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Abstract

Recent logic programming languages employ dynamic scheduling of calls to improve e-ciency of programs.
Dynamic scheduling is realized by allowing some calls to be dynamically “delayed” until their arguments are
su-ciently instantiated. To this end, logic languages are extended with constructs such as delay declarations.
However, many declarative properties that hold for logic and pure Prolog programs do not apply any longer
in this extended setting. In particular, the equivalence between the model–theoretic and operational seman-
tics does not hold. In this paper, we study the class of input-consuming programs. Firstly, we argue that
input-consuming logic programs are suitable for modeling programs employing delay declarations. Secondly,
we show that—under some syntactic restrictions—the S-semantics of a program is correct and fully abstract
also for input-consuming programs. This allows us to conclude that for a large class of programs employing
delay declarations there exists a model–theoretic semantics which is equivalent to the operational one. Thus,
input-consuming programs are shown to be the right answer for conjugate e-ciency and declarativeness.
c© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Control in logic programming: According to the widely-known and accepted slogan Algorithm=
Logic + Control [1], a program can be regarded as a logic speci@cation together with a control
mechanism for executing it. In this light, one of the inspiring ideas of the logic programming
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paradigm is to ask the programmer only for the logic speci<cation and leave the control part to the
interpreter.

As an example of this declarative style, in Prolog, queries (calls) can often be used in
diFerent manners. The well-known predicate append reported below, for example, can be used
either to concatenate two lists or to split a list into two parts in a nondeterministic way: the call
append([a,b],[c,d],X) will succeed by unifying the variable X to the list [a,b,c,d], while the
call append(X1,X2,[a,b,c,d]) will split the list [a,b,c,d] into X1 and X2.
Nevertheless, as one can expect, if in a logic program the control component was totally absent,

programs would be hopelessly ine-cient, if not divergent. To see how the control component comes
back in the picture one has to look into the underneath resolution process. The execution of a logic
program with respect to a given query consists in building and exploring a proof tree to validate the
query. The control lies thus in the way the proof tree is built (for a query there may exist diFerent
proof trees) and is traversed. Prolog employs for instance a left-to-right selection rule together with
a top-down clause selection method. These two components determine the shape of the proof tree,
which is then traversed depth-@rst.

A programmer is always aware of this methodology, and writes her programs according to it.
We are convinced that most practical Prolog programs would diverge if used in combination with
another selection rule.

Dynamic selection rules: While Prolog’s rule has proven to be extremely e-cient and eFective,
for many application a @xed selection rule is too limited to be practical. As an example, consider
the program APPEND and the program IN ORDER which constructs the list of the nodes of a binary
tree by means of an in-order transversal

%append(Xs,Ys,Zs) ← Zs is the result of concatenating the lists Xs and Ys
append([H|Xs],Ys,[H|Zs]) ← append(Xs,Ys,Zs).
append([],Ys,Ys).

%in order(Tree,List) ← List is an ordered list of the nodes of Tree
in order(tree(Label,Left,Right),Xs) ← in order(Left,Ls),

in order(Right,Rs), append(Ls,[Label|Rs],Xs).
in order(void,[]).

together with the query
Q := read tree(Tree), in order (Tree,List), write list(List).

(we assume that the predicates read tree and write list are de@ned elsewhere in the program).
If read tree cannot read the whole tree at once—say, it receives the input from a stream—it
would be nice to be able to run in order and write list on the available input. This can only
be achieved if we depart from Prolog’s left-to-right selection rule, which would call in order only
when read tree had @nished reading the input.

However, dropping Prolog’s selection rules poses the problem of nontermination and of e-ciency.
In the above program, the computation of the query Q would immediately diverge when adopting any
@xed selection rule diFerent from Prolog’s. The computation would instead result in an enormous
waste of resources when using fair or random selection rules. What we would need here is to
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interleave the execution of the three “processes” in the query, in a controlled manner. This can be
achieved using a dynamic selection rule, i.e., a selection rule which employs a runtime mechanism
which determines which atoms might be selected. For instance, in the case of the above example, a
correct computation can be achieved by means of the following delay declarations:

delay in order(T, ) until nonvar(T).
delay append(Ls, , ) until nonvar(Ls).
delay write list(Ls, ) until nonvar(Ls).

The semantics of these delay declarations is rather straightforward: they forbid the selection of an
atom of the form in order(s,t) (resp. append(s,t,u) or write list(s,t)) unless s is a non-variable
term. We can say that these statements avoid that predicates in order, append and write list
be selected “too early”. Notice that with these declarations IN ORDER enjoys a parallel execution by
means of interleaving.

The use of a non-@xed selection rule in combination with the above delay declarations is thus
an example of a dynamic selection rule. Dynamic selection rules have proven to be useful in a
number of applications; among other things, they allow one to model co-routining [2,3] and parallel
executions [4]. A dynamic selection rule provides the programmer with a Lexible control over the
computation which can be used to improve the e-ciency of programs, prevent run-time errors and
enforce termination [5,3].

Dynamic selection rules are usually implemented by means of a mechanism preventing the
selection of those atoms which are not su-ciently instantiated. To this end, diFerent languages
use diFerent constructs. In GHC [6] programs are augmented with guards in order to control the
selection of atoms dynamically. Moded Lat GHC [7] uses an extra condition on the input positions,
which is extremely similar to the concept of input-consuming derivation step we refer to in the
sequel: The resolution of an atom with a de@nition might not instantiate the input arguments of
the resolved atom. On the other hand, GPodel [2] and Eclipse [8] use delay declarations like the
above ones, and SICStus Prolog [9] employs block declarations (which are strictly less expressive
than delay declarations). Both delay and block declarations check the partial instantiation of some
arguments of calls.

Limitations of the approach: The adoption of a control mechanism such as delay declarations
comes at a price: Many declarative properties that have been proven for logic and pure Prolog pro-
grams do not apply any longer. In particular, the well-known equivalence between the model-theoretic
and operational semantics (see [10,11]) does not hold. For example, the query append(X,Y,Z) with
the above delay declaration does not succeed: the atom append(X,Y,Z) does not satisfy its delay
declaration (since the @rst argument is a variable) and then it cannot be selected (and resolved). In
this case we say that the query append(X,Y,Z) deadlocks 1 and this is in contrast with the fact that
(in@nitely many) instances of append(X,Y,Z) are contained in the least Herbrand model of APPEND.
This is clearly a heavy loss, since the equivalence between declarative and operational semantics is
one of the strong points of the logic programming paradigm.

