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1. INTRODUCTION 

"Numerical Software" is a term that is used rather liberally today 
to describe a range of activities. In this talk I want to address the 
questions: "Is there anything being done under the heading Numerical 
Software that was not done in past years when we just called it 
programming?", "Are those things being done important?", and "Are they a 
science?" First, I will look at the nature of numerical software and 
then discuss what is particularly difficult about it. The third part of 
the talk briefly examines the science behind such software, and finally 
we will look at the the areas where that science does not help us. 

Numerical software production is viewed by many people either as a 
routine programming task or as a by-product of that dull subject, 
numerical analysis, which Itself falls somewhere between mathematics and 
computer science, too applied for the one and too irrelevant to the 
other. However, I want to show that there is a significant difference 
between the concern and approach of either a numerical analyst or of a 
programmer on the one hand, and a person who writes numerical software 
on the other. I will call the latter person a "numerician" for want of 
a better name. 

By and large, most big numerical codes are not written by numerical 
analysts, or even by computer scientists, but by engineers, physicists, 
and other large computer users. These people tend to underestimate the 
difficulty of producing reliable code, but in spite of this, or perhaps 
because of it, they have been responsible for most of the important 
methods that have been developed in the past (for example, most 
integration methods, the relaxation method, and the finite element 
method). When these people had a real problem to solve, they could not 
afford to be deterred by minor mathematical difficulties, so they 
invented new methods. There has been a tendency for numerical analysts 
and computer scientists to Ignore or disparage the accomplishments of 
the writers of large problem-oriented packages—"just hack programming," 
although many major developments in our field have started with hack 
programming; the structured, polished programs and proofs have appeared 
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much later for distribution and publication. Many of the large codes 
utilize a fine blend of "engineering insight" and applicable theory to 
obtain results that could not be obtained by a numerical analyst or 
computer scientist. (In fact, one of the great difficulties facing us 
is how to codify such "insight" so that it can be applied to the 
development of general purpose methods and packages.) Part of the 
challenge of numerical software is to produce codes which can be 
embedded within large packages to handle standard operations such as the 
solution of differential equations. Although some modern numerical 
software is far more reliable than the corresponding sections of the 
large problem-oriented packages, these packages do not generally use 
library software because the latter Is insufficiently flexible to be 
tailored to a particular class of applications and still retain 
efficiency. Unfortunately, many of us get too Involved in our own 
theoretical interests to produce useful codes for the large body of 
users. We produce computer science trained programmers who are more 
interested In clever garbage collection than in avoiding generating 
functional garbage in the first place, or numerical analysts who 
hibernate in Hilbert space. 

It is certainly not true that all numerical code written by the 
user has desirable properties. Vast numbers of small problems are 
"solved" everyday by ordinary users in ways that are not only painful to 
the theoretician, but which are wrong sufficiently often that we should 
be concerned. Regrettably, much of this code has found its way into 
computer libraries in the past, although not only is it not suitable for 
a public library, it is often too crude for most adult bookstores! The 
wrong answers arise because, as Shampine* has pointed out, crude 
nunerical methods are often not adequate for solving crude numerical 
models. Whereas, when a user is faced with a very large job, time is 
invested to try out many methods and at least make an empirical choice, 
a user faced with a small job tends to choose the first simple method 
that appears to work—that is, which gives an answer close to one 

* - many comments in tnis talk are taken from talks by oth­
ers. In the case that they have not appeared in print, I 
will not give an actual reference, but will acknowledge the 
source of the wisdom. 
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expected. These results are incorrect for precisely those problems 
which are of more than normal interest to the user, namely those 
problems which have an unexpected behaviour not detected by a crude 
method. Thus the small user has a great need for reliable software 
which will solve large classes of problems. Efficiency is not as 
important for small problems because the human time presenting the 
problem to the computer is the more expensive resource. The desire for 
reliability is obvious; the need for broad applicability is less obvious 
but equally important, because, if a user has to select between a large 
set of codes on the basis of the characteristics of the methods and 
their application to the problem at hand, the choice made will most 
likely be wrong. It is unreasonable to expect a user to understand 
large bodies of knowledge In other areas, in this case In numerical 
analysis and computer science. 

We see that some of the attributes needed in numerical software are 
reliability, efficiency, and broad applicability. Is there any reason 
why this type of code cannot be, or is not, written by numerical 
analysts? In a sense It is because the scientists/engineers/programmers 
are the people who could be said to be the true numerical analysts as 
they practice numerical analysis in the sense that they analyse problems 
numerically. However, the term "numerical analysis" has come to mean 
something different, the study of numerical methods themselves, and that 
is what today's numerical analyst does, mostly studying the methods 
originally developed by the engineer or scientist. Today's numerical 
analyst does not write code (if it can be avoided)—that is a job for a 
programmer; but not to write code is to ignore a very important step in 
the two stage activity we find in almost all intellectual endeavor; 
analysis and synthesis. In this case, we must analyse classes of 
problems and classes of methods, but before the result is of any 
utility, the result of the analysis must be synthesized into a computer 
code. A numerlcian is a person interested in both of these activities. 
The analysis is the science and the synthesis is the art, or alchemy. 
The result will be numerical software if properly done. 

