
Computer Languages 25 (1999) 189–210
www.elsevier.com/locate/complang

Simulating multiple inheritance and generics in Java
Krishnaprasad Thirunarayana ;∗, G�unter Knieselb, Haripriyan Hampapuramc
aDepartment of Computer Science and Engineering, Wright State University, Dayton, OH-45435, USA

bComputer Science Department III, University of Bonn, D-53117 Bonn, Germany
cIntrinsa Corporation, Mountain View, CA-94041, USA

Received 4 August 1999; accepted 27 June 2000

Abstract

This paper presents Java language from an object-oriented software construction perspective. It explains the
implications of banning generics and multiple inheritance of classes, and explores the patterns and the idioms
used by the Java designers and programmers to redeem their bene�ts. The paper also discusses an alternative
to multiple inheritance, as incorporated in Lava, which extends Java with constructs for type-safe automatic
forwarding. c© 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Java language; Object-oriented programming; Design patterns; Multiple inheritance; Generics; Delegation

1. Introduction

Design patterns are a description of communicating objects and classes that are customized to
solve a general design problem in a particular context [1–3]. Design patterns consolidate design
experience that can potentially be reused in tackling a variety of problems, and in organizing and
analyzing potential solutions to the problem. Many of these patterns improve software reuse and
facilitate code evolution.
Idioms, on the other hand, are low-level “patterns” that describe how to solve implementation-

speci�c problems in a programming language. Idioms demonstrate competent use of programming
language features [2].
Java does not support generics and multiple inheritance of classes, thereby simplifying the lan-

guage and its implementation. This paper discusses the implications of Java’s lack of generics and

∗ Corresponding author. Tel.: +1-937-775-5109; fax: +1-937-775-5133.
E-mail addresses: tkprasad@cs.wright.edu (K. Thirunarayan), gk@cs.uni-bonn.de (G. Kniesel), hhampa@microsoft.com
(H. Hampapuram).

0096-0551/01/$ - see front matter c© 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0096-0551(00)00005-9



190 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

multiple inheritance of classes on software construction, and presents techniques to mitigate its
e�ect.
Section 2 reviews problems associated with support for multiple inheritance in existing object-

oriented languages. Section 3 analyzes idiomatic approximations to multiple inheritance in Java
using only single inheritance of classes and multiple inheritance of interfaces. It also rationalizes
certain aspects of Java in terms of design patterns. Section 4 discusses possible language support for
multiple inheritance. It shows that asking for multiple inheritance in Java is not a good idea given
that more powerful, dynamic alternatives are available. In particular, support for delegation would
be preferrable to adding multiple inheritance.
Section 5 analyzes idiomatic approximations to generics using reference types and re
ection,

and discusses their limitations vis-a-vis an explicit support for generics. Section 6 concludes the
paper.

2. Background: multiple inheritance

Object-oriented languages such as Ei�el, C++, etc., support multiple inheritance of classes, while
Smalltalk, Oberon, Modula-3, Ada-95, etc., support only single inheritance of classes [4]. Further-
more, Ei�el, C++, Ada-95, etc., support generics=templates to promote reuse. In contrast, Java
supports neither multiple inheritance of classes nor generics, explicitly. This simpli�es the language
and its implementation but “burdens” the programmers and the Java API designers.
There is no consensus among researchers on the semantics of multiple inheritance in the pres-

ence of method overriding and potential con
icts due to multiple de�nitions. (Bertrand Meyer [5]
provides a lucid account of the key issues and insights for incorporating multiple inheritance in
an object-oriented language. Similar issues have also been studied by arti�cial intelligence and
object-oriented databases communities [6].) The programming language designers have taken at least
three di�erent approaches, exempli�ed by the design of C++, Ei�el and Java.

2.1. C++

C++ views multiple inheritance as replicated single inheritance. That is, a child class inherits
every �eld=method of every parent class, unless the �eld=method is overridden by the child. In case
more than one parent de�nes the same �eld=method, the child uses the scope-resolution operator to
disambiguate the reference. The problem of repeated inheritance [5] of a �eld=method arises when
the parents share a common ancestor. In C++, the �elds in a child instance due to a common
ancestor are either all shared (virtual) or all duplicated. This approach has two serious drawbacks
in practice: (1) the “all or none” granularity in choosing to share or to duplicate �elds of a common
ancestor, and (2) the place where this choice is made [4,7]. Another consequence of the C++
decision is that several natural implementations, such as the code for the Tree data structure using
leftmost-child-right-sibling form given below, are deemed illegal.

class Cell : public Link {...};
class Tree : public Cell, public Link {...};



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 191

However, the corrected version, given in Chapter 13 of [8], requires unreasonable amount of code
duplication that an OOPL is �ghting hard to minimize.

class Link {...code...};
class Cell {...ditto + new code...};
class Tree : public Cell, public Link {...};
To paraphrase S. Tucker Taft’s posting to comp.lang.ada: The C++ mechanism for multiple

inheritance has the worst of both the worlds: a language made more complex by the addition of
linguistic multiple inheritance, and an application made more di�cult by the lack of appropriate
building blocks for solving the problem the “right” way.

2.2. Ei�el

In contrast, Ei�el provides a rich set of primitives to program-in an application-speci�c strategy
for multiple inheritance [5]. In particular, it supports:
rede�nition: to override a (potentially inheritable) �eld=method de�nition.
renaming: to remove name clashes making available multiple de�nitions under di�erent names.
unde�nition: to “join” names and to make unavailable certain de�nitions.
selection: to pick the code that must be run on a subclass instance referenced by an entity of a

“repeated” ancestor type using dynamic binding in case of an ambiguity.
Whereas the 
exibility and the expressiveness that Ei�el’s design of multiple inheritance endows

is widely recognized, it is an open debate whether it commensurates with the additional complexity
introduced in the language and its implementation.
Furthermore, Ei�el’s select mechanism exhibits a subtle semantic problem of its own. Because

it always selects the same code, irrespective of the context of the method invocation, it reinstalls
the problem that method renaming was intended to solve: the selected method is executed even in
contexts where a method with the same signature but di�erent semantics is expected. A detailed
discussion is beyond the scope of this paper and can be found in [9].