Contributions of the paper: In this paper we address the problem of providing a model-theoretic
semantics for programs using a dynamic selection rule. In order to do so, we need a “declarative”

1 A deadlock occurs when the current query contains no atom which can be selected for resolution.
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way of modeling them, and for this we restrict our attention to input-consuming programs [12]. The
de@nition of input-consuming program employs the concept of mode: We assume that programs are
moded, that is, that the positions of each atom are partitioned into input and output ones. Then,
input-consuming derivation steps are precisely those in which the input arguments of the selected
atom will not be instantiated by the uni@cation with the clause’s head.

For example, when the program APPEND reported above is used for concatenating two lists, we
assume that the @rst two arguments @ll in input positions while the third argument @lls in an output
position.

In [13] we showed that, assuming the above moding, for queries of the form append(s; t; X )
(with X being a variable disjoint from s and t), the delay declaration delay append(Ls, , )
until nonvar(Ls), guarantees precisely that if an atom is selectable and resolvable, then it is
so via an input-consuming derivation step; conversely, in every input-consuming derivation step the
resolved atom always satis@es the given delay declaration, thus it would have been selectable by any
mechanism implementing delay declarations. This reasoning applies for a large class of queries and
is actually not a coincidence: As shown by Smaus in [14] for block declarations and further dis-
cussed by the authors in [13], one can argue that in most situations delay declarations are employed
precisely for ensuring that the derivation is input-consuming. Thus, we are interested in providing
a model-theoretic semantics for input-consuming programs. Clearly, many of the di-culties one has
in doing this for programs with delay declarations apply to input-consuming programs as well. In-
tuitively speaking, the crucial problem originates in the fact that input-consuming derivations may
deadlock, 2 i.e., reach a stadium in which no atom is resolvable (e.g., the query append(X,Y,Z)). Be-
cause of this, a declarative semantics for logic programs is generally not correct for input-consuming
programs.

In this paper we show that, if a program is well- and nicely-moded, then, for nicely-moded
queries the operational semantics provided by the input-consuming resolution rule is correct and
complete w.r.t. the S-semantics [15] for logic programs. The S-semantics is a denotational semantics
which—for programs without delay declarations—correctly denotes the set of the computed answer
substitutions associated with the most general atomic queries, i.e., queries of the form p(x1; : : : ; xn)
where x1; : : : ; xn are distinct variables. Moreover, the S-semantics is compositional and can also
be viewed as a model-theoretic semantics, and it corresponds to the least @xpoint of a continuous
operator. Summarizing, we show that the S-semantics of a program is compositional, correct and
fully abstract also for input-consuming programs, provided that the programs considered are well-
and nicely-moded, and that the queries are nicely-moded.

This paper is organized as follows. The next section contains the preliminary notations and def-
initions. In Section 3 we discuss the relation between input-consuming derivations and programs
using delay declarations. Section 4 contains the main results and some examples. In Section 5 we
show how the semantics for input-consuming derivations we present can be used for reasoning about
deadlock of programs using delay declarations. Finally, Section 6 concludes the paper. Some proofs
are reported in the appendix.

A preliminary, shorter version of this paper has appeared in [16].

2 As we will discuss later, this notion of deadlock diFers, in some way, from the usual one, which is given in the case
of programs employing delay declarations.
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2. Preliminaries

In this paper we consider de@nite logic programs and assume the reader is familiar with the
terminology and the basic results of the semantics of de@nite logic programs (see, for instance,
[17,11,18]). Here we adopt the convention of using roman characters to denote sequences of objects;
therefore t denotes a sequence of terms while B is a query (notice that—following [11]—queries
are simply conjunctions of atoms, possibly empty). We denote atoms by A; B; H; : : : ; queries by
Q;A;B;C; : : :, clauses by c; d; : : : ; and programs by P. The empty query is denoted by .

2.1. Substitutions and derivations

For any syntactic object o, we denote by Var(o) the set of variables occurring in o. We also
say that o is linear if every variable occurs in it at most once. Given a substitution � and a
syntactic object E, we denote by �|E the restriction of � to the variables in Var(E), i.e., �|E(X ) =
�(X ) if X ∈ Var(E), otherwise �|E(X ) = X . If � = {x1=t1; : : : ; xn=tn} we say that {x1; : : : ; xn} is its
domain (denoted by Dom(�)) and that Var({t1; : : : ; tn}) is its range (denoted by Ran(�)). Notice
that Var(�) =Dom(�)∪ Ran(�). If {t1; : : : ; tn} consists of variables then � is called a pure variable
substitution. If, in addition, t1; : : : ; tn is a permutation of x1; : : : ; xn then we say that � is renaming.
The composition of substitutions is denoted by juxtaposition (x!� = (x!)�). We say that a term t
is an instance of t′ iF for some �, t = t′�, further t is called a variant of t′, written t ≈ t′, iF t
and t′ are instances of each other. A substitution ! is a uni<er of terms t and t′ iF t!= t′!. A most
general uni<er (mgu, in short) of t and t′ is unique, up to renaming; we denote it by mgu(t; t′). An
mgu ! of terms t and t′ is called relevant iF Var(!) ⊆ Var(t) ∪ Var(t′). The de@nitions above are
extended to other syntactic objects in the obvious way.

Computations are sequences of derivation steps. The non-empty query Q :=A; B;C and a clause
c :=H ← B (renamed apart w.r.t. Q) yield the resolvent (A;B;C)!, provided that !=mgu(B;H). A
derivation step is denoted by

A; B;C
!⇒P;c(A;B;C)!:

c is called its input clause, and B is called the selected atom of q. A derivation is obtained by
iterating derivation steps. A maximal sequence

# :=Q0
!1⇒P;c1Q1

!2⇒P;c2 · · ·Qn
!n+1⇒ P;cn+1Qn+1 · · ·

of derivation steps is called a SLD-derivation of P∪{Q0} provided that for every step an appropriate
renaming of the input clause is used, so that to satisfy the standardization apart condition. The input
clause employed at each step is variable disjoint from the initial query Q0 and from the substitutions
and the input clauses used at earlier steps. If the program P is clear from the context or we are
not interested in the speci@c input clauses or mgu’s used, then we drop the reference to them. A
SLD-derivation in which at each step the leftmost atom is resolved is called a LD-derivation.

Derivations can be @nite or in@nite. If # :=Q0
!1⇒P;c1 · · ·

!n⇒P;cnQn is a @nite pre@x of a derivation,
also denoted # :=Q0

!→Qn with != !1 · · · !n, we say that # is a partial derivation of P ∪ {Q0}. If #
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is maximal and ends with the empty query then the restriction of ! to the variables of Q is called
its computed answer substitution (c.a.s., for short). The length of a (partial) derivation #, denoted
by len(#), is the number of derivation steps in #.
We recall the notion of similar SLD-derivations.