What I am really saying is that "Numerical software does it 



- 4 -

better." Let me compare the situation with the the telephone system. 
Forty years ago the projection "everybody vrlll be a telephone operator 
in thirty years" could be made on the basis of the growth of the system. 
In the last decade we could make the same projection about programming: 
"Fverybody will be a programmer in twenty years." The fact of the matter 
is that everybody is a telephone operator today, at least in the western 
world. Almost everybody connects their own calls. Of course, they use 
a language that is hi<»h-level compared to the actual connections that 
have to be made. In the same way, everybody will be a programmer very 
shortly, but they will be using languages that are very high-level 
compared to what computer scientists think of as high level. These 
languages will allow access to the software tools that solve a range of 
problems automatically. The job of the numerician is to synthesize 
codes that can solve numerical programs automatically. (However, this 
is not to suggest that the solution to the sorts of problems I am 
concerned with is the design of yet another language. Far from it. Too 
many people are fond of designing new languages, languages which have 
wonderful structures for handling the "n + 1/2 loop" problem. What we 
have is not the "n +1/2 loop" problem, but the "n +1/2 language" 
problem. We already have n languages, and there is always another 
half-assed proposal being made.) 

2. WHAT ̂ IS NUMERICAL SOFTWARE AND WHY IS IT DIFFICULT? 

The previous remarks apply equally well to any form of software if 
we substitute "computer scientist" for "numerical analyst." What is 
special about numerical software other than that it deals with numbers? 
First and foremost, numerical software must tolerate errors. The word 
"error" is an unfortunate one because numerical errors are not errors in 
the usual sense of the word, but differences between approximations that 
can be computed in a finite length of time and the true solution. 
Wilkinson relates an incident in which he was visiting a univeristy to 
give a talk. At dinner the previous night he found himself sitting next 
to another guest of the university, a bishop. Opening conversation, the 
bishop enquired the subject of Wilkinson's talk. "Error," replied 
Wilkinson. "That's a coincidence," replied the bishop, "that's my topic 
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also, but I call It sin." Numerical error is unavoidable; it need not be 
sin. 

Numerical software has two principle characteristics: 

(i) It deals with approximations to real numbers. 

(11) It is usable on a range of computers which have different 
approximation capabilities. 

The fact that it deals with approximations to the real numbers 
causes the dimension of all aspects of software production to increase. 
Non-numerical software deals with finite or countable sets, be they 
numbers or not. In it we are concerned with the design and analysis of 
an algorithm. Execution time studies are done on the algorithm. Memory 
space studies are done on the algorithm. Program proofs are prepared 
for the algorithm. The algorithm either "fits" into the computer, (that 
is, the range of integers and memory space is adequate), or it does not. 
If it fits, the analysis of the algorithm carries over to the behavior 
of the computer program. In numerical software, the characteristics of 
the algorithm are only one of the set of problems to be studied; the 
behavior of the actual implementation of the algorithm on a computer 
must also be analyzed. 

The fact that computers differ in their treatment of f-loating-point 
numbers means that we must be concerned with classes of computers. As 
E. Battiste has pointed out, two decades ago we concerned ourselves 
mainly with the algorithm, a decade later we were also concerned about 
its embodiment on a particular computer, while today we are concerned 
about its embodiment on classes of computers in classes of languages. 
These classes of computers have different numeric ranges, different 
precisions, and different round-off properties. Numerical software is 
written to work in these varying environments. It must be sensitive to 
the precision of the computer so that it does not try to achieve more 
accuracy than is possible on a particular machine. It must be sensitive 
to the range of numbers so that It can avoid unnecessary overflows and 
underflows. It must be aware of the peculiarities of round-off. It 
must also work around the difficulties of many computer languages. A 
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good example of this is one given by J. Cody [2] in which he needed to 
compute 1.0 - x without any unnecessary rounding error. If X is in the 
range 0.5 to 1.0, this can be done without error on a computer that uses 
a guard digit during addition/subtraction. If not, it can be done by 
forming (0.5 - X) + 0.5. However, most optimizing compilers will 
"improve" this for the user—back to the original form. This can be 
circumvented in some systems by coding 

T <- 0.5 - X 
P <- T + 0.5 

but a slightly better optimizing compiler will still oblige with the 
improvement. In many cases, the compiler can be outsmarted by adding a 
statement label to the second statement (I hope the pure computer 
scientists present will pardon such constructs). However, if the 
compiler does a flow analysis we are foiled again. Worse yet, we may 
get an error message "UNNECESSARY STATEMENT LABEL OM LINE nnn". 
(Sometimes it seems that the system programmer cannot leave well enough 
alone. I am reminded of the story about the priest, lawyer, and system 
programmer waiting to go to the guillotine. The priest went first, was 
asked whether he wished to lie face up or face down, and chose face up 
to look at heaven. The blade fell and miraculously stopped a millimeter 
from his neck, so he went free. The lawyer went next, and, unwilling to 
break precedent, chose to lie the same way. Again the blade stopped a 
millimeter short. The system programmer went last, and chose face up 
because he was interested in examining the mechanism. "Ah," he said, "I 
see the problem. The rope isn't on the pulley correctly." The other 
viewpoint is seen in the probably true story of a programmer working for 
an aircraft company some twenty years ago. Observing that the square 
root routine was happily returning a value even when the argument was 
negative, he changed it so it would trap and warn the user. The 
inevitable result was that programs which had previously worked 
"perfectly" before now failed. Needless to say, the decision of the 
management was to restore the routine to its previous state in which it 
gave no unpleasant suggestion that all might not be well.) 

Numerical software can be particularly difficult to design because, 
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even before precision, range, and round-off problems are considered, 
many numerical tasks are, in a sense, unsolvable. It is no use telling 
the user that the problem is theoretically Impossible; it has to be 
"solved." A numerical program can come to one of three outcomes: answers 
correct to within the tolerance requested or expected by the user; a 
statement by the program that the task is impossible; or answers not 
within tolerance. The latter are more commonly called wrong answers. 
Ideally, we don't want wrong answers, and many users are prepared to ask 
that they not occur. However, the best we can usually ask is that we 
minimize the frequency of occurence of wrong answers, even at the 
expense of telling the user that the job is impossible more frequently. 
It is not true that "some answer is better than none." In most cases, a 
wrong answer is much worse than no answer. Suppose the user thereby 
makes a wrong decision; it is clearly better not to build a plane than 
to build one that will not fly. 

