engineering insight" and applicable theory to
obtain results that could not be obtained by a numerical analyst or
computer scientist. (In fact, one of the great difficulties facing us
is how to codify such "insight" so that it can be applied to the
development of general purpose methods and packages.) Part of the
challenge of numerical software is to produce codes which can be
embedded within large packages to handle standard operations such as the
solution of differential equations. Although some modern numerical
software is far more reliable than the corresponding sections of the
large problem-oriented packages, these packages do not generally use
library software because the latter Is insufficiently flexible to be
tailored to a particular class of applications and still retain
efficiency. Unfortunately, many of us get too Involved in our own
theoretical interests to produce useful codes for the large body of
users. We produce computer science trained programmers who are more
interested In clever garbage collection than in avoiding generating
functional garbage in the first place, or numerical analysts who
hibernate in Hilbert space.

It is certainly not true that all numerical code written by the
user has desirable properties. Vast numbers of small problems are
"solved" everyday by ordinary users in ways that are not only painful to
the theoretician, but which are wrong sufficiently often that we should
be concerned. Regrettably, much of this code has found its way into
computer libraries in the past, although not only is it not suitable for
a public library, it is often too crude for most adult bookstores! The
wrong answers arise because, as Shampine* has pointed out, crude
nunerical methods are often not adequate for solving crude numerical
models. Whereas, when a user is faced with a very large job, time is
invested to try out many methods and at least make an empirical choice,
a user faced with a small job tends to choose the first simple method
that appears to work—that is, which gives an answer close to one

* - many comments in tnis talk are taken from talks by oth­
ers. In the case that they have not appeared in print, I
will not give an actual reference, but will acknowledge the
source of the wisdom.

- 3 -

expected. These results are incorrect for precisely those problems
which are of more than normal interest to the user, namely those
problems which have an unexpected behaviour not detected by a crude
method. Thus the small user has a great need for reliable software
which will solve large classes of problems. Efficiency is not as
important for small problems because the human time presenting the
problem to the computer is the more expensive resource. The desire for
reliability is obvious; the need for broad applicability is less obvious
but equally important, because, if a user has to select between a large
set of codes on the basis of the characteristics of the methods and
their application to the problem at hand, the choice made will most
likely be wrong. It is unreasonable to expect a user to understand
large bodies of knowledge In other areas, in this case In numerical
analysis and computer science.

We see that some of the attributes needed in numerical software are
reliability, efficiency, and broad applicability. Is there any reason
why this type of code cannot be, or is not, written by numerical
analysts? In a sense It is because the scientists/engineers/programmers
are the people who could be said to be the true numerical analysts as
they practice numerical analysis in the sense that they analyse problems
numerically. However, the term "numerical analysis" has come to mean
something different, the study of numerical methods themselves, and that
is what today's numerical analyst does, mostly studying the methods
originally developed by the engineer or scientist. Today's numerical
analyst does not write code (if it can be avoided)—that is a job for a
programmer; but not to write code is to ignore a very important step in
the two stage activity we find in almost all intellectual endeavor;
analysis and synthesis. In this case, we must analyse classes of
problems and classes of methods, but before the result is of any
utility, the result of the analysis must be synthesized into a computer
code. A numerlcian is a person interested in both of these activities.
The analysis is the science and the synthesis is the art, or alchemy.
The result will be numerical software if properly done.

What I am really saying is that "Numerical software does it

- 4 -

better." Let me compare the situation with the the telephone system.
Forty years ago the projection "everybody vrlll be a telephone operator
in thirty years" could be made on the basis of the growth of the system.
In the last decade we could make the same projection about programming:
"Fverybody will be a programmer in twenty years." The fact of the matter
is that everybody is a telephone operator today, at least in the western
world. Almost everybody connects their own calls. Of course, they use
a language that is hi<»h-level compared to the actual connections that
have to be made. In the same way, everybody will be a programmer very
shortly, but they will be using languages that are very high-level
compared to what computer scientists think of as high level. These
languages will allow access to the software tools that solve a range of
problems automatically. The job of the numerician is to synthesize
codes that can solve numerical programs automatically. (However, this
is not to suggest that the solution to the sorts of problems I am
concerned with is the design of yet another language. Far from it. Too
many people are fond of designing new languages, languages which have
wonderful structures for handling the "n + 1/2 loop" problem. What we
have is not the "n +1/2 loop" problem, but the "n +1/2 language"
problem. We already have n languages, and there is always another
half-assed proposal being made.)

2. WHAT ̂ IS NUMERICAL SOFTWARE AND WHY IS IT DIFFICULT?

The previous remarks apply equally well to any form of software if
we substitute "computer scientist" for "numerical analyst." What is
special about numerical software other than that it deals with numbers?
First and foremost, numerical software must tolerate errors. The word
"error" is an unfortunate one because numerical errors are not errors in
the usual sense of the word, but differences between approximations that
can be computed in a finite length of time and the true solution.
Wilkinson relates an incident in which he was visiting a univeristy to
give a talk. At dinner the previous night he found himself sitting next
to another guest of the university, a bishop. Opening conversation, the
bishop enquired the subject of Wilkinson's talk. "Error," replied
Wilkinson. "That's a coincidence," replied the bishop, "that's my topic

- 5 -

also, but I call It sin." Numerical error is unavoidable; it need not be
sin.