2.3. Java

The Java designers have chosen to eliminate multiple inheritance of classes. Instead, the program-
mer is now expected to realize multiple inheritance by “simulating” it in the language. This decision
is motivated by the problems sketched above and the additional desire for binary compatibility:
Recall that in Java, the computation of numeric o�sets for instance �elds in memory is done by
the run-time system. This permits updating a class with new instance �elds or methods without
a�ecting existing code. In other words, it is possible to run an existing bytecode �le for a subclass
after updating and recompiling the class, but without recompiling the subclass. This property would
be lost if multiple inheritance were supported because multiple inheritance con
icts could suddenly
arise during class loading.
Note also that, on older processors, single inheritance of classes had performance advantages over

multiple inheritance because the former simpli�ed the layout of instance �elds and enabled generation
of e�cient code for dynamic dispatching of methods [10]. However, modern pipelined processors
execute the additional o�set adjustment instruction during the delay time required for branching to



192 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

the method’s code [11]. So, surprisingly, multiple inheritance overheads are negligible even in the
presence of polymorphic variables.
We now explore the extent to which the reusability bene�ts of multiple inheritance and generics

can be reinstated in Java through speci�c patterns and idioms.

3. Approximating multiple inheritance in Java

What does support for multiple inheritance accomplish for the following example, which is illegal
in Java?

class A {...
public String a() {return a1();}
protected String a1() {return "A";}

}

class B {...
public String b() {return b1();}
protected String b1() {return "B";}

}

class C extends A, B {...
protected String a1() {return "C";}
protected String b1() {return "C";}

}
Code reuse: The �elds de�ned in classes A and B are present in an instance of class C, and a

method de�ned in class A (resp. B) can potentially be run on an instance of class C.
Polymorphism: An instance of class C can potentially be used wherever an instance of class A

(resp. B) is required.
Overriding: Inherited methods can be adapted to the needs of class C by overriding methods on

which they rely. For instance, the de�nition of method a1() and b1() in C has the indirect e�ect
that the inherited methods a() and b() now return "C".
Modi�cation: Any changes to classes A and B are propagated automatically to class C.
Often, multiple inheritance is (mis)used for just one of the above e�ects, for example, just for

code reuse or for achieving multiple subtyping. It is, therefore, important to understand how each
e�ect can be simulated in Java and, even more, to assess which e�ects are relevant to a particular
design.
In the following, we will �rst present the general scheme for simulating multiple inheritance and

identify the ingredients of the simulation that achieve each of the above e�ects. Then we will present
di�erent examples that illustrate how these ingredients can be used in various combinations. The
examples will develop from cases that do not really require multiple inheritance (and are indeed better
solved without), via cases where multiple inheritance would be appropriate (and can be approximated
in Java), to cases where more dynamic techniques than multiple inheritance are required. We show
that in the latter cases our simulation is preferable to multiple inheritance but it still cannot provide



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 193

the full power that can be achieved by suitable language support. We conclude this section by
contrasting our simulation with an extension of Java that supports multiple object-based inheritance.

3.1. General scheme

3.1.1. Simple forwarding
In a �rst attempt, the example above can be approximated in Java as follows (changes are

underlined):

class A {
public String a() {return a1();}
protected String a1() {return "A";}

}
interface IB {

public String b();
}
class B implements IB {

public String b() {return b1();}
protected String b1() {return "B";}

}
class C extends A implements IB{
B b; // aggregation

public String b() {return b.b();} //forwarding
protected String b1() {return "C";}
protected String a1() {return "C";}

}
Class C inherits from class A and supports the same interface IB as class B. Furthermore, class C

forwards every invocation of a method in interface IB to the corresponding �eld of type B.
The generalization of this translation to “class C extends A, B1, ..., Bn {...}” is

straightforward given that Java supports implementation of multiple interfaces. We call the “simu-
lated superclasses” Bi the parent classes of C, in contrast to “genuine superclasses” like A. Similarly,
C is called child class of each Bi.
How well does this translation capture multiple inheritance?
Code reuse: Class C reuses the code for classes A and B but does require glue code to implement

forwarding.
Polymorphism: An instance of class C can be used for an instance of class A and for an instance 1

of interface IB but not for an instance of class B. The latter is because, in general, implementing
the common interface IB does not imply that class C supports all the methods in class B.
If interface IB contains all the public methods of class B, and IB is used instead of B for

type declarations throughout the program, then the ability to substitute C instances for IB instances
is su�cient. So, whether the translation supports polymorphism depends on anticipation of future
extensions (the interface and the corresponding implements relation in the parent class must be

1 By an instance of an interface we mean an object that is an instance of a class that implements the interface.



194 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

declared), good documentation (of the intention that the interface should be used for typing instead
of the parent class) and programmer discipline (you must adhere to the documentation).
Modi�cation: Any changes to class A are automatically propagated to class C. Similarly, adding

a new �eld to class B or changing a method body in class B is transparent to class C. However, the
addition or deletion of a method from class B or changes to a method signature in class B requires
changes to interface IB and to class C (to install the glue code for forwarding).
Overriding: Overriding and the related adaptation of “inherited” code from aggregated objects is

not possible. For instance, the de�nition of method b1() in C does not in
uence the result of the
method b(). An invocation of a() on an instance of class C returns "C" but an invocation of b()
on an instance of class C still returns "B".
Overriding is the core concept of inheritance [12,13]. Without overriding, existing class hierarchies

would dramatically change their semantics and many essential concepts and techniques (for example,
protected methods, abstract classes, template methods [1]) would not exist. Because it disables
overriding, the above translation cannot be regarded as a satisfactory approximation of (either single
or multiple) inheritance.