Why is it so difficult for numerical algorithms to distinguish 
between possible and Impossible cases? In some cases it isn't; it 
depends on the type of problem. The types of numerical problems can be 
classified according to three criteria: data properties, algorithm 
properties, and round-off error properties. The first subdivision is on 
the basis of the initial data provided by the user to specify the 
problem. This data could take the form (in ascending order of 
difficulty for the computation): 

(1) A set of isolated values, such as the coefficients of a system of 
linear equations or the argument to a sine function. 

(2) Symbolic data, such as the specification of a differential 
equation. 

(3) A "black box" program which will compute any specific value of a 
function for specified values of its arguments. 

The first two forms of data give a complete specification of the 
problem, although considerable (non-numeric) manipulation may be 
required if the data is in the second form. If the data is in the third 
form, we must accept that absolute reliability is impossible without 
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additional assumptions. For example, if we write a program to compute 
the value of the integral of a function f(x) by forming a weighted sum 
of values of the function f for various values of its argument x, we 
will only sample f at a finite number of points, say x., x^, ••• »xn« 
We can substitute another function g(x) which is identical to f(x) at 
these points, and the integral of g will be "identical" (numerically) to 
that of f. For example, let 

g(x) = f(x) + (x - xj)2(x - x2)2...(x - x n ) 2 

The second subdivision is on the basis of the relation between the 
algorithm and the problem, and is independent of round-off error 
problems. It leads to the breakdown into the four groups: 

(A) The problem can be solved by a finite sequence of calculations in 
real number arithmetic (that is, infinite precision arithmetic). 
Linear equation solution is an example of this. 

(B) The problem cannot be solved exactly in a finite sequence of 
arithmetic operations, but there exists one or more finite sets of 
steps for which everything needed to complete an error analysis 
and get error bounds is known. An example of this is a program 
for cosine. 

(C) Error bounds can be given in terms of unknown characteristics. 
These characteristics are values such as the bounds on derivatives 
which cannot be computed. Examples of this include the solution 
of the ordinary differential equation y'=f(y) and the solution of 
the non-linear equation f(x)=0, where f is a function given by 
another program.) Note that in these examples there is an 
assumption that certain derivatives exist and are bounded. These 
assumptions are usually correct but cannot be verified. 

(D) All known proofs of error bounds depend on assumptions that not 
only cannot be verified, but which are often not true. An example 
is a program for partial differential equations. Most theories 
rely on linearity or small deviations from linearity, but 
practical problems that do not satisfy these assumptions are often 
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solved. 

Group (A) problems are trivial at the algorithm level, as there is 
no analytical problem .to consider. Neither do group (B) problems cause 
difficulties at the algorithm level; a code can be designed using a 
number of steps determined by the accuracy needed. This is not to say 
that the implementation of group (A) and (B) problems on an actual 
computer is trivial; there are still the problems of precision, range, 
and round-off to consider. (These are discussed for a variety of 
functions in the previously cited paper of Cody.) However, the 
difficulties are soluble. 

Oroup (C) problems are the first to exhibit serious difficulties. 
Much software allows the user to request answers within a given error 
tolerance. However, the error bounds that can be computed depend on 
unknown quantities. Although these quantities can be estimated, and 
that is what numerical software does, there can be no guarantee that 
these estimates are correct. Consequently, a wrong answer is always a 
possibility. Since a key objective of numerical software is 
reliability, the most the numerician can hope to do is to keep the 
probability of wrong answers low. If instead, we can "get hold" of the 
function by requiring the user to specify form (2) data, we might be 
able to move the problem into group (A) or (B). Alternatively, it is 
sometimes possible to convert a group (C) problem to one in group (B) by 
requiring the user to provide additional information. For example, in 
solving the equation f(x)=0 we could also ask the user to provide a 
subroutine which will give a bound on the derivative of f(x) over a 
range of values of x. In that case, we can compute error bounds (if 
round-off error Is ignored) and can write programs that make statements 
such as "there are no roots of f(x)=0 in the range specified." 

It is only recently that numerical software has been attempted for 
problems in group (D), both because of the great difficulty in providing 
much reliability, and because it is still difficult to know how to 
handle many aspects of such problems. For example, many partial 
differential equations have to be solved in regions with very irregular 
boundaries. These give difficulties both in specification and in 
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numerical treatment. Consequently, we find a' number of software 
packages on the market at the moment, each suited to a particular 
combination of equations types and boundary conditions. See, for 
example, the Ellpack project [10]. (Advances in mathematical 
understanding may cause group (D) problems to move to group (C).) 

The third criterion by which we can categorize problems is by their 
dependence on round-off errors. This leads to a subdivision into the 
types: 

(a) Ones in which a priori bounds can be computed on the effects of 
round-off errors. This occurs, for example, if we wish to compute 
a cosine over a limited range of its argument. 

(b) Ones in which we can compute bounds on the effects of round-off 
errors once we know the data for a particular problem. Linear 
equations are a case of this if we want to determine the error in 
the answer. 

(c) Ones in which no bounds can be specified on the effects of round­
off errors. This usually arises with problems In Coups (C) and 
(D) because the effect of the propogatlon of round-off error is 
dependent on unknown characteristics of the actual problem. 