Numerical software has two principle characteristics:

(i) It deals with approximations to real numbers.

(11) It is usable on a range of computers which have different
approximation capabilities.

The fact that it deals with approximations to the real numbers
causes the dimension of all aspects of software production to increase.
Non-numerical software deals with finite or countable sets, be they
numbers or not. In it we are concerned with the design and analysis of
an algorithm. Execution time studies are done on the algorithm. Memory
space studies are done on the algorithm. Program proofs are prepared
for the algorithm. The algorithm either "fits" into the computer, (that
is, the range of integers and memory space is adequate), or it does not.
If it fits, the analysis of the algorithm carries over to the behavior
of the computer program. In numerical software, the characteristics of
the algorithm are only one of the set of problems to be studied; the
behavior of the actual implementation of the algorithm on a computer
must also be analyzed.

The fact that computers differ in their treatment of f-loating-point
numbers means that we must be concerned with classes of computers. As
E. Battiste has pointed out, two decades ago we concerned ourselves
mainly with the algorithm, a decade later we were also concerned about
its embodiment on a particular computer, while today we are concerned
about its embodiment on classes of computers in classes of languages.
These classes of computers have different numeric ranges, different
precisions, and different round-off properties. Numerical software is
written to work in these varying environments. It must be sensitive to
the precision of the computer so that it does not try to achieve more
accuracy than is possible on a particular machine. It must be sensitive
to the range of numbers so that It can avoid unnecessary overflows and
underflows. It must be aware of the peculiarities of round-off. It
must also work around the difficulties of many computer languages. A

- 6 -

good example of this is one given by J. Cody [2] in which he needed to
compute 1.0 - x without any unnecessary rounding error. If X is in the
range 0.5 to 1.0, this can be done without error on a computer that uses
a guard digit during addition/subtraction. If not, it can be done by
forming (0.5 - X) + 0.5. However, most optimizing compilers will
"improve" this for the user—back to the original form. This can be
circumvented in some systems by coding

T <- 0.5 - X
P <- T + 0.5

but a slightly better optimizing compiler will still oblige with the
improvement. In many cases, the compiler can be outsmarted by adding a
statement label to the second statement (I hope the pure computer
scientists present will pardon such constructs). However, if the
compiler does a flow analysis we are foiled again. Worse yet, we may
get an error message "UNNECESSARY STATEMENT LABEL OM LINE nnn".
(Sometimes it seems that the system programmer cannot leave well enough
alone. I am reminded of the story about the priest, lawyer, and system
programmer waiting to go to the guillotine. The priest went first, was
asked whether he wished to lie face up or face down, and chose face up
to look at heaven. The blade fell and miraculously stopped a millimeter
from his neck, so he went free. The lawyer went next, and, unwilling to
break precedent, chose to lie the same way. Again the blade stopped a
millimeter short. The system programmer went last, and chose face up
because he was interested in examining the mechanism. "Ah," he said, "I
see the problem. The rope isn't on the pulley correctly." The other
viewpoint is seen in the probably true story of a programmer working for
an aircraft company some twenty years ago. Observing that the square
root routine was happily returning a value even when the argument was
negative, he changed it so it would trap and warn the user. The
inevitable result was that programs which had previously worked
"perfectly" before now failed. Needless to say, the decision of the
management was to restore the routine to its previous state in which it
gave no unpleasant suggestion that all might not be well.)

Numerical software can be particularly difficult to design because,

- 7 -

even before precision, range, and round-off problems are considered,
many numerical tasks are, in a sense, unsolvable. It is no use telling
the user that the problem is theoretically Impossible; it has to be
"solved." A numerical program can come to one of three outcomes: answers
correct to within the tolerance requested or expected by the user; a
statement by the program that the task is impossible; or answers not
within tolerance. The latter are more commonly called wrong answers.
Ideally, we don't want wrong answers, and many users are prepared to ask
that they not occur. However, the best we can usually ask is that we
minimize the frequency of occurence of wrong answers, even at the
expense of telling the user that the job is impossible more frequently.
It is not true that "some answer is better than none." In most cases, a
wrong answer is much worse than no answer. Suppose the user thereby
makes a wrong decision; it is clearly better not to build a plane than
to build one that will not fly.

Why is it so difficult for numerical algorithms to distinguish
between possible and Impossible cases? In some cases it isn't; it
depends on the type of problem. The types of numerical problems can be
classified according to three criteria: data properties, algorithm
properties, and round-off error properties. The first subdivision is on
the basis of the initial data provided by the user to specify the
problem. This data could take the form (in ascending order of
difficulty for the computation):

(1) A set of isolated values, such as the coefficients of a system of
linear equations or the argument to a sine function.

(2) Symbolic data, such as the specification of a differential
equation.

(3) A "black box" program which will compute any specific value of a
function for specified values of its arguments.