3.1.2. Overriding via back-references
Achieving the e�ect of overriding is also possible on the basis of aggregation and forwarding,

provided that the parent classes are available for modi�cation [14,15]. The essential idea is to give
the parent object a back-reference to the object that initially forwarded the message. Messages
otherwise sent to this by the parent are now sent via the back-reference, enabling execution of
overriding methods from the child.
The back-reference can either be stored in the parent object or it can be passed dynamically as an

additional argument of forwarded messages. The �rst approach is called the stored pointer model,
the second one is called the passed pointer model [14]. A detailed discussion and usability evaluation
of the passed pointer model and the stored pointer model can be found in [15]. Applying the passed
pointer model to our example yields:

class A {...} ; // like above
interface IB {

public String b(IB self); // modified signature
public String b1(); // new public method

}
class B implements IB {

public String b(IB self) {return self.b1();}
public String b1() {return "B";}

}
class C extends A implements IB {
B b;

public String b(IB self) {return b. b(this);}
public String b1() {return "C";} ;

protected String a1() {return "C";} ;
}



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 195

Now invocations of method a() and b() on an instance of class C both return the string "C".
Note that we had to add the method b1() to interface IB and relax the visibility status of method
b1() from protected to public, thus generally exposing details that should be known only to
subclasses=child classes.
Meta-level techniques can also be used for simulating multiple inheritance and delegation [16].

However, these exhibit shortcomings with respect to type-checking and performance. Therefore, we
have con�ned ourselves to non-re
ective approaches.

3.1.3. Con
icts prevent polymorphism
If several (base) classes de�ne methods that share the same signature, the translation sketched

in this section permits just one method with that signature in the child class. This is a problem if
the di�erent base class methods have di�erent semantics and child class instances are substitutable
for base class instances: then a wrong method that happens to share the name and signature can be
invoked. This problem is illustrated in [17, pp. 273–275] with the following example (adapted here
to pseudo-Java syntax):

class Lottery {
// ...
int draw() {...} ;

}
class GraphicalObject {
// ...
void draw() {...} ;

}
class LotterySimulation extends Lottery, GraphicalObject {
// ... what does draw() mean here? ...

}
In such a case we need two methods in the LotterySimulation class, say drawLottery() and

drawGraphical(). Without language support for multiple inheritance, however, dynamic binding
does not know that it should select the drawLottery() method for an invocation of draw() on
a variable of type Lottery and the drawGraphical() method for an invocation of draw() on a
variable of type GraphicalObject.
Implementation of such context-dependent behavior without language support results in convo-

luted, impractical designs. This is problematic because it leaves us only with the choice to give up
substitutability of a child class instance for a parent class instance (by not declaring the implements
relation). As a consequence, child classes cannot override methods in the respective parent classes
because the simulation of overriding depends on substitutability of child instances for parent class
instances:

// class Lottery and GraphicalObject like above
class LotterySimulation

extends Lottery {// NOT substitutable for GraphicalObject
GraphicalObject go;
...



196 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

public int draw() {...} ; // overrides draw() from Lottery
public void drawGraphical() {...} ; // does NOT override

// draw() from GraphicalObject
}
An example showing that much better results can be achieved with suitable language support is

shown in Section 4.2.

3.2. Illustrative examples

To sum up, multiple inheritance can be simulated by joint use of

• forwarding as a means to achieve code reuse,
• interfaces as a means to achieve polymorphism, and
• back-references as a means to approximate overriding.
The applicability of the latter two techniques is inhibited, however, by the need to provide suitable
“hooks” in parent classes. Furthermore, con
icting methods in parent classes prevent simulation of
polymorphism, even if the parent classes provide the required hooks.
Whereas the above limitions of the available simulation techniques prevent a full simulation of

multiple inheritance in cases where it would be useful, there are also other cases where a full
simulation is not required and a design without multiple inheritance is preferable. We now present
some practical applications of the above translation in Java, which illustrate di�erent facets of both
situations.
On the one hand, the examples review some widely used combinations of the three simulation

techniques discussed above, showing that a rigid implementation of the presented translation is often
neither appropriate nor possible. The right choice is driven by the needs of a particular application
and constrained by the limitations of available built-in or third-party supplied classes that cannot be
modi�ed. On the other hand, they illustrate a number of specialized patterns derived from the above
translation. Anticipating the need for customization, vendors can apply such patterns in designing
utility classes and frameworks, to facilitate their use in multiple inheritance contexts.

3.2.1. Code reuse without polymorphism
One application of multiple inheritance is to provide an implementation of an abstraction, using

a concrete class. This has been called “the marriage of convenience” in [5]. In C++, private
inheritance is used for a similar purpose. In both cases the inheriting class is not intended to be a
subtype of the concrete class, it just reuses its code to implement the interface of the abstraction.
In Java, this corresponds to a child class that forwards to the concrete class and inherits from an
abstract class (or implements an interface) that represents the abstraction. An example would be an
abstract class Stack 2 that can be implemented using di�erent underlying concrete data types, for
example, an Array or a LinkedList.

2 Note that this example does not re
ect the current design of the Java APIs, where Stack is a class with one �xed
implementation as a subclass of Vector. This includes all Vector operations in the interface of Stack, enabling to bring
a Stack into an inconsistent state, for example, by directly calling the method add(atIndex, elem).