Definition 2.1 (Similar Derivations). We say that two SLD-derivations # and #′ are called similar
(# ∼ #′) if (i) their initial queries are variants of each other; (ii) they have the same length; (iii)
for every derivation step, atoms in the same positions are selected and the input clauses employed
are variants of each other.

The following results hold.

Lemma 2.2. Let # :=Q1
!→Q2 be a partial SLD-derivation of P ∪ {Q1} and Q′1 be a variant of

Q1. Then; there exists a partial SLD-derivation #′ :=Q′1
!′→Q′2 of P ∪ {Q′1} such that # and #′ are

similar.

Lemma 2.3. Consider two similar partial SLD-derivations Q
!→Q′ and Q

!′→Q′′. Then Q! and Q!′
are variants of each other.

2.2. Input-consuming derivations

A mode is a function that labels as input or output the positions of each predicate in order to
indicate how the arguments of a predicate should be used.

Definition 2.4 (Mode). Consider an n-ary predicate symbol p. By a mode for p we mean a function
mp from {1; : : : ; n} to {In; Out}.

If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p (with respect to
mp). We assume that each predicate symbol has a unique mode associated to it; multiple modes may
be obtained by simply renaming the predicates. If Q is a query, we denote by In(Q) (resp. Out(Q))
the sequence of terms @lling in the input (resp. output) positions of predicates in Q. Moreover,
when writing an atom as p(s; t), we are indicating with s the sequence of terms @lling in the input
positions of p and with t the sequence of terms @lling in the output positions of p.
The notion of input-consuming derivation was introduced by Smaus in [12] and is de@ned as

follows.

Definition 2.5 (Input-Consuming).

• A derivation step A; B;C
!⇒c(A;B;C)! is called input-consuming iF In(B)!= In(B).

• A derivation is called input-consuming iF all its derivation steps are input-consuming.



A. Bossi et al. / Computer Languages 26 (2000) 1–25 7

Thus, a derivation step is input-consuming if the corresponding mgu does not aFect the input
positions of the selected atom.

Example 2.6. Consider the following program REVERSE using an accumulator.

reverse(Xs,Ys) ← reverse acc(Xs,Ys,[ ]).
reverse acc([ ],Ys,Ys).
reverse acc([X|Xs],Ys,Zs) ← reverse acc(Xs,Ys,[X|Zs]).

When used for reversing a list, the natural mode for this relation symbol is

mode reverse(In,Out).
mode reverse acc(In,Out,In).

Consider now the query reverse([X1,X2],Zs). The following derivation starting in
reverse([X1,X2],Zs) is input-consuming (as usual, denotes the empty query).

reverse([X1,X2],Zs) ⇒ reverse acc([X1,X2],Zs,[ ]) ⇒
⇒ reverse acc([X2],Zs,[X1]) ⇒
⇒ reverse acc([ ],Zs,[X2,X1]) ⇒

The following result states that also when considering input-consuming derivations, it is not
restrictive to assume that all mgu’s used in a derivation are relevant.

Lemma 2.7. Let p(s; t) and p(u; v) be two atoms. If there exists an mgu ! of p(s; t) and p(u; v)
such that s!= s then there exists a relevant mgu # of p(s; t) and p(u; v) such that s#= s.

Proof. Since p(s; t) and p(u; v) are uni@able, there exists a relevant mgu !rel of them (see [11],
Theorem 2:16). Now, !rel is a renaming of !. Thus s!rel is a variant of s. Then there exists a
renaming ( such that Dom(() ⊆ Var(s; t; u; v) and s!rel(= s. Now, take #= !rel(.

From now on, we assume that all mgu’s used in the input-consuming derivation steps are relevant.

2.3. The S-semantics

The aim of the S-semantics approach (see [19]) is modeling the observable behaviors for a
variety of logic languages. The observable we consider here is the computed answer substitutions.
The semantics is de@ned as follows:

S(P) = { p(x1; : : : ; xn)! | x1; : : : ; xn are distinct variables and

p(x1; : : : ; xn)
!→P is a SLD-derivation}:

This semantics enjoys all the valuable properties of the least Herbrand model. Technically, the crucial
diFerence is that in this setting an interpretation might contain non-ground atoms. To present the
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main results on the S-semantics we need to introduce two further concepts: Let P be a program,
and I be a set of atoms.

• The immediate consequence operator for the S-semantics is de@ned as:

TS
P (I) = { H! | ∃ H ← B ∈ P

∃ C ∈ I; renamed apart3 w:r:t: H;B
!= mgu(B;C)}:

• I is called an S-model of P if TS
P (I) ⊆ I .

Falaschi et al. [15] showed that TS
P is continuous on the lattice of term interpretations, that is sets

of possibly non-ground atoms, with the subset-ordering. They proved the following:

• S(P) = least S-model of P = TS
P ↑ !.

Therefore, the S-semantics enjoys a declarative interpretation and a bottom-up construction, just
like the Herbrand one. In addition, we have that the S-semantics reLects the observable behavior
in terms of computed answer substitutions, as shown by the following well-known result.

Theorem 2.8 (Falaschi et al. [15]). Let P be a program; A be a query; and ! be a substitution.
The following statements are equivalent.

• There exists a SLD-derivation A #→P ; where A# ≈ A!.
• There exists A′ ∈S(P) (renamed apart w.r.t. A); such that � = mgu(A;A′) and A� ≈ A!.

Example 2.9. Let us see this semantics applied to the programs APPEND and REVERSE so far en-
countered.

•S(APPEND) = { append([],X,X),
append([X1],X,[X1|X]),
append([X1,X2],X,[X1,X2|X]), : : : }.

•S(REVERSE) = {reverse([],[]),
reverse([X1],[X1]),
reverse([X1,X2],[X2,X1]), : : :

reverse acc([],X,X),
reverse acc([X1],X,[X1|X]),
reverse acc([X1,X2],X,[X2,X1|X]), : : : }.

3 Here and in the sequel, when we write “C ∈ I , renamed apart w.r.t. some expression e”, we naturally mean that I
contains a set of atoms C′

1; : : : ; C
′
n, and that C is a renaming of C′

1; : : : ; C
′
n such that C shares no variable with e and that

two distinct atoms of C share no variables with each other.
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2.4. Well- and nicely moded programs

Clearly, also in presence of modes, the S-semantics does not reLect the operational behavior
of input-consuming programs (and thus of programs employing delay declarations). In fact, if we
consider the extension of APPEND obtained by adding the following clause to it

Q ← append(X,Y,Z):

we have that Q belongs to the semantics but the query Q will not succeed (since the atom
append(X,Y,Z) is not resolvable via an input-consuming derivation step). In order to guarantee
that the semantics is fully abstract (w.r.t. the computed answer substitutions) we need to restrict the
class of allowed programs and queries. To this end we introduce the concepts of well-moded and
of nicely moded programs.