The first two forms of data give a complete specification of the
problem, although considerable (non-numeric) manipulation may be
required if the data is in the second form. If the data is in the third
form, we must accept that absolute reliability is impossible without

- 8 -

additional assumptions. For example, if we write a program to compute
the value of the integral of a function f(x) by forming a weighted sum
of values of the function f for various values of its argument x, we
will only sample f at a finite number of points, say x., x^, ••• »xn«
We can substitute another function g(x) which is identical to f(x) at
these points, and the integral of g will be "identical" (numerically) to
that of f. For example, let

g(x) = f(x) + (x - xj)2(x - x2)2...(x - x n) 2

The second subdivision is on the basis of the relation between the
algorithm and the problem, and is independent of round-off error
problems. It leads to the breakdown into the four groups:

(A) The problem can be solved by a finite sequence of calculations in
real number arithmetic (that is, infinite precision arithmetic).
Linear equation solution is an example of this.

(B) The problem cannot be solved exactly in a finite sequence of
arithmetic operations, but there exists one or more finite sets of
steps for which everything needed to complete an error analysis
and get error bounds is known. An example of this is a program
for cosine.

(C) Error bounds can be given in terms of unknown characteristics.
These characteristics are values such as the bounds on derivatives
which cannot be computed. Examples of this include the solution
of the ordinary differential equation y'=f(y) and the solution of
the non-linear equation f(x)=0, where f is a function given by
another program.) Note that in these examples there is an
assumption that certain derivatives exist and are bounded. These
assumptions are usually correct but cannot be verified.

(D) All known proofs of error bounds depend on assumptions that not
only cannot be verified, but which are often not true. An example
is a program for partial differential equations. Most theories
rely on linearity or small deviations from linearity, but
practical problems that do not satisfy these assumptions are often

_ 9 -

solved.

Group (A) problems are trivial at the algorithm level, as there is
no analytical problem .to consider. Neither do group (B) problems cause
difficulties at the algorithm level; a code can be designed using a
number of steps determined by the accuracy needed. This is not to say
that the implementation of group (A) and (B) problems on an actual
computer is trivial; there are still the problems of precision, range,
and round-off to consider. (These are discussed for a variety of
functions in the previously cited paper of Cody.) However, the
difficulties are soluble.

Oroup (C) problems are the first to exhibit serious difficulties.
Much software allows the user to request answers within a given error
tolerance. However, the error bounds that can be computed depend on
unknown quantities. Although these quantities can be estimated, and
that is what numerical software does, there can be no guarantee that
these estimates are correct. Consequently, a wrong answer is always a
possibility. Since a key objective of numerical software is
reliability, the most the numerician can hope to do is to keep the
probability of wrong answers low. If instead, we can "get hold" of the
function by requiring the user to specify form (2) data, we might be
able to move the problem into group (A) or (B). Alternatively, it is
sometimes possible to convert a group (C) problem to one in group (B) by
requiring the user to provide additional information. For example, in
solving the equation f(x)=0 we could also ask the user to provide a
subroutine which will give a bound on the derivative of f(x) over a
range of values of x. In that case, we can compute error bounds (if
round-off error Is ignored) and can write programs that make statements
such as "there are no roots of f(x)=0 in the range specified."

It is only recently that numerical software has been attempted for
problems in group (D), both because of the great difficulty in providing
much reliability, and because it is still difficult to know how to
handle many aspects of such problems. For example, many partial
differential equations have to be solved in regions with very irregular
boundaries. These give difficulties both in specification and in

- 10 -

numerical treatment. Consequently, we find a' number of software
packages on the market at the moment, each suited to a particular
combination of equations types and boundary conditions. See, for
example, the Ellpack project [10]. (Advances in mathematical
understanding may cause group (D) problems to move to group (C).)

The third criterion by which we can categorize problems is by their
dependence on round-off errors. This leads to a subdivision into the
types:

(a) Ones in which a priori bounds can be computed on the effects of
round-off errors. This occurs, for example, if we wish to compute
a cosine over a limited range of its argument.

(b) Ones in which we can compute bounds on the effects of round-off
errors once we know the data for a particular problem. Linear
equations are a case of this if we want to determine the error in
the answer.

(c) Ones in which no bounds can be specified on the effects of round­
off errors. This usually arises with problems In Coups (C) and
(D) because the effect of the propogatlon of round-off error is
dependent on unknown characteristics of the actual problem.

I have talked about the "effects" of round-off error without being very
specific. Ry "effect," most users mean the change to the answer.
Rounding the change to an answer is called forward error analysis
because it computes the effect of the error as it propogates forward
with the solution process. In this type of analysis, the error at the
end of the calculation will depend on the way in which it is amplified
or reduced by the problem and the solution process. If -the problem is
such that small errors are amplified greatly, the problem is called
ill-conditioned, because small changes in the initial data, whether by
error or user perturbation, cause large changes in the answers. An
example of an ill-conditioned problem is the problem of computing the
trajectory of a rocket with no guidance system fired from earth and
aimed at Mars. A very small error will send it past Mars and probably
into the sun, causing about a 100% error in the result! There is no way

- 11 -

of avoiding growth of errors if the problem is Ill-conditioned. If the
method is such that it causes small errors to be amplified even though
the underlying problem does not, we say that the method is unstable.
Unstable methods are to be avoided! The other type of error analysis
that is very popular with numerical analysts Is backward error analysis.
This tries to determine the smallest change to the input data which
could lead to the answer obtained. Expressed mathematically, we have a
problem, say P[d,x], where d is a set of input data and x is the
unknown. Ideally, we would like to solve this, that is, to find a value
y such that