I have talked about the "effects" of round-off error without being very 
specific. Ry "effect," most users mean the change to the answer. 
Rounding the change to an answer is called forward error analysis 
because it computes the effect of the error as it propogates forward 
with the solution process. In this type of analysis, the error at the 
end of the calculation will depend on the way in which it is amplified 
or reduced by the problem and the solution process. If -the problem is 
such that small errors are amplified greatly, the problem is called 
ill-conditioned, because small changes in the initial data, whether by 
error or user perturbation, cause large changes in the answers. An 
example of an ill-conditioned problem is the problem of computing the 
trajectory of a rocket with no guidance system fired from earth and 
aimed at Mars. A very small error will send it past Mars and probably 
into the sun, causing about a 100% error in the result! There is no way 
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of avoiding growth of errors if the problem is Ill-conditioned. If the 
method is such that it causes small errors to be amplified even though 
the underlying problem does not, we say that the method is unstable. 
Unstable methods are to be avoided! The other type of error analysis 
that is very popular with numerical analysts Is backward error analysis. 
This tries to determine the smallest change to the input data which 
could lead to the answer obtained. Expressed mathematically, we have a 
problem, say P[d,x], where d is a set of input data and x is the 
unknown. Ideally, we would like to solve this, that is, to find a value 
y such that 

P[d,y] - 0 

Unfortunately, we compute a numerical answer z. In forward error 
analysis we try to determine the size of z - y, whereas in backward 
error analysis, we ask how big Ad has to be in order that 

P[d + Ad,z] = 0 

The advantage of backward error analysis is that it is often possible to 
get bounds on the backward error that are independent of the problem 
data, even if the problem is ill-conditioned. In the rocket example, it 
may happen that the rocket would actually hit Mars, but a numerical 
computation of the trajectory shows that the rocket will miss and crash 
into the sun. However, we can say that the computation produced the 
correct answer to a problem with very slightly different data. For a 
more down-to-earth example, suppose we want to compute the sine of a 
large number, say sin(10 ir). In a seven-digit precision computer, we 
will compute SIN(31415P2). Will this be zero? Of course not. Its 
correct value is about -0.608, but with round-off error, we could get 
any answer between -1 and +1. Thus, a bound in forward error analysis 
will be of little value. However, a bound in backward error analysis 
will tell us that we have the sine of a number that is within one part 
in about 0.7x10 of the given argument because, even with the worst 
case error of 1.608, we know that 
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sin[(106 + 0.5)*)] = 1.0 

and 

(106 + 0.5)v - 3141592_Q 7 0 8 x l 0-6 

Consequently, backward error analysis is a very appealing concept for 
the numerical analyst; it passes the buck back to the users who, after 
all, cannot expect good answers to bad problems. If we give them an 
answer to a very close problem, what more can they ask? Unfortunately, 
even in a simple example such as linear equations, the meaning of "verv 
close" may depend heavily on the problem area. For example, a simple 
linear electrical network of resistors leads to a system of linear 
equations. It is possible to say for a reasonable code that the answer 
obtained is the answer to the system of equations changed by a small 
amount. However, to an electrical engineer, a "small change" means that 
the network differs from the original only by some small changes to 
resistor values. Unfortunately, the numerical analyst means that there 
may .also be some additional small resistors, or that Kirchoff's laws are 
only satified approximately. The engineer may not agree that the new 
network is in any sense close to the original one! 

It Is important to realize that the classification of a problem is 
dependent on the demand the user places on the error. If a backward 
error bound is sufficient, the problem may be computationally much 
simpler. Thus, with a backward error bound, a linear equation problem 
is lAa (class 1, group A, type a ) , but with a forvrard error bound, it is 
lAb. 

Earlier I said that a key attribute of software is reliability. 
How do we get this? Traditionally, testing has played a major role in 
checking for reliability; today, program proof techniques are taking a 
role In checking non-numerical software. Can they be applied to 
numerical software? Generally speaking, no, for a three reasons: 

(1) We can't prove theorems if we don't know what we want to prove. 
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(ii) We can't prove theorems for algorithms if we can't even prove 
theorems for the underlying mathematical problem. 

(ili) Theorems have to be proved for computer implementations using 
Inexact computer arithmetic. 

The first statement Is true for proofs of any subject matter! In 
terms of good programming practice, it is usually expressed in the 
statement "we should not write any line of code until we know exactly 
what we would like to prove about it." The difficulty with numerical 
problem solving is that we frequently don't know just what it is that 
can be proved. The user is inclined to say that the only reasonable 
result is a statement indicating the maximum error in the answers. This 
is, of course, just a forward error bound. In other cases, however, it 
is not a reasonable demand and a backward error bound is much 
preferable. More serious is the fact that in many real problems, we 
have no idea what is meant by error. The following example was given by 
A. Erisman. An engineer was examining some results provided by the 
friendly local computer center staff, and comparing them with the true 
solution for a case In which the latter was known. Figure 1 below shows 
the two "solutions", the numerical one is dashed. The computer center 
staff were somewhat dicouraged by the apparent difference between the 
two solutions. Fortunately, the engineer was quite happy with the 
results. "It has about the same number of oscillations, they damp out 
in about the same way, and they reach the same asymptotic value," was 
his response. Mathematicians do not know how to measure error so that 
the two solutions shown are close, and until we know that, we can not 
hope to prove theorems about such programs. 