The concept of well-moded program is due to Dembinski and Maluszynski [20].

Definition 2.10 (Well-Moded).

• A query p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for all i ∈ [1; n]

Var(si) ⊆
i−1⋃
j=1

Var(tj):

• A clause p(t0; sn+1)← p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for all i ∈ [1; n+ 1]

Var(si) ⊆
i−1⋃
j=0

Var(tj):

• A program is well-moded if all of its clauses are well-moded.

Thus, a query is well-moded if every variable occurring in an input position of an atom occurs
in an output position of an earlier atom in the query. A clause is well-moded if (1) every variable
occurring in an input position of a body atom occurs either in an input position of the head, or in
an output position of an earlier body atom; (2) every variable occurring in an output position of the
head occurs in an input position of the head, or in an output position of a body atom.

The concept of nicely moded programs was @rst introduced by Chadha and Plaisted [21].

Definition 2.11 (Nicely-Moded).

• A query p1(s1; t1); : : : ; pn(sn; tn) is called nicely moded if t1; : : : ; tn is a linear sequence of terms
and for all i ∈ [1; n]

Var(si) ∩
n⋃
j=i

Var(tj) = ∅:
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• A clause p(s0; t0)← p1(s1; t1); : : : ; pn(sn; tn) is nicely moded if its body is nicely moded and

Var(s0) ∩
n⋃
j=1

Var(tj) = ∅:

• A program P is nicely moded if all of its clauses are nicely moded.

Note that an atomic query p(s; t) is nicely moded if and only if t is linear and Var(s)∩Var(t)=∅.

Example 2.12. Programs APPEND and REVERSE are both well- and nicely moded.
Furthermore, consider the following program PALINDROME:

palindrome(Xs)← reverse(Xs,Xs);
mode palindrome(In);

together with the program REVERSE with the modes reverse(In,Out) of Example 2.6. This program
is well-moded but not nicely moded (since Xs occurs both in an input and in an output position
of the same body atom). However, since the program REVERSE is used here for checking whether
a list is a palindrome, its natural modes are reverse(In,In) and reverse acc(In,In,In). With
these modes, the program PALINDROME is both well-moded and nicely moded.

3. Input-consuming vs. delay declarations

There is a main diFerence between the concept of delay declaration and the one of input-consuming
derivation: While in the @rst case only the atom selectability is controlled, in the second one both
the atom and the clause selectability are aFected. In fact, in presence of delay declarations, if an
atom is selectable then it can be resolved with respect to any program clause (provided it uni@es
with its head); on the contrary, in an input-consuming derivation, if an atom is selectable then it is
input-consuming resolvable with respect to some, but not necessarily all, program clauses, i.e., only
a restricted class of clauses can be used for resolution.

Example 3.1. Consider the following piece of program where the predicate generate generates a
list formed by the constant a and variables, arbitrarily mixed.

generate-select ← generate(Xs), select(Xs).
generate([a|Xs]) ← generate(Xs).
generate([ |Xs]) ← generate(Xs).
generate([ ]).
mode generate(Out).
mode select(In).

Then, suppose we would like to de@ne the predicate select, used in the body of generate-
select, with the following behavior: It non-deterministically chooses to call the program
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first-choice or the program second-choice, if the generated list starts with the constant a; it
deterministically calls the program second-choice, if the @rst element of the list is a variable, and
fails on the empty list.

We can obtain this behavior with an input-consuming program, de@ned as follows.

select([a|Xs])← first-choice.
select([X|Xs])← second-choice.

In fact, for input-consuming derivations the @rst clause is selected only if the @rst element of the
list is not a variable. Note that we cannot obtain such a behavior by means of delay declarations.

Also the concept of deadlock has to be understood in two diFerent ways. For programs using delay
declarations a deadlock situation occurs when no atom in a query satis@es the delay declarations
(i.e., no atom is selectable), while for input-consuming derivations a deadlock occurs when no atom
in a query is resolvable via an input-consuming derivation step and the derivation does not fail,
i.e., there is some atom in the query which uni@es with a clause head but the uni@cation is not
input-consuming.

Example 3.2. Consider again the predicate select de@ned above.

• The query select(X ) uni@es with both clause heads but it is not resolvable via an input-consu-
ming derivation step. This is a deadlock situation for input-consuming programs.
• Consider now the delay declaration

delay select([X| ])until nonvar(X).

With this delay declaration the query select([X |Xs]) is not selectable and so it immediately
deadlocks. However, there is an input-consuming derivation obtained by unifying the query
with the head of the second clause.

In spite of these diFerences, we believe that in the majority of practical situations there is a strict
relation between programs using delay declarations and input-consuming derivations.

Example 3.3. Consider again the program REVERSE of Example 2.6 for reversing a list

reverse(Xs,Ys) ← reverse acc(Xs,Ys,[ ]).
reverse acc([ ],Ys,Ys).
reverse acc([X|Xs],Ys,Zs) ← reverse acc(Xs,Ys,[X|Zs]).

with modes

mode reverse(In,Out).
mode reverse acc(In,Out,In).
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A natural delay declaration for this program is

delay reverse(X, ) until nonvar(X).
delay reverse acc(X, , ) until nonvar(X).

One can easily get convinced that, for queries of the form reverse(t; X ), where t is any term and
X any variable disjoint from t, the above delay declarations guarantee precisely that the resulting
derivations are input-consuming. Furthermore, for the same class of queries it holds that in any
input-consuming derivation the selected atom satis@es the above delay declarations.

The relation between programs using delay declarations and input-consuming derivations is studied
by Smaus in his Ph.D. thesis [14]. More precisely, Smaus proves a result that relates block decla-
rations and input-consuming derivations. A block declaration is a special case of delay declaration
and it is used to declare that certain arguments of an atom must be non-variable when the atom is
selected for resolution. In Chapter 7 of [14], Smaus shows that block declarations can be used to
ensure that derivations are input-consuming.

In force of this result and of practical experience, in the introduction we have stated the claim
that in most “usual” moded programs using them, delay declarations are employed precisely for
ensuring the input-consumedness of the derivations. As we have already mentioned, this thesis is
also substantiated by the fact that the concept of input-consuming resolution is very similar to the
selection mechanism employed in moded Lat GHC [7], and by the arguments in [14]. Nevertheless,
since this claim is of crucial importance for the relevance of our results, now that we have formalized
the notion of input-consuming derivation we can add another argument sustaining it.