P[d,y] - 0

Unfortunately, we compute a numerical answer z. In forward error
analysis we try to determine the size of z - y, whereas in backward
error analysis, we ask how big Ad has to be in order that

P[d + Ad,z] = 0

The advantage of backward error analysis is that it is often possible to
get bounds on the backward error that are independent of the problem
data, even if the problem is ill-conditioned. In the rocket example, it
may happen that the rocket would actually hit Mars, but a numerical
computation of the trajectory shows that the rocket will miss and crash
into the sun. However, we can say that the computation produced the
correct answer to a problem with very slightly different data. For a
more down-to-earth example, suppose we want to compute the sine of a
large number, say sin(10 ir). In a seven-digit precision computer, we
will compute SIN(31415P2). Will this be zero? Of course not. Its
correct value is about -0.608, but with round-off error, we could get
any answer between -1 and +1. Thus, a bound in forward error analysis
will be of little value. However, a bound in backward error analysis
will tell us that we have the sine of a number that is within one part
in about 0.7x10 of the given argument because, even with the worst
case error of 1.608, we know that

- 12 -

sin[(106 + 0.5)*)] = 1.0

and

(106 + 0.5)v - 3141592_Q 7 0 8 x l 0-6

Consequently, backward error analysis is a very appealing concept for
the numerical analyst; it passes the buck back to the users who, after
all, cannot expect good answers to bad problems. If we give them an
answer to a very close problem, what more can they ask? Unfortunately,
even in a simple example such as linear equations, the meaning of "verv
close" may depend heavily on the problem area. For example, a simple
linear electrical network of resistors leads to a system of linear
equations. It is possible to say for a reasonable code that the answer
obtained is the answer to the system of equations changed by a small
amount. However, to an electrical engineer, a "small change" means that
the network differs from the original only by some small changes to
resistor values. Unfortunately, the numerical analyst means that there
may .also be some additional small resistors, or that Kirchoff's laws are
only satified approximately. The engineer may not agree that the new
network is in any sense close to the original one!

It Is important to realize that the classification of a problem is
dependent on the demand the user places on the error. If a backward
error bound is sufficient, the problem may be computationally much
simpler. Thus, with a backward error bound, a linear equation problem
is lAa (class 1, group A, type a) , but with a forvrard error bound, it is
lAb.

Earlier I said that a key attribute of software is reliability.
How do we get this? Traditionally, testing has played a major role in
checking for reliability; today, program proof techniques are taking a
role In checking non-numerical software. Can they be applied to
numerical software? Generally speaking, no, for a three reasons:

(1) We can't prove theorems if we don't know what we want to prove.

- 13 -

(ii) We can't prove theorems for algorithms if we can't even prove
theorems for the underlying mathematical problem.

(ili) Theorems have to be proved for computer implementations using
Inexact computer arithmetic.

The first statement Is true for proofs of any subject matter! In
terms of good programming practice, it is usually expressed in the
statement "we should not write any line of code until we know exactly
what we would like to prove about it." The difficulty with numerical
problem solving is that we frequently don't know just what it is that
can be proved. The user is inclined to say that the only reasonable
result is a statement indicating the maximum error in the answers. This
is, of course, just a forward error bound. In other cases, however, it
is not a reasonable demand and a backward error bound is much
preferable. More serious is the fact that in many real problems, we
have no idea what is meant by error. The following example was given by
A. Erisman. An engineer was examining some results provided by the
friendly local computer center staff, and comparing them with the true
solution for a case In which the latter was known. Figure 1 below shows
the two "solutions", the numerical one is dashed. The computer center
staff were somewhat dicouraged by the apparent difference between the
two solutions. Fortunately, the engineer was quite happy with the
results. "It has about the same number of oscillations, they damp out
in about the same way, and they reach the same asymptotic value," was
his response. Mathematicians do not know how to measure error so that
the two solutions shown are close, and until we know that, we can not
hope to prove theorems about such programs.

We can't prove theorems for general classes of problems about
methods that do not work for some undetermined subclass of those
problems. This means that we can forget about proving results for
problems in group (D), and the most we can hope to do for group (C) is
to prove results in the presence of additional assumptions which can
only be tested rather than verified. Note that this means that even
when we have accepted the idea that the program may give "no
answer"—that is, it may return with the message "I can't solve this

- 14 -

problem," we still can't expect to prove that the program never lies if
the problem is in group (C) or (D). Thus we are left with the
possibility of proving results for the first two groups. Examination of
codes for problems in these groups reveals that they are relatively
simple logically. The complexity arises in the related mathematics.
(For example, the fact that a code to solve linear equations will work
may depend on the positive definiteness of a matrix, a fact which will
imply some algebraic Identities which prevent overflow or divide by
zero.) Because group (A) and (B) algorithms are not complex, the utility
of proof techniques for codes in the first two groups is low; about the
best they can hope to do is to provide a mechanical verification of the
steps in a mathematical proof and to check that the code matches those
steps.