We can't prove theorems for general classes of problems about 
methods that do not work for some undetermined subclass of those 
problems. This means that we can forget about proving results for 
problems in group (D), and the most we can hope to do for group (C) is 
to prove results in the presence of additional assumptions which can 
only be tested rather than verified. Note that this means that even 
when we have accepted the idea that the program may give "no 
answer"—that is, it may return with the message "I can't solve this 
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problem," we still can't expect to prove that the program never lies if 
the problem is in group (C) or (D). Thus we are left with the 
possibility of proving results for the first two groups. Examination of 
codes for problems in these groups reveals that they are relatively 
simple logically. The complexity arises in the related mathematics. 
(For example, the fact that a code to solve linear equations will work 
may depend on the positive definiteness of a matrix, a fact which will 
imply some algebraic Identities which prevent overflow or divide by 
zero.) Because group (A) and (B) algorithms are not complex, the utility 
of proof techniques for codes in the first two groups is low; about the 
best they can hope to do is to provide a mechanical verification of the 
steps in a mathematical proof and to check that the code matches those 
steps. 

If we want to prove results for actual codes, we must be able to 
make precise statements about the properties of floating-point 
arithmetic when such properties are used in a program. Such statements 
are beyond the capability of most computer manufacturers—take a look at 
their machine description manuals; the only way to conclude that IRM 
manuals are well written is to read a CDC manual. Either the 
manufacturers are hopelessly incompetent when it comes to description or 
it is very difficult to describe the design. If it is the latter case, 
as seems likely, there is little hope of achieving a specification 
useful for an automatic theorem prover such as we might use to verify 
programs. 

In many cases, human analysis of the program is done using less 
stringent approximations to the rounding errors than actually occur. 
Then, it Is possible to prove results about codes for problems in groups 
(A) and (B). An example of this is given by Dekker [4]. If the 
floating-point unit can be assured to meet reasonable specifications, 
some proofs are possible. Dekker examines the problem of finding two 
values y and z such that do not differ by more than a given tolerance 
and for which f(y) and f(z) have opposite signs. If f(x) is continuous, 
this gives a zero of f within the specified tolerance. (Initial values 
for which f(x) has opposite signs are given, so this is a group (A) or 
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group (B) problem, depending on your point of view.) Brown [1] has 
constructed a model of floating-point computation. The parameters of 
the model are chosen so that anything that can be done by the model can 
be done by the machine being modelled. Furthermore, the model is 
"clean" so it can be characterized by very few parameters. However, 
this approach leaves open the question of proving that the 
approximations made to the rounding errors are met by the computer! 

Additional complications arise when underflow and overflow are 
considered. Non-numerical problems do not encounter underflow, and they 
can handle overflow by going to increased precision using a multiple 
precision package. Numerical software should operate whenever possible, 
that is, it should operate if the input and answers are in range. For 
example, a piece of mathematical software cannot in general include an 
expression such as SQRT(X**2 + Y**2). If all exponents are equally 
likely, the answer is in range almost always, but intermediate results 
overflow about 44% of the time (If exponent of either X or Y exceeds 
half the maximum), and underflow about 6% of the time (if both exponents 
are less than half the minimum). See Figure 2. (It is true that these 
are Madison Avenue statistics; exponents are not equally distributed, 
fortunately, but that does make the problem go away.) This means that 
even simple calculations can become quite contorted if they are to be 
generally applicable. 

Thus, we see that a large part of the difficulty of numerical 
software is due to the lack of a scientific basis. There is no simple 
criterion which must be optimized, but a set of ill-defined goals such 
as reliability, generality, and utility which we have so far failed to 
quantify. Consequently, a large part of the work of a numericlan is art 
rather than science. 

3. THE SCIENCE 

When software is built, various techniques are used to analyze the 
problem and design the code. The numericlan is not only concerned with 
the usual analysis for speed and space, but with: 



- 16 -

(1) Stability analysis 

(ii) Asymptotic analysis 

(Hi) Round-off error analysis 

These use standard techniques from numerical analysis. First I want to 
take a brief look at the ideas in such analyses. Then, in the next 
section, we will see that they are based on assumptions that are not 
true in many cases. This is when the art of the numericlan is needed. 

Suppose we have a problem to solve. Let us ignore input parameters 
and write it as 

P[y] = 0 

that Is, the answer is y, and it satisfies some relationship P. Unless 
the problem is in group (A), the algorithm to compute an approximation z 
to y takes some other form, say 

A[z]=0 

because P involves operations such as differentiation that do not exist 
in the computer. This "implicit form" may seem like a strange way to 
express an algorithm which is, by definition, an explicit formulation of 
a way to compute the result. However, for many problems, it is 
relatively easy to devise an expression of the form A[z] = 0 that is 
approximately satisfied by the true solution and which can be solved 
explicitly, "tor example, if we are given the differential equation 

& - f(x,y) = 0 

we can replace the derivative by an difference approximation to get 

z(x+h)h- z(x) _ f ( x > z ) . 0 

which can be solved explicitly for a sequence of values z(x/>+nh) given 
Z(XQ). Naturally, we expect z to be close to y. We hope to achieve 
this by making A "like" P. There are several ways of asking whether A 
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is like P. The two principal ones are 

residuals 

and truncation error 

In the residual approach, we ask whether the numerical solution z comes 
close to "satisfying" the problem P, that is, whether P[z] is small. In 
the truncation error approach we ask if the true solution y comes close 
to satisfying the algorithm or code, that is, whether A[y] is small. 
The definitions of residual and truncation error are 

residual r ■ P[z] 

truncation error t ■ A[y] 

By subtracting P[y] and A[z] (both of which are zero) from these, we get 

r = Pfz] - P[y] = ||(z - y) 

t = A[y] - A[z] - |A( y _ Z) 