Generally, delay declarations are employed to guarantee that the interpreter will not use an “inap-
propriate” clause for resolving an atom (the other, perhaps less prominent, use of delay declarations
is to ensure absence of runtime errors, but we do not address this issue in this paper). In practice,
delay declarations prevent the selection of an atom until a certain degree of instantiation is reached.
This degree of instantiation ensures that the atom is uni@able only with the heads of the “appropri-
ate” clauses. In presence of modes, we can reasonably assume that this degree of instantiation is the
one of the input positions, which are the ones carrying the information.

Now, take an atom p(s; t) that it is resolvable with a clause c by means of an input-consuming
derivation step. Then, for every instance s′ of s, we have that the atom p(s′; t) is also resolvable with
c by means of an input-consuming derivation step. In other words, no further instantiation of the
input positions of p(s; t) can rule out c as a possible clause for resolving it. Thus c must be one of
the “appropriate” clauses for resolving p(s; t) and we can say that p(s; t) is “su-ciently instantiated”
in its input positions to be resolved with c. On the other hand, following the same reasoning, if
p(s; t) is resolvable with c but not via an input-consuming derivation step, then there exists an
instance s′ of s, such that p(s′; t) is not resolvable with c. In this case we can say that p(s; t) is not
instantiated enough to know whether c is one of the “appropriate” clauses for resolving it.

4. Semantics of input-consuming programs

In this section we are going to make the link between input-consuming programs, well- and nicely
moded programs and the S-semantics: We show that the S-semantics of a program is compositional,
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correct and fully abstract also for input-consuming programs, provided that the programs are well-
and nicely moded and that only nicely moded queries are considered.

We start by demonstrating some important features of well-moded programs. For this, we need
additional notations: First, the following notion of renaming for a term t from [11] will be used.

Definition 4.1. A substitution ! := {x1=y1; : : : ; xn=yn} is called a renaming for a term t if Dom(!) ⊆
Var(t), y1; : : : ; yn are distinct variables, and (Var(t) − {x1; : : : ; xn}) ∩ {y1; : : : ; yn} = ∅. (Note that
{x1; : : : ; xn; y1; : : : ; yn} is a set of distinct variables and ! does not introduce variables which occur
in t but are not in the domain of !).

Observe that terms s and t are variants iF there exists a renaming ! for s such that t = s!. Then,
we need the following.

Notation 4.2. Let Q :=p1(s1; t1); : : : ; pn(sn; tn). We de@ne

VIn∗(Q) :=
n⋃
i=1


x

∣∣∣∣∣∣
x ∈ Var(si) and x �∈

i−1⋃
j=1

Var(tj)


 :

Thus, VIn∗(Q) denotes the set of variables occurring in an input position of an atom of Q but
not occurring in an output position of an earlier atom. Note also that if Q is well-moded then
VIn∗(Q) = ∅.

Now we can state the following technical result concerning well-moded programs. The proof is
in the Appendix.

Lemma 4.3. Let P be a well-moded program; Q be a query and # :=Q
!→Q′ be a partial LD-

derivation of P ∪ {Q}. If !|VIn∗(Q) is a renaming for Q then # is similar to an input-consuming
partial (LD-) derivation.

We can now prove our @rst result concerning well-moded programs. Basically, it states the correct-
ness of the S-semantics for well-moded, input-consuming programs. It can be regarded as “one-half”
of the main result we are going to propose.

Proposition 4.4. Let P be a well-moded program; A be an atomic query and ! be a substitution.

• If there exists A′ ∈S(P) (renamed apart w.r.t. A); and � = mgu(A; A′) such that
(i) In(A)� ≈ In(A);
(ii) A� ≈ A!;

• then there exists an input-consuming (LD-) derivation # :=A #→P ; such that A# ≈ A!.

Proof. Let A′ ∈S(P) (renamed apart w.r.t. A) and � be a substitution such that the hypotheses are
satis@ed. By Theorem 2.8, there exists a successful SLD-derivation of P ∪ {A} with c.a.s. #′ such
that A#′ ≈ A!. By the Switching Lemma [11], there exists a successful LD-derivation #′ of P∪{A}
with c.a.s. #′. From the hypotheses, it follows that #′|In(A) is a renaming for A. By Lemma 4.3,
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there exists an input-consuming successful derivation # :=A #→P of P ∪ {A} such that # and #′ are
similar. The assertion follows from Lemma 2.3.

Unfortunately, the reverse implication of Proposition 4.4 does not hold in general. However, it
holds for a particular class of programs and queries: the nicely moded ones. To prove that, we need
to recall some properties of nicely moded programs from [13].

Lemma 4.5. Let the program P and the query Q be nicely moded. Let # :=Q
!→Q′ be a partial

input-consuming derivation of P ∪ {Q}. Then; for all x ∈ Var(Q) and x �∈ Var(Out(Q)); x!= x.

Note that if Q is nicely moded then x ∈ Var(Q) and x �∈ Var(Out(Q)) iF x ∈ VIn∗(Q). Now, we
can prove that the S-semantics is fully abstract for input-consuming, nicely moded programs and
queries. This can be regarded as the counterpart of Proposition 4.4.

Proposition 4.6. Let P be a nicely moded program; A be a nicely moded atomic query and ! be
a substitution.
• If there exists an input-consuming SLD-derivation # :=A #→P ; such that A# ≈ A!;
• then there exists A′ ∈S(P) (renamed apart w.r.t. A); and � = mgu(A; A′) such that

(i) In(A)� ≈ In(A);
(ii) A� ≈ A!.

Proof. By Theorem 2.8, there exist A′ ∈ S(P) (renamed apart w.r.t. A) and a substitution � such
that � = mgu(A; A′) and (ii) holds. Since # is an input-consuming derivation, it follows by Lemma
4.5 that #|In(A) is a renaming for A. Hence (i) follows by the hypotheses and (ii).

We now put together the pieces provided in the previous sections and extend the results to arbitrary
(non-atomic) queries. The following simple result allows us to generalize results concerning atomic
queries.

Lemma 4.7. Let the program P be well- and nicely moded and the query Q be nicely moded.
Then; there exists a well- and nicely moded program P′ and a nicely moded atomic query A such
that the following statements are equivalent.

• There exists an input-consuming successful derivation # of P ∪ {Q} with c.a.s. !.
• There exists an input-consuming successful derivation #′ of P′ ∪ {A} with c.a.s. !.