If we want to prove results for actual codes, we must be able to
make precise statements about the properties of floating-point
arithmetic when such properties are used in a program. Such statements
are beyond the capability of most computer manufacturers—take a look at
their machine description manuals; the only way to conclude that IRM
manuals are well written is to read a CDC manual. Either the
manufacturers are hopelessly incompetent when it comes to description or
it is very difficult to describe the design. If it is the latter case,
as seems likely, there is little hope of achieving a specification
useful for an automatic theorem prover such as we might use to verify
programs.

In many cases, human analysis of the program is done using less
stringent approximations to the rounding errors than actually occur.
Then, it Is possible to prove results about codes for problems in groups
(A) and (B). An example of this is given by Dekker [4]. If the
floating-point unit can be assured to meet reasonable specifications,
some proofs are possible. Dekker examines the problem of finding two
values y and z such that do not differ by more than a given tolerance
and for which f(y) and f(z) have opposite signs. If f(x) is continuous,
this gives a zero of f within the specified tolerance. (Initial values
for which f(x) has opposite signs are given, so this is a group (A) or

- 15 -

group (B) problem, depending on your point of view.) Brown [1] has
constructed a model of floating-point computation. The parameters of
the model are chosen so that anything that can be done by the model can
be done by the machine being modelled. Furthermore, the model is
"clean" so it can be characterized by very few parameters. However,
this approach leaves open the question of proving that the
approximations made to the rounding errors are met by the computer!

Additional complications arise when underflow and overflow are
considered. Non-numerical problems do not encounter underflow, and they
can handle overflow by going to increased precision using a multiple
precision package. Numerical software should operate whenever possible,
that is, it should operate if the input and answers are in range. For
example, a piece of mathematical software cannot in general include an
expression such as SQRT(X**2 + Y**2). If all exponents are equally
likely, the answer is in range almost always, but intermediate results
overflow about 44% of the time (If exponent of either X or Y exceeds
half the maximum), and underflow about 6% of the time (if both exponents
are less than half the minimum). See Figure 2. (It is true that these
are Madison Avenue statistics; exponents are not equally distributed,
fortunately, but that does make the problem go away.) This means that
even simple calculations can become quite contorted if they are to be
generally applicable.

Thus, we see that a large part of the difficulty of numerical
software is due to the lack of a scientific basis. There is no simple
criterion which must be optimized, but a set of ill-defined goals such
as reliability, generality, and utility which we have so far failed to
quantify. Consequently, a large part of the work of a numericlan is art
rather than science.

3. THE SCIENCE

When software is built, various techniques are used to analyze the
problem and design the code. The numericlan is not only concerned with
the usual analysis for speed and space, but with:

- 16 -

(1) Stability analysis

(ii) Asymptotic analysis

(Hi) Round-off error analysis

These use standard techniques from numerical analysis. First I want to
take a brief look at the ideas in such analyses. Then, in the next
section, we will see that they are based on assumptions that are not
true in many cases. This is when the art of the numericlan is needed.

Suppose we have a problem to solve. Let us ignore input parameters
and write it as

P[y] = 0

that Is, the answer is y, and it satisfies some relationship P. Unless
the problem is in group (A), the algorithm to compute an approximation z
to y takes some other form, say

A[z]=0

because P involves operations such as differentiation that do not exist
in the computer. This "implicit form" may seem like a strange way to
express an algorithm which is, by definition, an explicit formulation of
a way to compute the result. However, for many problems, it is
relatively easy to devise an expression of the form A[z] = 0 that is
approximately satisfied by the true solution and which can be solved
explicitly, "tor example, if we are given the differential equation

& - f(x,y) = 0

we can replace the derivative by an difference approximation to get

z(x+h)h- z(x) _ f (x > z) . 0

which can be solved explicitly for a sequence of values z(x/>+nh) given
Z(XQ). Naturally, we expect z to be close to y. We hope to achieve
this by making A "like" P. There are several ways of asking whether A

- 17 -

is like P. The two principal ones are

residuals

and truncation error

In the residual approach, we ask whether the numerical solution z comes
close to "satisfying" the problem P, that is, whether P[z] is small. In
the truncation error approach we ask if the true solution y comes close
to satisfying the algorithm or code, that is, whether A[y] is small.
The definitions of residual and truncation error are

residual r ■ P[z]

truncation error t ■ A[y]

By subtracting P[y] and A[z] (both of which are zero) from these, we get

r = Pfz] - P[y] = ||(z - y)

t = A[y] - A[z] - |A(y _ Z)

If we can invert the partial derivatives (which are matrices), we get

« - * - HJI- '*
and

The first says that the error in the answer (z - y) is small if the
3P 1

residual is small and the quantity [-g£] is small. The latter quantity
depends on the problem, and we say that the problem is well-conditioned
if it is small. There are some problems, usually in groups (A) and (B),
for which we can calculate a residual (for example, in linear equation
solution). In those cases, we can compute an error bound on the result
if we have a problem whose condition we know. For example, In the
linear equation Py <■ b, we can, in principle, compute the residual of
the solution z by forming r = Pz - b. If we do this in extended
precision, we can ignore round-off errors in the residual computation.