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 197

3.2.2. Code reuse and polymorphism
In Graphical User Interfaces, “containers” such as windows, frames, panels, etc. hold primitive

“components” such as buttons, check-boxes, text-�elds, etc. In many applications, a group of such
elements exhibits similar behavior as the individual element or is controlled similarly as the indi-
vidual element. Java supports such recursive nestings by letting java.awt.Container inherit from
java.awt.Component. In fact this is an instance of the well-known composite pattern [1] that
appears in various other contexts such as in the implementation of:

• Command macros, where a sequence of commands is treated as a command.
• Composite �gures, where a set of �gures is treated as a �gure.
• Nested menus, where a menu can be a menu-item.
The essence of the composite pattern is that composite elements behave at the same time like

elements and like collections of elements. Thus they should be subtypes of both, Element and
Collection. A composite element can ideally be de�ned using multiple inheritance as follows [5]:

class CompositeElement extends Collection, Element {...}
class CompositeElement extends Collection[Element], Element {...}
In the latter case, Collection is a template=generic (see Section 5 for a discussion on generics

in Java).
In Java, the composite pattern can be coded using single inheritance of classes by:

1. de�ning an interface to specify the methods required of each element (whether primitive or
composite),

2. de�ning a class for the composite elements that (a) implements the interface, and (b) extends an
existing collection class, and

3. requiring a client to manipulate the elements via the methods listed in the interface.

interface Element {...}
class BasicElement implements Element {...}
class CompositeElement extends 〈SomeImplementationOfCollection〉
implements Element {...}

3.2.3. Code reuse, selective overriding, no polymorphism
Ideally, the well-known Clock applet class ought to multiply inherit from built-in classes

java.applet.Applet and java.lang.Thread. That is,

Class Clock extends Applet, Thread {...};
This declaration, which is illegal in Java, enables the clock to run in a browser, and update itself

periodically on a separate thread. To facilitate implementation of such classes by single inheritance,
Java de�nes an interface

interface Runnable {public void run();}
and a Thread constructor of the form

Thread (Runnable r) {...}.



198 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

Now class Clock can be coded in Java as:

class Clock extends Applet implements Runnable {
Thread t = new Thread (this); ...
public void run {...}; ...

// connecting methods of Applet and Thread
public void start() {
t.start(); ...

}
}

The class Thread exempli�es an implementation of overriding via stored back-references that are
passed to the parent object in its constructor.
This pattern of related interfaces, classes, and constructors enables code reuse and customiza-

tion. Anticipating the need for customization, vendors can apply it in designing utility classes and
frameworks, to facilitate their use in multiple inheritance contexts.
The pattern is appropriate in cases where the ability to customize inherited methods (for example,

start()) by overriding one or a few methods on which they rely (for example, run()) is required,
but the ability to substitute child instances for parent instances (for example, Applets for Threads)
is not relevant or impossible to implement.
But why didn’t the designers of Java de�ne a more complex interface than Runnable? It would

have created the opportunity for con
icts. For instance, the start() method is de�ned in both
classes — Applet and Thread — and with di�erent semantics, while class Clock can support only
one de�nition of start(). As explained in Section 3.1 such con
icts prohibit using Clocks as
Threads. So a larger interface than Runnable would not have been bene�cial anyway but would
have added the risk of subtle errors.

3.2.4. Marker interfaces
In object-oriented languages that support multiple inheritance, general purpose facilities such

as storing and retrieving objects from persistent storage, cloning objects, etc. can be de�ned as
library classes and used as ancestors by classes needing such facilities. For instance, in Ei�el, the
library class Storable de�nes I=O methods for objects: store(file:FILE) {...} , Storable
retrieved(file:FILE) {...}, etc. In Java, such functionality can be achieved in many cases
without taking recourse to multiple inheritance, as discussed below.
A marker interface is an interface that declares no methods or �elds. It is useful when we need

to determine something about the objects without assuming that they are instances of any particular
class. (See [18] for examples.)
In Java, certain general purpose methods are housed in the root class java.lang.Object and

made available only when a subclass implements a suitable marker interface. For instance, the
clone()-method is de�ned in class java.lang.Object as protected and is inherited by all
classes. However, invoking it on an arbitrary object can cause CloneNotSupportedException to
be thrown. To run the clone()-method on an instance of a class, the class must implement the
marker interface Cloneable and rede�ne clone().



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 199

Java classes such as java.io.ObjectInputStream and java.io.ObjectOutputStream sup-
port readObject(java.lang.Object) and writeObject(java.lang.Object), respectively, to
read from=write to a persistent storage. Java also requires a class to implement the marker interface
Serializable before it can participate in these methods. Observe that the signatures of these meth-
ods are “inverted” when compared with the corresponding methods of class Storable in Ei�el.
Cloning and storing objects are the only examples that cannot be regarded as instances of our

translation. The cloning mechanism is hardwired in a native method of class Object; the serialization
mechanism makes heavy use of re
ection in order to determine whether the implementor of the
Serializable interface provides its own private writeObject(java.io.ObjectOutputStream)
method. In fact both make better examples of functionality that cannot be modeled in a way that is
recommendable as an idiom.

3.2.5. Static versus dynamic composition
The lack of multiple inheritance does prohibit certain reasonable static combinations of built-in

classes in Java. For instance, one cannot de�ne a class of objects that can be used both as a
java.io.LineNumberReader and as a java.io.InputStreamReader, or as a java.io.
LineNumberReader and as a java.io.PushbackReader.
Instead, Java just provides constructors to turn any Reader instance into an instance of

LineNumberReader, InputStreamReader or PushbackReader by applying the decorator pattern
[19]. Replacing anticipated, static composition of di�erent abstractions via multiple inheritance by
demand-driven, dynamic composition via aggregation is a gain of functionality, not a loss.

4. Additional language support

So far we have seen that simulations of multiple inheritance perform very well on some examples
and bad on others. This is not a really satisfactory conclusion. Can we do better? In this section we
look at what can be gained by providing language support for the translations discussed above. We
analyze two mechanisms: implementation of the implicit interface of a class and built-in delegation.