Proof. Let new be a predicate symbol not occurring in P. Let x be a sequence of distinct vari-
ables containing precisely VIn∗(Q) and y be a sequence of distinct variables containing precisely
Var(Out(Q)). Consider now the atom A := new(x; y), the clause c :=A← Q, and the program

P′ = P ∪ {c}:
By construction, In(A) = VIn∗(Q) and Var(Out(A)) = Var(Out(Q)). It is straightforward to check
that, by the nicely-modedness of Q, both A and c are nicely moded.
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Moreover, by construction, each variable of c occurring in an input position of a body atom but
not occurring in an output position of an earlier atom belongs to VIn∗(Q), i.e., occurs in an input
position of the head, and each variable occurring in an output position of a body atom also occurs
in an output position of the head. Thus, c is well-moded. The thesis follows easily.

We are now ready for the main result of this paper, which asserts that the declarative semantics
S(P) is compositional and fully abstract for input-consuming programs, provided that programs are
well- and nicely moded and that queries are nicely moded.

Theorem 4.8. Let P be a well- and nicely moded program; A be a nicely moded query and ! be
a substitution. The following statements are equivalent.

(i) There exists an input-consuming derivation A #→P ; such that A# ≈ A!.
(ii) There exists A′ ∈S(P) (renamed apart w.r.t. A); and � = mgu(A;A′) such that

(a) �| VIn∗(A) is a renaming for A;
(b) A� ≈ A!.

Proof. It follows immediately from Propositions 4.4, 4.6 and Lemma 4.7.

Note that in case of an atomic query A :=A, we might substitute condition (a) above with the
somewhat more attractive condition

(a′) In(A)� ≈ In(A).
Note also that, given a well- and nicely moded program P, the above Theorem 4.8 allows us to

identify the subset Sic(P) of S(P), de@ned by

Sic(P) = {A′ ∈S(P) | ∃A nicely moded an renamed apart w:r:t: A′

∃� = mgu(A; A′)
In(A)� ≈ In(A)};

which fully characterizes the behavior of P on nicely moded queries. Therefore, given two well-
and nicely moded programs P1 and P2, they compute the same answer substitutions for any nicely
moded query iF Sic(P1) =Sic(P2).
Let us immediately see some examples. The @rst example demonstrates that the syntactic restric-

tions used in Theorem 4.8 are necessary.

Example 4.9. Consider the following program.

p(X,Y)← equal lists(X,Y),list of zeroes(Y).
equal lists([ ],[ ]).
equal lists([H|T],[H|T’])← equal lists(T,T’).
list of zeroes([ ]).
list of zeroes([0|T])← list of zeroes(T).
mode p(In,Out).
mode equal lists(In,Out).
mode list of zeroes(Out).
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Note that the @rst clause is not nicely moded since the sequence of terms @lling in the output
positions of the body atoms is not linear. The S-semantics of this program restricted to the predicate
p contains all and only all the atoms of the form p(list, list) where list is a list containing only
zeroes. Consider now the atomic query A := p([X1],Y). There exists an input-consuming derivation
starting in it, namely,

p([X1],Y)
!1⇒ equal lists([X1], Y), list of zeroes(Y)

!2⇒
!2⇒ equal lists([ ],T′), list of zeroes([X1|T′])

!3⇒
!3⇒ list of zeroes ([X1])

!4⇒list of zeroes([ ])
!5⇒

with !1 = {X/[X1]}; !2 = {H/X1,T/[ ],Y/[X1|T′]}; !3 = {T′/[ ]}; !4 = {X1/0,T1/[ ]}; !5 = ..
The computed answer substitution is !={X1/0,Y/[0]}. Nevertheless, there does not exist any atom
A′ ∈ S(P) (renamed apart w.r.t. A) such that A and A′ unify with a most general uni@er � such
that �| In(A) is a renaming for A. This is clear from the fact that the atoms belonging to S(P) are
all ground.

This shows that if the program is well-moded but not nicely moded then the implication (i)⇒ (ii)
in Theorem 4.8 does not hold.

Consider now the following program.

p(X)← list(Y),equal lists(X,Y).
equal lists([ ], [ ]).
equal lists([H|T],[H|T′])← equal lists(T,T′).
list([ ]).
list([H|T])← list(T).
mode p(In).
mode equal lists(In, In).
mode list(Out)

This program is nicely moded, but not well-moded: In the last clause the variable H occurring
in the output position of the head does occur neither in an output position of the body nor in
an input position of the head. The S-semantics of this program restricted to the predicate p con-
tains all and only all the atoms of the form p(list) where list is any list containing only distinct
variables. It is easy to see that there does not exist any input-consuming derivation for a query
p(list) with list being a ground list. Indeed, consider the execution of the atom A = p([0]). A
call equal lists([0],[H]) is reached. However, it does not exist any input-consuming derivation
for the atomic query equal lists([0],[H]) with its arguments @lling in both the input positions.
Nevertheless, there exists an atom A′ ∈ S(P) (renamed apart w.r.t. A), e.g., A′ = p([X1]), such
that A and A′ unify with a most general uni@er � such that �| In(A) is a renaming for A (obvious,
since A is ground).

This shows that if the program is nicely moded but not well-moded then the implication (ii) ⇒
(i) in Theorem 4.8 does not hold.

The next example reports two applications of Theorem 4.8.
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Example 4.10. Consider the program APPEND of the introduction with the moding
append(In,In,Out).

• append([X,b],Y,Z) has an input-consuming successful derivation.
In particular, it has an input-consuming derivation with c.a.s. {Z/[X,b|Y]} : This can be con-
cluded by just looking at S(APPEND), from the fact that A= append([X1,X2],X3,[X1,X2|X3])
∈S(P).
Note that append([X,b],Y,Z) is - in its input position - an instance of A.

• append(Y,[X,b],Z) has no input-consuming successful derivations.

This is because there is no A ∈ S(P) such that append(Y,[X,b],Z) is an instance of A in
the input position. This actually implies that—in presence of delay declarations—append(Y,
[X,b],Z) will eventually either deadlock or run into an in@nite derivation; we are going to talk
more about this in the next Section.

Note that the results we have provided hold also in the case that programs are permutation well-
and nicely moded and queries are permutation nicely moded [22], that is programs which would be
well- and nicely moded after a permutation of the atoms in the bodies and queries which would be
nicely moded through a permutation of their atoms.

5. An application: reasoning about deadlock

In this section, we consider again programs employing delay declarations.
An important consequence of Theorem 4.8 is that when the delay declarations imply that the

derivations are input-consuming (modulo ∼), then one can determine from the model-theoretic
semantics whether a query is bound to deadlock or not.

Let us @rst establish some simple notation. In this section we assume that programs are augmented
with delay declarations, and we say that a derivation respects the delay declarations if and only if
every selected atom satis@es the corresponding delay declaration. As we have already stated in the
introduction, we say that a derivation deadlocks if its last query contains no selectable atom, i.e.,
no atom which satis@es the corresponding delay declarations.

Notation 5.1. Let P be a program and A be a query.