- 18 -

Combining this with Py - b = 0 we get z - y ■ P r. Thus, In this case
we can compute both the residual and the condition of the problem. In
other problems, particularly in groups (C) and (D), we cannot calculate
a residual because P involves operations such as differentiation which
cannot be done exactly when the values of functions are available only
on discrete points. In that case, we usually use the truncation error
approach, and say that the solution error is small if the truncation
error is small and the quantity [-^]~ is small. If the latter quantity
is small, we say that the method is stable. This is the type of
analysis applied to differential equations. In the example given above,
which happens to be Euler's method, the simplest method for solving
differential equations, we can substitute the true solution y into the
method and find that the truncation error is hd y/dx /2 where the second
derivative is evaluated at some unknown point on the solution. In this
case, we can show that the method is stable if the original problem is
well-conditioned, so that the method is a good one.

If something is known about the condition of the problem, it is
possible to say something about the accuracy of the answer when it is
possible to compute the residual. However, it may not be easy to see
how to create an algorithm with small residuals. On the other hand, it
is frequently easy to see how to create an algorithm with small
truncation error; then it is much more difficult to make the algorithm
stable.

Truncation errors are often analyzed using the techniques of
asymptotic analysis. Essentially, these are applications of Taylor's
series to appropriate expressions. When it is impossible to do an exact
computation for P, even in the absence of round-off error, we usually
have an algorithm which depends on a parameter. Suppose this parameter
is a small number, say h, and the algorithm is

A[h,z] = 0

For many problems, particularly those arising in differential equations,
the algorithm run time depends on h, and becomes Infinite as h
approaches zero. On the other hand, the algorithm becomes more accurate

- 19 -

as h reduces because I t has been chosen so tha t i t i s exact when h i s
ze ro , t ha t i s , so t h a t A[0,y] = 0. Then we can compute A[h,y] by
Tay lo r ' s s e r i e s to get

2 2
A[h,y] = A[0,y] + h | ^ + *J* + . . .

oh
We already have arranged to make the first term zero.The remaining terms
are the truncation error. Usually we design an algorithm to make a
numer of the additional terms zero. Suppose all of the terms up to hP
are zero. Then, for small enough h the error is close to the first
non-zero term which is proportional to hp. Numerical software
frequently relies on estimating this term to measure the error and to
control h. It ignores higher-order terms.

Traditional floating-point error analysis allows the error
introduced in each step in the computation to be related to the size of
the numbers taking part in that computation. Thus, the initial errors
are proportional to the initial data, and subsequent errors are related
to the intermediate data values. For this reason, it is often
straightforward to relate the effect of round-off errors to the effect
of changes in the Initial data, since these tend to propogate
proportionally through each intermediate result. That is why backward
error analysis is such a handy tool. For example, in a simple
calculation such as B*(C + D*E), the value of the roundoff error in the
result is a complex expression, whereas it is easy to say that the error
in the result is no worse than that caused by a small change in the
Input values.

ji. THE ALCHEMY

The creation of numerical software is based on the type of analysis
discussed in the previous section, but none of this analysis is strictly
valid in the real world of computers.

(i) Stability analysis may be Invalid because it depends on the
differentiation of codes, not algorithms.

- 20 -

(ii) Asymptotic analysis may break down because often we cannot be
certain we are working with small values of the parameter--in
fact, sometimes we know we want to use large values.

(Hi) Round-off error analysis breaks down because, in the presence of
underflow, it is more complex than the usual analysis indicates.

Most of the time the analysis is not badly in error, but since the goal
of a numerical software project is reliability, the success is related
to the probability of avoiding wrong answers. An occasional breakdown
of the analysis may cause a large code to give misleading answers
frequently.

The differentiation of programs obviously fails in the presence of
significant round-off errors, but fortunately round-off errors are
frequently small compared to truncation errors. However,
differentiation can also fail because many programs are adaptive; that
is, they try to adjust some parameters to achieve close to optimal
behavior. If these parameters behave in an erratic way or are confined
to discrete values as would happen if they represented switching between
various methods, differentiation appears to have no meaning, even in an
approximate sense. This means that a totally different approach is
needed for the analysis of stability. There has been little progress in
this area yet.

Asymptotic analysis also fails when differentiation is not
meaningful, but the major practical difficulties with asymptotic
analysis seem to arise from the "small h" assumption. When h is not
small, error estimates are unreliable if not totally wrong. Because of
this, some of the toughest problems are those in which we want very
little accuracy. As contradictory as it may seem, we know how to solve
many problems very accuractely, but we don't know how to solve them
inaccurately and cheaply. In some cases this is simply the statement
that the first digit is the most expensive to obtain, and others become
progressively less expensive, but in other cases, we just cannot find
ways to compute low accuracy answers reliably. This is particularly the
case in differential equations where the only form of error estimates

- 21 -

known to us are based on asymptotic error estimates that break down at
low accuracy. Consequently we have no idea of the size of the error
until we have computed a very accurate answer. An alternate theory to
asymptotic analysis is needed. Approximation theory provides a basis
for some cases, but it has not been applied successfully to many
problems which currently use asymptotic analysis.