4.1. similar

In order to ease the implementation of scenarios which require substitutability of child instances
for parent instances, let us �rst explore a new construct for class de�nition, called similar, with
the following semantics:
class C similar D {...} declares that class C implements all the public methods in class D

and that C instances may be used for D instances.
This construct permits omission of explicit interface declaration for D (which was required in the

earlier translation). However, code reuse still entails de�ning a D-type �eld in class C, and forwarding
some method calls to it while rede�ning others.
This approach can lead to name con
icts and is therefore subject to the complications discussed

earlier. Compare, for instance

class Clock extends Applet similar Thread {...};
with the discussion of the Clock applet given earlier.



200 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

So, to simplify matters, it is tempting to require that the superclass of C and the classes similar
to C have disjoint methods. However, the semantics of forwarding captured by these translations
may not be appropriate as explained below.

4.2. Built-in delegation

We now discuss an alternative proposal to simulating delegation in Java, as incorporated in Lava
[20]. Lava extends Java with constructs for type-safe automatic forwarding. In particular, Lava
supports two variants of forwarding: consultation and delegation. The following description of these
variants has been adapted from [21].

An object, called the child, may have modi�able references to other objects, called its parents.
Method calls for which the receiver has no matching method are automatically forwarded to its
parents. When a suitable method is found in a parent (the method holder), it is executed after
binding its implicit this parameter, which refers to the object on whose behalf the method
is executed. Automatic forwarding with binding of this to the original method call receiver
is called delegation, while automatic forwarding with binding of this to the method holder
is called consultation. Delegation is object-based inheritance whereas consultation is just an
automatic form of method calling.

Lava uses the keywords delegatee and consultee to mark instance �elds of a child class that
hold references to parent objects. These keywords specify whether to interpret forwarded method calls
via delegation or via consultation, respectively. The two approaches di�er when a parent method has
been rede�ned in a child. The delegatee will invoke the rede�ned child method, while the consultee
will invoke the original parent method. Alternatively, one can say that delegation supports overriding
whereas consultation blocks it, as illustrated below.

class A {
public String a() {return a1();}
protected String a1() {return "A";}

}
class B {
public String b() {return b1();}
protected String b1() {return "B";}

}
class C extends A {

delegatee B bp = new B(); // C is subtype of B
protected String a1() {return "C";}
protected String b1() {return "C";}

}
class Test {

public static void main(String[] args) {
C c = new C();
System.out.println(c.a()+c.b());

}
}



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 201

The expected outcome is "CC". If we used consultation the outcome would be "CB".
Note also that an object of class C can be treated as an object of both class A and class B.

Delegation and consultation both have the e�ect of extending the interface of the child class by the
public and protected methods of the declared parent types. It is instructive to compare the above
code with the initial multiple inheritance example and the simulation of delegation.

4.2.1. Con
ict resolution
In contrast with ordinary class-based languages, there are situations where con
icts can arise only

at run-time. This can happen because, with delegation, the parent object may be any instance of the
declared parent type or of one of its subtypes. In the latter case, it may contain additional methods,
which may have the same signature as methods in the child object.
Such con
icts, that cannot be detected statically, are resolved in Lava by a “semantic compatibility”

criterion that a method in a child may only override a method of a parent object if both override the
same method in a common declared supertype of the child’s class and the parent’s class. Consider
the following examples from [21].

// Intended overriding: // No accidental overriding:
class Child { class Child {
delegatee delegatee
DeclParent p = new Parent(); DeclParent p = new Parent();
void bang() {...} void bang() {...}
} }
class DeclParent { class DeclParent {
void b(); void b();
void bang(){...}
} }
class Parent extends DeclParent { class Parent extends DeclParent {
void b() {this.bang();} void b() {this.bang();}
void bang() {...} void bang() {...}
} }

Let c = new Child(). Then c.b() delegates b() to p, which calls bang() on c (recall that delega-
tion has the e�ect of binding this to the object that initially received the forwarded
message).
In Lava, for the left example, bang() in class Child will be invoked, thus overriding Parent’s

bang() — this is sensible to do because both methods are derived as specializations of the one in
DeclParent — hence it can safely be assumed that they have a compatible semantics.
For the right example, the bang() method of class Child will not be selected because there is

no evidence that it has the semantics expected in the calling context. Therefore, the bang() call
will be forwarded to the parent object p — just like any other call that �nds no applicable method
in c — and the bang() method of p will be selected. The net e�ect is that accidental overriding is
barred, preventing cumbersome and hard to locate errors.



202 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

4.2.2. Multiple delegation
In [9], an extension of Lava is discussed in which a class can have multiple forwardees —

delegatees and consultants — that de�ne methods under the same name. Such ambiguities have to
be resolved, by explicit overriding. This construct is a simpli�cation of Ei�el’s redefine-rename-
undefine mechanism, as illustrated below. The notation

localName(args) overrides field ¡-parentName

means that the respective local method overrides the method parentName(args) in objects ref-
erenced by field. If the parentName is the same as localName it may be omitted, like in the
following de�nition of clone() in class Child:

class Lottery {
void draw() {...} // draw from lottery
void clone() {...} // deep clone
void print() {...} // write to output stream

}
class GUIobj {
void draw() {...} // draw a GUI element on the screen
void clone() {...} // deep clone
void write() {...} // write to output stream

}
class Child {
protected delegatee Lottery l;
protected delegatee GUIobj g;

// Conflicting names with different semantics:
// each overriden by another local method (subsumes "renaming").
void drawLottery() overrides l¡-draw {...}
void drawScreen() overrides g¡-draw {...}
// Same names with same semantics:
// overriden by the same local method.
void clone() overrides l, g {...}
// Different names with same semantics:
// overriden by the same local method (subsumes "undefine").
void write() overrides l¡-print, g¡-write {...}

}
Multiple delegation also enables repeated delegation (analogous to repeated inheritance). There-

fore, it raises the semantic problem pointed out for Ei�el’s select statement in Section 3. A detailed
analysis of this problem in the context of delegation, and the development of a solution are contained
in [9]. A deeper discussion of explicit overriding can also be found there.