• We say that P ∪ {A} is input-consuming correct iF every SLD-derivation of P ∪ {A} which
respects the delay declarations is similar to an input-consuming derivation.

• We say that P ∪ {A} is input-consuming complete iF every input-consuming derivation of
P ∪ {A} respects the delay declarations.

• We say that P ∪ {A} is bound to deadlock if

(i) every SLD-derivation of P ∪ {A} which respects the delay declarations either fails or
deadlocks, and

(ii) there exists at least one non-failing SLD-derivation of P ∪ {A}.
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Example 5.2. Consider the program REVERSE of Example 3.3

reverse(Xs,Ys)← reverse acc(Xs,Ys,[ ]).
reverse acc([ ],Ys,Ys).
reverse acc([X|Xs],Ys,Zs)← reverse acc(Xs,Ys,[X|Zs]).

with modes

mode reverse(In,Out).
mode reverse acc(In,Out,In).

and delay declarations

delay reverse(X, ) until nonvar(X).
delay reverse acc(X, , ) until nonvar(X).

REVERSE∪{reverse(s; Z)} is input-consuming correct and complete provided that Z is a variable
disjoint from term s.

Example 5.3. Consider now the program APPEND augmented with its delay declaration of the intro-
duction.

• APPEND ∪ {append(s; t; Z)} is input-consuming correct and complete provided that Z is a
variable disjoint from the possibly non-ground terms s and t.

• APPEND ∪ {append([X,b],Y,Z)} has an input-consuming successful derivation (see Example
4.10) and is input-consuming complete. Then, we can state that APPEND∪{append([X,b],Y,Z)}
is not bound to deadlock.

Consider now the nicely moded query append(X,Y,Z). Since S(APPEND) contains instances of
it, by Theorem 2.8, append(X,Y,Z) has at least one successful SLD-derivation. Thus, it does not
fail. On the other hand, every atom in S(APPEND) is—in its input positions—a proper instance
of append(X,Y,Z). Thus by Theorem 4.8, append(X,Y,Z) has no input-consuming successful
derivations. Therefore, since APPEND ∪ {append(Y,X,Z)} is input-consuming correct, we can state
that append(X,Y,Z) either has an in@nite input-consuming derivation or it is bound to deadlock.
This fact can be nicely combined with the fact that APPEND is input terminating [13], i.e., all its
input-consuming derivations starting in a nicely moded query are @nite. In [13] we provided con-
ditions which guaranteed that a program is input terminating; these conditions easily allow one to
show that APPEND is input-terminating. Because of this, we can conclude that

• APPEND ∪ {append(Y,X,Z)} is bound to deadlock.

By simply formalizing this reasoning, we obtain the following result.

Theorem 5.4. Let P be a well- and nicely moded program; and A be nicely moded query. If

(1) ∃B ∈S(P), such that A uni<es with B;
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(2) ∀B ∈S(P); if � = mgu(A;B) then �| VIn∗(A) is not a renaming for A,
(3) P ∪ {A} is input-consuming-correct,

then A either has an in<nite SLD-derivation respecting the delay declarations or it is bound to
deadlock.

If in addition P is input-terminating then A is bound to deadlock.

Proof. By (1) and Theorem 2.8, there exists at least one successful SLD-derivation of P ∪{A}. By
(2) and Theorem 4.8 there is no successful input-consuming derivation of P ∪ {A}. Thus, by (3),
there is no successful SLD-derivation of P ∪ {A} which respects the delay declarations. Hence, A
either has an in@nite SLD-derivation respecting the delay declarations or it is bound to deadlock.

Moreover, if P is input-terminating then there cannot exist an in@nite SLD-derivation respecting
the delay declarations for P ∪ {A}; hence A must be bound to deadlock.

Let us see more examples.

Example 5.5. Let us continue to discuss the program APPEND above. Using Theorem 5.4, we can
state that

• APPEND ∪ {append(Y,[X,b],Z)} either has an in@nite derivation or it is bound to deadlock.

Since APPEND is input terminating [13], we can also say that

• APPEND ∪ {append(Y,[X,b],Z)} is bound to deadlock.

Example 5.6. Let us now consider program 15.3 from [23]: QUICKSORT using a form of diFerence-
lists.

% quicksort(Xs,Ys)← Ys is an ordered permutation of Xs.
quicksort(Xs,Ys)← quicksort dl(Xs,Ys,[]).
quicksort dl([X|Xs],Ys,Zs)← partition(Xs,X,Littles,Bigs),
quicksort dl(Littles,Ys,[X|Ys1]), % atom a1
quicksort dl(Bigs,Ys1,Zs). % atom a2

quicksort dl([],Xs,Xs).
partition([X|Xs],Y,[X|Ls],Bs)← X=¡ Y,
partition(Xs,Y,Ls,Bs).

partition([X|Xs],Y,Ls,[X|Bs])← X¿ Y,
partition(Xs,Y,Ls,Bs).

partition([],Y,[],[]).

with the modes

mode quicksort(In, Out).
mode quicksort dl(In, Out, In).
mode partition(In, In, Out, Out).
mode =¡ (In, In).
mode ¿ (In, In).
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This program is permutation well- and nicely moded (it becomes well-moded by permuting atoms
a1 and a2 in the body of the second clause). When used in combination with dynamic scheduling,
the standard delay declarations for it are the following ones:

delay quicksort(Xs, ) until nonvar(Xs)
delay quicksort dl(Xs, , ) until nonvar(Xs)
delay partition(Xs, , , ) until nonvar(Xs)
delay =¡ (X,Y) until ground(X) and ground(Y)
delay ¿ (X,Y) until ground(X) and ground(Y)

While the @rst three declarations are meant to avoid nontermination and to increase e-ciency, the
last two are needed to avoid runtime errors: in fact comparison predicates have to be called with both
arguments ground, otherwise an exception occurs. One can naturally assume that the semantics of the
built-ins ¿ and =¡ is given by the set of ground atoms {>(a,b) | a larger than b} together with
{=< (a,b) | a smaller or equal to b}. The fact that this semantics is ground and that both arguments
of both predicates are input reLects that these predicates have to be called with ground arguments.
Under these assumptions, the S-semantics of the program restricted to the predicates quicksort
and quicksort dl, contains all and only all the atoms of the form

• quicksort(s,t), where s is a ground list and t is an ordered permutation of s;
• quicksort dl(s,t,u), where s is a ground list and t is an ordered permutation of s with u

appended to t.