If we can invert the partial derivatives (which are matrices), we get 

« - * - HJI- '* 
and 

The first says that the error in the answer (z - y) is small if the 
3P 1 

residual is small and the quantity [-g£] is small. The latter quantity 
depends on the problem, and we say that the problem is well-conditioned 
if it is small. There are some problems, usually in groups (A) and (B), 
for which we can calculate a residual (for example, in linear equation 
solution). In those cases, we can compute an error bound on the result 
if we have a problem whose condition we know. For example, In the 
linear equation Py <■ b, we can, in principle, compute the residual of 
the solution z by forming r = Pz - b. If we do this in extended 
precision, we can ignore round-off errors in the residual computation. 
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Combining this with Py - b = 0 we get z - y ■ P r. Thus, In this case 
we can compute both the residual and the condition of the problem. In 
other problems, particularly in groups (C) and (D), we cannot calculate 
a residual because P involves operations such as differentiation which 
cannot be done exactly when the values of functions are available only 
on discrete points. In that case, we usually use the truncation error 
approach, and say that the solution error is small if the truncation 
error is small and the quantity [-^]~ is small. If the latter quantity 
is small, we say that the method is stable. This is the type of 
analysis applied to differential equations. In the example given above, 
which happens to be Euler's method, the simplest method for solving 
differential equations, we can substitute the true solution y into the 
method and find that the truncation error is hd y/dx /2 where the second 
derivative is evaluated at some unknown point on the solution. In this 
case, we can show that the method is stable if the original problem is 
well-conditioned, so that the method is a good one. 

If something is known about the condition of the problem, it is 
possible to say something about the accuracy of the answer when it is 
possible to compute the residual. However, it may not be easy to see 
how to create an algorithm with small residuals. On the other hand, it 
is frequently easy to see how to create an algorithm with small 
truncation error; then it is much more difficult to make the algorithm 
stable. 

Truncation errors are often analyzed using the techniques of 
asymptotic analysis. Essentially, these are applications of Taylor's 
series to appropriate expressions. When it is impossible to do an exact 
computation for P, even in the absence of round-off error, we usually 
have an algorithm which depends on a parameter. Suppose this parameter 
is a small number, say h, and the algorithm is 

A[h,z] = 0 

For many problems, particularly those arising in differential equations, 
the algorithm run time depends on h, and becomes Infinite as h 
approaches zero. On the other hand, the algorithm becomes more accurate 
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as h reduces because I t has been chosen so tha t i t i s exact when h i s 
ze ro , t ha t i s , so t h a t A[0,y] = 0. Then we can compute A[h,y] by 
Tay lo r ' s s e r i e s to get 

2 2 
A[h,y] = A[0,y] + h | ^ + *J* + . . . 

oh 
We already have arranged to make the first term zero.The remaining terms 
are the truncation error. Usually we design an algorithm to make a 
numer of the additional terms zero. Suppose all of the terms up to hP 
are zero. Then, for small enough h the error is close to the first 
non-zero term which is proportional to hp. Numerical software 
frequently relies on estimating this term to measure the error and to 
control h. It ignores higher-order terms. 

Traditional floating-point error analysis allows the error 
introduced in each step in the computation to be related to the size of 
the numbers taking part in that computation. Thus, the initial errors 
are proportional to the initial data, and subsequent errors are related 
to the intermediate data values. For this reason, it is often 
straightforward to relate the effect of round-off errors to the effect 
of changes in the Initial data, since these tend to propogate 
proportionally through each intermediate result. That is why backward 
error analysis is such a handy tool. For example, in a simple 
calculation such as B*(C + D*E), the value of the roundoff error in the 
result is a complex expression, whereas it is easy to say that the error 
in the result is no worse than that caused by a small change in the 
Input values. 

ji. THE ALCHEMY 

The creation of numerical software is based on the type of analysis 
discussed in the previous section, but none of this analysis is strictly 
valid in the real world of computers. 

(i) Stability analysis may be Invalid because it depends on the 
differentiation of codes, not algorithms. 
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(ii) Asymptotic analysis may break down because often we cannot be 
certain we are working with small values of the parameter--in 
fact, sometimes we know we want to use large values. 

(Hi) Round-off error analysis breaks down because, in the presence of 
underflow, it is more complex than the usual analysis indicates. 

Most of the time the analysis is not badly in error, but since the goal 
of a numerical software project is reliability, the success is related 
to the probability of avoiding wrong answers. An occasional breakdown 
of the analysis may cause a large code to give misleading answers 
frequently. 

The differentiation of programs obviously fails in the presence of 
significant round-off errors, but fortunately round-off errors are 
frequently small compared to truncation errors. However, 
differentiation can also fail because many programs are adaptive; that 
is, they try to adjust some parameters to achieve close to optimal 
behavior. If these parameters behave in an erratic way or are confined 
to discrete values as would happen if they represented switching between 
various methods, differentiation appears to have no meaning, even in an 
approximate sense. This means that a totally different approach is 
needed for the analysis of stability. There has been little progress in 
this area yet. 

Asymptotic analysis also fails when differentiation is not 
meaningful, but the major practical difficulties with asymptotic 
analysis seem to arise from the "small h" assumption. When h is not 
small, error estimates are unreliable if not totally wrong. Because of 
this, some of the toughest problems are those in which we want very 
little accuracy. As contradictory as it may seem, we know how to solve 
many problems very accuractely, but we don't know how to solve them 
inaccurately and cheaply. In some cases this is simply the statement 
that the first digit is the most expensive to obtain, and others become 
progressively less expensive, but in other cases, we just cannot find 
ways to compute low accuracy answers reliably. This is particularly the 
case in differential equations where the only form of error estimates 
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known to us are based on asymptotic error estimates that break down at 
low accuracy. Consequently we have no idea of the size of the error 
until we have computed a very accurate answer. An alternate theory to 
asymptotic analysis is needed. Approximation theory provides a basis 
for some cases, but it has not been applied successfully to many 
problems which currently use asymptotic analysis. 