4.3. Summary

This section complemented the “pure Java” simulation by a discussion of possible language
extensions that support forwarding-based designs.



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 203

The discussion demonstrated that asking for multiple inheritance in Java is not a good idea given
that more powerful, dynamic alternatives are available. If the language should ever be extended,
support for (single or multiple) delegation would be preferrable to adding multiple inheritance. The
primary advantage is the replacement of anticipated, static composition of classes via inheritance by
unanticipated (mixin-style) dynamic composition of objects via delegation. This holds even for static
delegation. Dynamic delegation o�ers the added bene�t of being able to model dynamic evolution
of object structure and behavior.

5. Approximating generics in Java

A class is an implementation of a data type. The “container” data types (such as the Set, the
List, the Tree, etc.) can be abstracted and parameterized with respect to the type of the elements,
in order to model homogeneous data structures (which contain just one type of elements). Such
a parameterized type=module can be instantiated before use by binding concrete types to generic
type parameters. For instance, one can instantiate List generic type=class to obtain various con-
crete types=classes such as List of integers, List of strings, List of dates, etc. These
examples illustrate unconstrained genericity.
In contrast, in certain other situations, a generic type parameter may be partially constrained. For

instance, a Sort routine or a Dictionary type may require the elements to be from a LinearOrder
type. The templates in C++, the generics in Ei�el and Ada-95, the functors in SML [22], etc.,
all support convenient implementation of such types (resp. sub-programs) as parameterized classes
(resp. routines) where the type of a generic parameter expresses additional requirements. These
parameterized modules are then suitably instantiated by binding types that satisfy the necessary
constraints, to generic type parameters. This is known as constrained genericity.
Java does not support any construct akin to templates or generics. An extension to the Java

language and the Java Virtual Machine is proposed in [23] to incorporate templates in their full
glory. Pizza [24] and GJ [25] are supersets of Java which support parametric polymorphism that
can be translated into pure Java. Here we review and analyze two idioms to approximate generic
modules: one that uses the class Object and other reference types as the type of the generic element,
and another that uses re
ection. The �rst approach is exempli�ed by various utility classes of the
Java 2 collections framework, while the second approach is illustrated using an example developed
in Section 5.3. Additionally, a marker interface, as discussed in Section 3.2, can be used to express
the requirement that the elements of a Dictionary must be linearly ordered.

5.1. Using class Object

A generic class parameter in a C++ template can be straightforwardly translated into Java by
turning it into a parameter of type Object, the root of the Java class hierarchy. However, this
translation is only approximate since the Java class types are reference types [27] as explained
below.

• A C++ generic class parameter can be instantiated to a primitive type such as int, char, etc.,
as well as a class type, while, in Java, only the latter can be simulated. To instantiate a generic



204 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

class parameter to a primitive type, Java requires the primitive type to be objecti�ed using the
corresponding wrapper class such as Integer, Character, Boolean, etc. Because these wrapper
classes implement immutable objects, their use does not impact the semantics of assignment, the
parameter passing mechanism, and the interpretation of final variables: for immutable objects
these operations notice no di�erence between “copy semantics” vs. “reference semantics”, “call by
value” vs. “call by reference”, and “immutable variable” vs. “immutable reference to immutable
object”. However, equality is not captured well by the translation: whereas 1 == 1 is true,
new Integer(1) == new Integer(1) is false. Here the di�erence between “value semantics”
vs. “reference semantics” can only be concealed if we use the (value based) equals() method
instead of “==”. In Java, equals() is a method of class Object, and thus available on any
object.

• Simulation of instantiation of a generic class parameter with a class type (as opposed to a primitive
type) is also convoluted. For instance, to guarantee type safety, Java requires explicit type casts
in expressions that use functions returning values of the generic parameter type. (Observe that, in
the Java translation, such functions have a return type Object.) Consider the following template,
which illustrates unconstrained genericity:

template 〈class T〉
class Ccpp {

private: T t;
public:

Ccpp (T x) {t= x;}
T f(T x) {return t;}

}
and a �rst approximation to it in Java:

class Cjava {
private Object t;
public Cjava (Object x) {

t = x;
}
public Object f(Object x) {

return t;
}
public static void main (String[] args) {

Integer io = new Integer(5);
Cjava c = new Cjava(io);
Integer jo = (Integer) c.f(io);

}
}
In the above Java translation, the method f is not restricted to Integer argument. To impose the

necessary type constraint, one can use inheritance and rede�nition. However, to override a parent
method in a subclass CIntjava, Java requires that the signature of the overriding method be the
same as that of the corresponding parent method. (Otherwise, the new de�nition is treated as a valid



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 205

overload.) So extra type checking code is needed to preserve the behavior. Observe also that an
instance of CIntjava can be assigned to a variable of type Cjava.
Even though the subclass has “method-stubs” of the order of the number of methods in the parent

class, it does not require duplication of method bodies.

class CIntjava extends Cjava {
public CIntjava (Integer x) {

super(x);
}
public Object f(Object x) {

if (x instanceof Integer) {
return super.f(x);

} else return null; // ‘‘Erroneous Call"
}

}
This approach resembles homogeneous translation of Pizza’s polymorphism into Java [24].
Alternatively, one can change the signature of the method f in CIntjava to accept and return

only Integer objects. This can be accomplished using composition and forwarding. Unfortunately,
all this can clutter up the code and introduce run-time overheads.

class CIntjava {
protected Cjava c;
public CIntjava (Integer x) {

c = new Cjava(x);
}
public Integer f(Integer x) {

return (Integer) c.f(x);
}

}
Observe that Java does not permit covariant typing of Ei�el [5] where a parent method can be

overridden in the subclass using a method whose signature is more “restrictive” than the corre-
sponding parent method. Observe also that Pizza’s support for parameteric polymorphism improves
readability, but has similar overheads due to translation into Java [24].
Refer to the Java utility classes=interfaces such as java.util.List, java.util.LinkedList,

java.util.Hashtable, java.util.HashSet, etc for more examples.