Asymptotic analysis has another peculiarity in that if we use it to
estimate an error we finish up with no error estimate! The reason for
this is that if we estimate the error in a numerical result, we
naturally subtract that error from the result to get a "more accurate"
answer. However, we now have no error estimate for the more accurate
answer. Kahan argues that we should solve this dilemma by computing an
"uncertainty" rather than an error estimate. The uncertainty would
represent the possible change to the solution due to our lack of more
precise knowledge of the input or unwillingness to compute more precise
information about the solution.

The breakdown of simple round-off error analysis can be seen in the
example used earlier, B*(C + D*E). Suppose that this is computed in
floating point using a finite exponent range. Overflow is not a serious
problem in that we are told when overflow occurs, and it warns us of
trouble. We could take the same attitude to underflow, but most users
ignore underflows entirely, accepting a zero result. Most of the time
this is reasonable. However, suppose that C is the smallest number that
can be represented in the machine, and B is its inverse, assumed
representable. Let D and E be small enough that D*E is just less than
C, so is underflowed. Then, the computed answer for the above
expression is 1.0, whereas the correct answer is almost 2.0. Mention
should be made of an effort underway by an IEEE subcommittee on
microprocessor floating-point standards. In addition to standardizing
formats, they are considering two proposals which would help with this
underflow problem. One would virtually eliminate underflows and
overflows by using system traps to extend the range of the exponent when
either occur. A heap would be maintained to keep this additional
information, and bit patterns in the data would be used to indicate

- 22 - ,

extended exponent range. Arithmetic is likely to be slow for extended
range numbers in this scheme, but some of the problems facing the
numericlan disappear. The other proposal introduces the idea of
"gradual underflow." This allows numbers with the minimum exponent to
be unnormalized. The effect of this is that if expressions such as the
one above have a non-zero value, they will not be in error by more than
one expects in a conventional error analysis [3]. In the past a number
of schemes have been tried to minimize the impact of round-off errors.
Some of these have been designed into computers but have not been
effective. For example, significant-digit arithmetic [8] was tried
about 20 years ago. The idea was to keep as many digits in the
floating-point mantissa as were known to be correct. While the scheme
did not give answers that were wrong, it did give answers with no
precision left because most schemes for bounding the effects of round­
off errors lead to answers that are far too pessimistic. A more recent
scheme that has had some success is interval arithmetic [9] in which an
interval known to contain the result is computed. Schemes of this form
are, unfortunately, limited to problem that are not in class (3) or in
groups (C) or (D), so round-off errors will remain a problem for the
numericlan for a long time.

_5. CONCLUSION

What is the future direction of numerical software? Today we see a
large amount of activity in areas that will formalize the measurement of
methods, the selection of algorithms, and and the techniques of testing.
For example, Jackson et al [6] have used a model problem and selected
methods that are optimal over a class of model problems. Rice [11] has
examined the algorithm selection problem as an approximation problem. A
recent IFIP working conference [5] was devoted to the question of
evaluation of the performance of numerical software. We might ask
whether numerical software is a part of computer science and should be
studied in computer science departments. I believe that computer
science is first and foremost concerned with the analysis and synthesis
of the design and use of computers. From this point of view, I place
program design, programming language design, and architecture at the

- 23 -

center of computer science. Abstract theorv, while vitally Important
and interesting in its own right, is only computer science when it is
concerned with real computer problems. From this point of view,
numerical software is very much a part of computer science. It is
concerned with automatic problem solving, that is, with analysing
methods and synthesizing techniques. It has some solid scientific
foundations, but still involves a lot of judgement because the idealized
goals are not achievable. Thus, the numericlan is partially reduced to
alchemy; brewing new concoctions and testing the results. Sometimes
heuristics are used (although they are usually called adaptive methods
and given something of a scientific footing). Many people have
commented that the goals of automatic problem solving and the use of
heuristics suggests a potential affinity with the AI community. Perhaps
that will be true because our AI colleagues are the outstanding
alchemists of computer science. However, the numericlan is usually more
concerned with writing a package that works reasonably well over a broad
spectrum of problems than with a package that does remarkably well for a
smaller set of problems. Perhaps that will cause you to accuse us of a
search for the mediocre. If, by that you mean we are trying to build
the Model A for everybody rather than the custom design for the
few—then yes, that is what we are trying to do. We want a model that
runs reliably, smoothly, and can be maintained easily.

ACKNOWLEDGEMENT

The thoughts presented here are the result of listening to numerous
of my colleagues. Unfortunately, I cannot always remember who was
responsible for which idea, so I have not always acknowledged them, but
I would like to specifically thank Rob Skeel of the University of
Illinois for his many comments and suggestions.

Ribihllography

[1] Brown, W. S., A realistic model of floating-point computation, in
Mathematical Software III, pp 343-360. ed. J. R. Rice, Academic
Press, New York, 1^77.

[2] Cody, W. J. "Software for Elementary Functions," in Mathematical
Software, ed J. R. Rice, Academic Press, New York, ITTT. pp 1/1 -

- 24 -

[3] Coonen, J. T., "Specifications for a Proposed Standard for
Floating-point Arithmetic," Revised memorandum # UCB/ERL M78/72,
Dec 6, 19/8, Univ. of California at Berkeley, Department of
Mathematics.