Asymptotic analysis has another peculiarity in that if we use it to 
estimate an error we finish up with no error estimate! The reason for 
this is that if we estimate the error in a numerical result, we 
naturally subtract that error from the result to get a "more accurate" 
answer. However, we now have no error estimate for the more accurate 
answer. Kahan argues that we should solve this dilemma by computing an 
"uncertainty" rather than an error estimate. The uncertainty would 
represent the possible change to the solution due to our lack of more 
precise knowledge of the input or unwillingness to compute more precise 
information about the solution. 

The breakdown of simple round-off error analysis can be seen in the 
example used earlier, B*(C + D*E). Suppose that this is computed in 
floating point using a finite exponent range. Overflow is not a serious 
problem in that we are told when overflow occurs, and it warns us of 
trouble. We could take the same attitude to underflow, but most users 
ignore underflows entirely, accepting a zero result. Most of the time 
this is reasonable. However, suppose that C is the smallest number that 
can be represented in the machine, and B is its inverse, assumed 
representable. Let D and E be small enough that D*E is just less than 
C, so is underflowed. Then, the computed answer for the above 
expression is 1.0, whereas the correct answer is almost 2.0. Mention 
should be made of an effort underway by an IEEE subcommittee on 
microprocessor floating-point standards. In addition to standardizing 
formats, they are considering two proposals which would help with this 
underflow problem. One would virtually eliminate underflows and 
overflows by using system traps to extend the range of the exponent when 
either occur. A heap would be maintained to keep this additional 
information, and bit patterns in the data would be used to indicate 
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extended exponent range. Arithmetic is likely to be slow for extended 
range numbers in this scheme, but some of the problems facing the 
numericlan disappear. The other proposal introduces the idea of 
"gradual underflow." This allows numbers with the minimum exponent to 
be unnormalized. The effect of this is that if expressions such as the 
one above have a non-zero value, they will not be in error by more than 
one expects in a conventional error analysis [3]. In the past a number 
of schemes have been tried to minimize the impact of round-off errors. 
Some of these have been designed into computers but have not been 
effective. For example, significant-digit arithmetic [8] was tried 
about 20 years ago. The idea was to keep as many digits in the 
floating-point mantissa as were known to be correct. While the scheme 
did not give answers that were wrong, it did give answers with no 
precision left because most schemes for bounding the effects of round­
off errors lead to answers that are far too pessimistic. A more recent 
scheme that has had some success is interval arithmetic [9] in which an 
interval known to contain the result is computed. Schemes of this form 
are, unfortunately, limited to problem that are not in class (3) or in 
groups (C) or (D), so round-off errors will remain a problem for the 
numericlan for a long time. 

_5. CONCLUSION 

What is the future direction of numerical software? Today we see a 
large amount of activity in areas that will formalize the measurement of 
methods, the selection of algorithms, and and the techniques of testing. 
For example, Jackson et al [6] have used a model problem and selected 
methods that are optimal over a class of model problems. Rice [11] has 
examined the algorithm selection problem as an approximation problem. A 
recent IFIP working conference [5] was devoted to the question of 
evaluation of the performance of numerical software. We might ask 
whether numerical software is a part of computer science and should be 
studied in computer science departments. I believe that computer 
science is first and foremost concerned with the analysis and synthesis 
of the design and use of computers. From this point of view, I place 
program design, programming language design, and architecture at the 
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center of computer science. Abstract theorv, while vitally Important 
and interesting in its own right, is only computer science when it is 
concerned with real computer problems. From this point of view, 
numerical software is very much a part of computer science. It is 
concerned with automatic problem solving, that is, with analysing 
methods and synthesizing techniques. It has some solid scientific 
foundations, but still involves a lot of judgement because the idealized 
goals are not achievable. Thus, the numericlan is partially reduced to 
alchemy; brewing new concoctions and testing the results. Sometimes 
heuristics are used (although they are usually called adaptive methods 
and given something of a scientific footing). Many people have 
commented that the goals of automatic problem solving and the use of 
heuristics suggests a potential affinity with the AI community. Perhaps 
that will be true because our AI colleagues are the outstanding 
alchemists of computer science. However, the numericlan is usually more 
concerned with writing a package that works reasonably well over a broad 
spectrum of problems than with a package that does remarkably well for a 
smaller set of problems. Perhaps that will cause you to accuse us of a 
search for the mediocre. If, by that you mean we are trying to build 
the Model A for everybody rather than the custom design for the 
few—then yes, that is what we are trying to do. We want a model that 
runs reliably, smoothly, and can be maintained easily. 

ACKNOWLEDGEMENT 

The thoughts presented here are the result of listening to numerous 
of my colleagues. Unfortunately, I cannot always remember who was 
responsible for which idea, so I have not always acknowledged them, but 
I would like to specifically thank Rob Skeel of the University of 
Illinois for his many comments and suggestions. 

Ribihllography 

[1] Brown, W. S., A realistic model of floating-point computation, in 
Mathematical Software III, pp 343-360. ed. J. R. Rice, Academic 
Press, New York, 1^77. 

[2] Cody, W. J. "Software for Elementary Functions," in Mathematical 
Software, ed J. R. Rice, Academic Press, New York, ITTT. pp 1/1 -



- 24 -

[3] Coonen, J. T., "Specifications for a Proposed Standard for 
Floating-point Arithmetic," Revised memorandum # UCB/ERL M78/72, 
Dec 6, 19/8, Univ. of California at Berkeley, Department of 
Mathematics. 