5.2. Using interface=class parameters

Many parameterized modules require speci�cation of additional semantic constraints or signature
constraints on a generic parameter. The former corresponds to the expectations on the services
provided by the actual argument and the latter on the requirements on the interfaces supported by
the actual argument.
Languages such as SML, C++, Ei�el, Ada-95, etc., all support such constrained genericity. In

Java, such constraints can be expressed using class type method parameters to capture semantic



206 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

constraints, and interface type method parameters to capture signature constraints in place of Object
type parameters discussed earlier.
Refer to the uses of Java classes=interfaces such as java.awt.event.MouseListener, java.

util.Iterator, java.util.SortedSet, java.util.TreeSet, java.awt.Container, etc., for
additional examples.
The Java approach has one important limitation — certain type equality constraints cannot be

expressed or enforced at compile time. For example, let S be a subclass of C. Then, a collection of
instances of C may potentially contain a mix of “direct” instances of C and “direct” instances of S.
However, it is not possible to specify and verify statically (that is, without resorting to type tests
and casts) a collection class that is made up entirely of either “direct” instances of C or “direct”
instances of S, but not a mix of the two. See [26,24] for proposals to extend Java language to
incorporate such constrained polymorphism.
The language GJ, which is a conservative extension of Java 2, supports generics including covariant

overriding [25]. The translator for GJ into Java incorporates generalization of the examples sketched
above.

5.3. Using Java re
ection

As observed earlier, changes to a generic class (such as adding a method or a parameter to a
method) can require explicit changes to all its “instantiation” subclasses. To minimize the impact of
such changes, the Re
ection API can be used. This is illustrated by the following Dictionary class
example that is “parameterized” with respect to a linear order class as follows. (We have included
the details for the interested readers; however, this example can be safely skipped. The Dictionary
de�ned here is not to be confused with the obsolete abstract class java.util.Dictionary.)

import java.util.*;
import java.lang.reflect.*;
class Dictionary {
private Class orderClass;
private Method lessThan, equal;
private Vector vec = new Vector();

public Dictionary(Class cl) {
orderClass = cl; /* generic parameter */
try {
lessThan = cl.getMethod(‘‘lessThan", new Class[]{cl});
equal = cl.getMethod("equal", new Class[]{cl});
} catch (Exception e) {System.out.println(e);}
}
public void insert(Object o) {
int i;
if (orderClass.isInstance(o)) {
try {
for (i = 0; i ¡ vec.size(); i++) {
if (auxInvoker(lessThan, o, new Object[]{vec.elementAt(i)})) break;



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 207

}
vec.insertElementAt(o,i);
} catch (Exception e) {System.out.println(e);}
}
}
public Object member(Object o) {
if (orderClass.isInstance(o)) {

try {
for (int i = 0; i ¡ vec.size(); i++) {

if (auxInvoker(equal, o, new Object[]{vec.elementAt(i)})) return o;
if (auxInvoker(lessThan, o, new Object[]{vec.elementAt(i)})) break;
}

} catch (Exception e) {System.out.println("*2* " + e);}
}
return null;

}
private static boolean auxInvoker(Method m, Object o, Object[] arr)

throws IllegalAccessException,
IllegalArgumentException, InvocationTargetException{
Boolean b = (Boolean) m.invoke(o, arr);
return b.booleanValue();

}
}
The above class can be used to implement a Dictionary of strings as follows.

class EGLinearOrder {
String s;
EGLinearOrder(String s) {
this.s = s;

}
public boolean lessThan(EGLinearOrder t) {
return (s.compareTo(t.s) == -1);

}
public boolean equal(EGLinearOrder t) {
return (s.compareTo(t.s) == 0);

}
public String toString() {
return ("Instance of EGLinearOrder with field s = " + s);

}
}
public class ReflectGenerics {
public static void main (String[] args) {

EGLinearOrder o = new EGLinearOrder("Jill");



208 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

EGLinearOrder p = new EGLinearOrder("Jack");
Dictionary c = new Dictionary(p.getClass());
c.insert(o);
c.insert(p);
System.out.println("Result ---¿ " + (EGLinearOrder) c.member(p));

}
}
Even though the code for the generic Dictionary class using re
ection looks complicated (in

fact even downright “ugly”), the code for instantiation is straightforward. Unlike the non-re
ective
solution presented �rst, changes to the Dictionary class — such as adding a method public
void delete(Object o) ... — do not require explicit changes to its instantiations. However,
this approach cannot be used to instantiate generic parameters to primitive types, and will lose out
on compile-time error checks. 3 It is also clearly slower than the non-re
ective simulation.

6. Conclusions

In this paper we reviewed Java idioms used by programmers to approximate generics and multiple
inheritance of classes, to accrue reusability bene�ts.
Multiple inheritance was simulated by the joint use of forwarding as a means to achieve code reuse,

interfaces as a means to achieve polymorphism, and back-references as a means to approximate
overriding. The application of these techniques to various examples was demonstrated, shedding
light on what can and cannot be achieved by the simulation.
An alternative proposal to simulating delegation in Java, as incorporated in Lava, which extends

Java with constructs for type-safe automatic forwarding, was also discussed.
Finally, two approximations to generic modules were analyzed: one that uses the class Object

and reference types as the type of the generic parameter (to capture unconstrained genericity and
constrained genericity, respectively), and another that uses re
ection. The former approach is not
robust with respect to certain modi�cations to methods (such as adding a new method, or changing
the signature of an existing method, etc.), while the latter approach leads to ine�cient and di�cult
to read code.