[4] Dekker, T. J. "Correctness Proof and Machine Arithmetic," to
appear in Proceedings of IFIP Working Conference on "Performance
Fvaluatlon of Mathematical Software, North Holland Press.

[5] Fosdick, L., ed. Proceedings of IFIP Working Conference on the
Performance Evaluation of Numerical Software, December, 1978,
Baden, Austria. North Holland Press, Amsterdam, to appear.

[6] Jackson, K. R., Enright, W. H., and Hull, T. F., "A theoretical
Criterion for Comparing Runge Kutta Methods," SIAM Journ. Numerial
Analysis, ,15, #3, June 1978, pp 618-641.

[7] Jacobs, D., ed., Numerical Software: Needs and Availability.
Academic Press, N. Y. 1978.

[8] Metropolis, N., Ashenhurst, R. L., "Significant Digit Computer
Arithmetic," IRE Trans on Electronic Computers, vol EC-7, 1958,
pP265-267.

[9] Moore, R., Interval Arithmetic, Prentice-Hall, New Jersey, 1966.
[10] Rice, J. R., "ELLPACK: A Research Tool for Elliptic Partial

Differential Equations Software," in Mathematical Software III, ed.
J. R. Rice, Academic Press, New York, 19//.

[11] Rice, J. P., "The Algorithm Selection Problem," in Advances in
Computers, 15, ed. Rublcoff and Yovlts, Academic Press, N.Y. T976.

- 25 -

Figure 1. Computed solution versus actual solution

N u m e r i c a l s o l u t i o n

True s o l u t i o n

Figure 2. Overflow/underflow fai lures in SQRT(X**2 + Y**2)

X EXPONENT (RANGE -E t o +E)

,-t
E
X
P
0
N
E
N
T

-E/.2-

0 - .

E/2

E/2
^

UNDERFLOW

0 V

9 E^2

E R F L 0 W

Form AEC-427 . 0. s. ATOMIC ENERGY COMMISSION
APPM^IOI UNIVERSITY-TYPE CONTRACTOR'S RECOMMENDATION FOR

DISPOSITION OF SCI£NTIF C AND TECHNICAL DOCUMENT
I See Instructions on Reverse Side I

1. AEC REPORT NO.

"COO-2383-0059

2. TITLE

Numerical Software: Science or Alchemy?

3. TYPE OF DOCUMENT (Check one):

R1 a. Scientific and technical report'
l~~] b. Conference paper not to be published in a journal:

Title of conference
Date of conference
Exact location of conference_
Sponsoring organization

□ c. Other (Specify)

4. RECOMMENDED ANNOUNCEMENT AND DISTRIBUTION (Check one):

0 a. AEC's normal announcement and distribution procedures may be followed.
1 I b. Make available only within AEC and to AEC contractors and other U.S. Government agencies and their contractors.
I I c. Make no announcement or distr ibution.

5. REASON FOR RECOMMENDED RESTRICTIONS:

6. SUBMITTED BY: NAME AND POSITION (Please print or type)

C. W. Gear
Professor and Principal Investigator

Organization

Department of Computer Science
Univejrs'i'ty' of Illinois U-C
Urbana, jIllinois 61801

Signature--

WJ^ U ^ ^^f
Date

June 1979

FOR AEC USE ONLY

7. AEC CONTRACT ADMINISTRATOR'S COMMENTS, IF ANY, ON ABOVE ANNOUNCEMENT AND DISTRIBUTION

RECOMMENDATION:

8. PATENT CLEARANCE:

I I a. AEC patent clearance has been granted by responsible AEC patent group.
Q b. Report has been sent to responsible AEC patent group for clearance.
I I c. Patent clearance not required.

BIBLIOGRAPHIC DATA
SHEET

1. Report No. ,
UIUCDCS-R-79-969

3. Rec ip ien t ' s Accession No.

4. Tit le and Subtitle

Numerical Software: Science or Alchemy?
5. Report Date

June 1979

7. Author(s)
C. W. Gear

8. Performing. Organization Kept.
No. UWCbci-R-79~96¥

9. Performing Organization Name and Address

Department of Computer Science
University of Illinois U-C
Urbana, Illinois 61801

10. Pro |ec t /Task/Work Unit No.

11. Contract/Grant No.

ENERGY/EY-76-S-02-2383
12. Sponsoring Organization Name and Address

Department of Energy
Washington, DC

13. Type of Report & Period
Covered

Forsythe Lecture
14.

15. Supplementary Notes

16. Abstracts

This is a summary of the Forsythe lecture presented at the Computer Science
Conference, Dayton, Ohio, in February 1979. It examines the activity
called "Numerical Software," first to see what distinguishes numerical
software from any other form of software and why numerical software is so
much more difficult. Then it examines the scientific basis of such
software and discusses what is lacking in that basis.

17. Key Words and Document Analys is . 17a. Descriptors

numerical software
library software

17b. Identiflers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

unl imi ted

19. Security C las s (This
Report)

UNCLASSIFIED
20. Security Class (This

Page
UNCLASSIFIED

21. No. of Pages

25
22. Price

FORM NTIS-35 (10-70) USCOMM-DC 4 0 3 2 9 - P 7 I