[4] Dekker, T. J. "Correctness Proof and Machine Arithmetic," to 
appear in Proceedings of IFIP Working Conference on "Performance 
Fvaluatlon of Mathematical Software, North Holland Press. 

[5] Fosdick, L., ed. Proceedings of IFIP Working Conference on the 
Performance Evaluation of Numerical Software, December, 1978, 
Baden, Austria. North Holland Press, Amsterdam, to appear. 

[6] Jackson, K. R., Enright, W. H., and Hull, T. F., "A theoretical 
Criterion for Comparing Runge Kutta Methods," SIAM Journ. Numerial 
Analysis, ,15, #3, June 1978, pp 618-641. 

[7] Jacobs, D., ed., Numerical Software: Needs and Availability. 
Academic Press, N. Y. 1978. 

[8] Metropolis, N., Ashenhurst, R. L., "Significant Digit Computer 
Arithmetic," IRE Trans on Electronic Computers, vol EC-7, 1958, 
pP265-267. 

[9] Moore, R., Interval Arithmetic, Prentice-Hall, New Jersey, 1966. 
[10] Rice, J. R., "ELLPACK: A Research Tool for Elliptic Partial 

Differential Equations Software," in Mathematical Software III, ed. 
J. R. Rice, Academic Press, New York, 19//. 

[11] Rice, J. P., "The Algorithm Selection Problem," in Advances in 
Computers, 15, ed. Rublcoff and Yovlts, Academic Press, N.Y. T976. 



- 25 -

Figure 1. Computed solution versus actual solution 
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Figure 2. Overflow/underflow fai lures in SQRT(X**2 + Y**2) 

X EXPONENT (RANGE -E t o +E) 

,-t 
E 
X 
P 
0 
N 
E 
N 
T 

-E/.2-

0 - . 

E/2 

E/2 
^ 

UNDERFLOW 

0 V 

9 E^2 

E R F L 0 W 



Form AEC-427 . 0. s. ATOMIC ENERGY COMMISSION 
APPM^IOI UNIVERSITY-TYPE CONTRACTOR'S RECOMMENDATION FOR 

DISPOSITION OF SCI£NTIF C AND TECHNICAL DOCUMENT 
I See Instructions on Reverse Side I 

1. AEC REPORT NO. 

"COO-2383-0059 

2. TITLE 

Numerical Software: Science or Alchemy? 

3. TYPE OF DOCUMENT (Check one): 

R1 a. Scientific and technical report' 
l~~] b. Conference paper not to be published in a journal: 

Title of conference 
Date of conference 
Exact location of conference_ 
Sponsoring organization 

□ c. Other (Specify) 

4. RECOMMENDED ANNOUNCEMENT AND DISTRIBUTION (Check one): 

0 a. AEC's normal announcement and distribution procedures may be followed. 
1 I b. Make available only within AEC and to AEC contractors and other U.S. Government agencies and their contractors. 
I I c. Make no announcement or distr ibution. 

5. REASON FOR RECOMMENDED RESTRICTIONS: 

6. SUBMITTED BY: NAME AND POSITION (Please print or type) 

C. W. Gear 
Professor and Principal Investigator 

Organization 

Department of Computer Science 
Univejrs'i'ty' of Illinois U-C 
Urbana, jIllinois 61801 

Signature--

WJ^ U ^ ^^f 
Date 

June 1979 

FOR AEC USE ONLY 

7. AEC CONTRACT ADMINISTRATOR'S COMMENTS, IF ANY, ON ABOVE ANNOUNCEMENT AND DISTRIBUTION 

RECOMMENDATION: 

8. PATENT CLEARANCE: 

I I a. AEC patent clearance has been granted by responsible AEC patent group. 
Q b. Report has been sent to responsible AEC patent group for clearance. 
I I c. Patent clearance not required. 



BIBLIOGRAPHIC DATA 
SHEET 

1. Report No. , 
UIUCDCS-R-79-969 

3. Rec ip ien t ' s Accession No. 

4. Tit le and Subtitle 

Numerical Software: Science or Alchemy? 
5. Report Date 

June 1979 

7. Author(s) 
C. W. Gear 

8. Performing. Organization Kept. 
No. UWCbci-R-79~96¥ 

9. Performing Organization Name and Address 

Department of Computer Science 
University of Illinois U-C 
Urbana, Illinois 61801 

10. Pro |ec t /Task/Work Unit No. 

11. Contract/Grant No. 

ENERGY/EY-76-S-02-2383 
12. Sponsoring Organization Name and Address 

Department of Energy 
Washington, DC 

13. Type of Report & Period 
Covered 

Forsythe Lecture 
14. 

15. Supplementary Notes 

16. Abstracts 

This is a summary of the Forsythe lecture presented at the Computer Science 
Conference, Dayton, Ohio, in February 1979. It examines the activity 
called "Numerical Software," first to see what distinguishes numerical 
software from any other form of software and why numerical software is so 
much more difficult. Then it examines the scientific basis of such 
software and discusses what is lacking in that basis. 

17. Key Words and Document Analys is . 17a. Descriptors 

numerical software 
library software 

17b. Identiflers/Open-Ended Terms 

17c. COSATI Field/Group 

18. Availability Statement 

unl imi ted 

19. Security C las s (This 
Report) 

UNCLASSIFIED 
20. Security Class (This 

Page 
UNCLASSIFIED 

21. No. of Pages 

25 
22. Price 

FORM NTIS-35 (10-70) USCOMM-DC 4 0 3 2 9 - P 7 I 