Acknowledgements

We wish to thank the anonymous referees and Pascal Costanza for their comments and suggestions.

3 Commercial software tools, such as PRE�xco Corp.’s PRE�x, that are based on software component simulation
technology, may provide means to detect some errors prior to software deployment that would otherwise be caught only
at run time.



K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210 209

References

[1] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable object-oriented software. Reading,
MA: Addison-Wesley, 1995.

[2] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-oriented software architecture: a system of
patterns. New York: Wiley, 1996.

[3] Vlissides J. Pattern hatching. Reading, MA: Addison-Wesley, 1998.
[4] Joyner I. A C++?? critique. Ei�el Liberty Resources at http://www.elj.com/eiffel/ij//, 1998.
[5] Meyer B. Object-oriented software construction. 2nd ed. Englewood Cli�s, NJ: Prentice-Hall, 1997.
[6] Lakshmanan LVS, Thirunarayan K. Declarative frameworks for inheritance. In: Chomicki J, Saake G. editors. Logics

for databases and information systems. Dordrecht: Kluwer Academic Publishers, 1998. p. 357.
[7] Stroustrup B. The C++ programming language. 3rd ed. Reading, MA: Addison-Wesley, 1997.
[8] Budd T. An introduction to object-oriented programming. 2nd ed. Reading, MA: Addison-Wesley, 1997.
[9] Kniesel G. Multiple inheritance and delegation revisited. University of Bonn, Germany, 2000, in preparation.
[10] Appel A. Modern compiler implementation in Java. Cambridge: Cambridge University Press, 1998.
[11] Driesen K, H�olzle U, Vitek J. Message dispatch on pipelined processors. In: Oltho� W. Proceedings ECOOP’95,

Lecture Notes in Computer Science, vol. 952. Berlin: Springer, 1995. p. 253–82.
[12] Abadi M, Cardelli L. A theory of objects. Berlin: Springer, 1996.
[13] Cardelli L, Wegner P. On understanding types, data abstraction, and polymorphism ACM Computing Surveys 1985;

17(4):471–522.
[14] Harrison W, Ossher H, Tarr P. Using delegation for software and subject composition. Research Report RC 20946

(922722), IBM Research Division, T.J. Watson Research Center, 5 August 1997.
[15] Kniesel G. Delegation for Java — API or language extension? Technical Report IAI-TR-98-4, ISSN 0944-8535,

University of Bonn, Germany, 1998.
[16] Blewitt A. Java tip 71: use dynamic messaging in Java. http://www.javaworld.com/javaworld/javatips/

jw-javatip71.html, 1999.
[17] Stroustrup B. The design and evolution of C++. Reading, MA: Addison-Wesley, 1994.
[18] Arnold K, Gosling J. The Java programming language, 2nd ed. Reading, MA: Addison-Wesley, 1999.
[19] Budd T. Understanding object-oriented programming with Java. updated ed. Reading, MA: Addison-Wesley, 2000.
[20] Kniesel G. Dynamic object-based inheritance with subtyping. Ph.D. thesis, University of Bonn, Computer Science

Department III, 2000.
[21] Kniesel G. Type-safe delegation for run-time component adaptation. European Conference on Object-Oriented

Programming, Lecture Notes in Computer Science, vol. 1628. Berlin, Springer, 1999, p. 351–66.
[22] Ullman JD. Elements of ML programming. 2nd ed. (ML97). Englewood Cli�s, NJ: Prentice-Hall, 1998.
[23] Myers AC, Bank JA, Liskov B. Parameterized types in Java. Proceedings of 24th POPL, 1997. p. 132–45.
[24] Odersky M, Wadler P. Pizza into Java: translating theory into practice. Proceedings of 24th POPL, 1997. p. 146–59.
[25] Bracha G, Odersky M, Stoutamire D, Wadler P. Making the future safe for the past: adding genericity to the Java

programming language. Proceedings of OOPSLA-98, October 1998.
[26] Bruce K. Increasing Java’s expressiveness with ThisType and match-bounded polymorphism. Draft 1997.
[27] Gosling J, Joy B, Steele G, Bracha G. The Java language speci�cation. 2nd ed. Reading, MA: Addison-Wesley,

2000.

Krishnaprasad Thirunarayan received a Ph.D. in Computer Science from the State University of New York at Stony
Brook in 1989, an M.E. in Computer Science from the Indian Institute of Science, Bangalore in 1984, and a B.Tech. in
Electrical Engineering from the Indian Institute of Technology, Madras in 1982. He is currently an Associate Professor in
the Department of Computer Science and Engineering at the Wright State University, Dayton, Ohio. His research interests
are in Knowledge Representation and Reasoning, and Programming Languages: Design, Speci�cation, and Implementation.

G�unter Kniesel received a Ph.D. in Computer Science from the University of Bonn in 2000 and a Diploma (equivalent of
an M.Sc.) in Computer Science from the University of Dortmund in 1989. He is currently a researcher in the Department



210 K. Thirunarayan et al. / Computer Languages 25 (1999) 189–210

of Computer Science at the University of Bonn, Germany. His current research interests are in object-oriented programming
languages and design.

Haripriyan Hampapuram received a Ph.D. in Computer Science from the Rutgers University, New Jersey in 1994, an
M.Sc. in Computer Science from the Indian Institute of Science, Bangalore in 1986, and a B.E. in Electronics from
the University Visweswaraiah Engineering College, Bangalore in 1982. He has worked on products relating to software
engineering and compilers at various companies including AT& T Bell Laboratories, Philips Semiconductors, Intrinsa Cor-
poration (now acquired by Microsoft Corporation). He is currently at Microsoft Research, Seattle, Washington developing
a static analysis tool for �nding defects in C and C++ programs.