Observe that, if the terms @lling in the input positions of an atom are variable disjoint from those
@lling in the output positions of the same atom, then the input cannot become instantiated as a “side
eFect” of the instantiation of the output. Hence, we can prove that

• if s and t are variable disjoint terms then QUICKSORT ∪ {quicksort(s; t)} is input-consuming
correct;
• if t is variable disjoint from s and u then QUICKSORT ∪ {quicksort dl(s; t; u)} is input-

consuming correct.
By applying Theorem 4.8 it follows that

• the query quicksort(s,t) is not bound to deadlock provided that s is a list of ground terms;
• quicksort dl(s,X ,t) is not bound to deadlock provided that s is a list of ground terms and X
is a variable disjoint from t.

One might wonder why in order to talk about deadlock we went back to programs using delay dec-
larations. The crucial point here lies in the diFerence between resolvability—via an input-consuming
derivation step - (used in input-consuming programs) and selectability (used in programs using delay
declarations). When resolvability does not reduce to selectability, we cannot talk about (the usual
de@nition of) deadlocking derivation.

Consider the following program, where all atom positions are moded as input.

p(X) ← q(a).
p(a).
q(b).
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There are no delay declarations with respect to which this program is input-consuming complete.
In fact, there are two input-consuming derivations starting in p(X): one fails while the other one
deadlocks. This does not correspond to the usual notion of deadlock: an atom cannot simultaneously
be selectable and deadlocked.

6. Concluding remarks

We have shown that—under some syntactic restrictions—the S-semantics reLects the operational
semantics also when programs are input-consuming. The S-semantics is a denotational semantics
which enjoys a model–theoretical reading.

The relevance of the results is due to the fact that input-consuming programs often allow to
model the behavior of programs employing delay declarations; hence for a large number of pro-
grams employing dynamic scheduling there exists a declarative semantics which is equivalent to the
operational one.

A related work is the one of Apt and Luitjes [5]. The crucial diFerence between this approach and
our is that in [5] conditions which ensure that the queries are deadlock-free are employed. Under
these circumstances the equivalence between the operational and the Herbrand semantics follows.
On the other hand, the class of queries we consider here (the nicely moded ones) includes many
which would “deadlock” (e.g., append(X,Y,Z)). In many cases we capture this behavior by using
Theorem 4.8 which can tell us if a query is “su-ciently instantiated” to yield a success or if it is
bound to deadlock.

Concerning the restrictiveness of the syntactic concepts we use here (well- and nicely moded
programs and queries) we want to mention that [24,13] both contain mini-surveys of programs
indicating whether they are well- and nicely moded or not. From them, it appears that most “usual”
programs satisfy both de@nitions.

Appendix A.

In this appendix we report the proof of Lemma 4.3. Let us @rst introduce some preliminaries.

Definition A.1. Let ! = {x1=y1; : : : ; xn=yn} be a renaming for a term t. We de@ne
←
! as the pure

variable 1–1 substitution {y1=x1; : : : ; yn=xn}.

Observe that:

• The substitution {x1=y1; : : : ; xn=yn; y1=x1; : : : ; yn=xn} is a renaming.

• If ! is a renaming for a term t then
←
! is a renaming for the term t!.

• (!
←
! )|Dom(!) = ..

The following properties hold.



22 A. Bossi et al. / Computer Languages 26 (2000) 1–25

Lemma A.2. Let Q be a query.

(i) If Q is an atomic query then VIn∗(Q) = Var(In(Q)).
(ii) For any pre<x Q′ of Q; VIn∗(Q′) ⊆ VIn∗(Q).
(iii) For any substitution !, VIn∗(Q!) ⊆ Var(VIn∗(Q)!).
(iv) For any substitution !; Var(Out(Q!)) = Var(Out(Q)!).

We can now prove Lemma 4.3.

Lemma 4.3. Let P be a well-moded program; Q be a query and # :=Q
!→Q′ be a partial LD-

derivation of P ∪ {Q}. If !|VIn∗(Q) is a renaming for Q then # is similar to an input-consuming
partial (LD-) derivation.

Proof. We @rst state the following facts.

Claim 1. Let ! be a substitution; S be a set of variables and t be a term such that !|S is a
renaming for t. Suppose that ! := !1!2. Then; !1|S is a renaming for t.

Claim 2. Let ! be a substitution; S be a set of variables and t be a term such that !|S is a
renaming for t. Suppose that ! := !1!2. Let S ′ = {x ∈ S | x �∈ Dom(!1)}. Then; !2|Ran(!1|S)∪S′ is a
renaming for t!1.

The proof proceeds by induction on len(#).
Base Case. Let len(#) = 0. In this case Q = Q′ and the result follows trivially.
Induction step. Let len(#)¿ 0. Suppose that Q :=p(s; t);C and

# :=p(s; t);C
!1⇒ (B;C)!1

!2→Q′

where p(s; t) is the selected atom of Q, c :=p(u; v) ← B is the input clause used in the @rst
derivation step, !1 is a relevant mgu of p(s; t) and p(u; v) and != !1!2.

By the Lemma’s hypotheses and Claim 1, it follows that !1|VIn∗(Q) is a renaming for Q. Observe
that

Var(s) = Var(In(p(s; t)))
= VIn∗(p(s; t)) by Lemma A:2 (i)
⊆ VIn∗(Q) by Lemma A:2 (ii):

By relevance of !1, !1|VIn∗(Q) = !1|s. Let !1|s = {x1=y1; : : : ; xn=yn}. Note that {x1; : : : ; xn; y1; : : : ; yn}
is a set of distinct variables. Consider the renaming ( = {x1=y1; : : : ; xn=yn; y1=x1; : : : ; yn=xn}. Since
Var(() ⊆ Var(!1), the substitution !1( is a relevant mgu of p(s; t) and p(u; v) (see [11], Lemma
2:23).

It is easy to see that !1(= !1(
←
!1|s). Let !′1 = !1(

←
!1|s). We have that s!′1 = s!1(

←
!1|s) = s. Therefore,

(1) p(s; t);C
!′1⇒ (B;C)!′1

is an input-consuming LD-derivation step.
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Since !1|s is a renaming for Q and, by standardization apart, Var(B)∩Var(Q)= ∅, we have that !1|s
is a renaming for (B;C). Hence, (

←
!1)|S where S is the set of variables {x| x ∈ Var((B;C)!1) and

x ∈ Ran(!1|s)}, is a renaming for (B;C)!1. Now observe that (B;C)!′1=(B;C)!1(
←
!1|s)=(B;C)!1(

←
!1)|S .

Therefore, (B;C)!′1 is a variant of (B;C)!1. By Lemma 2.2, there exists a partial LD-derivation

(B;C)!′1
!′2→Q′′ similar to (B;C)!1

!2→Q′. It follows that

(2) p(s; t);C
!′1⇒(B;C)!′1

!′2→Q′′

is an LD-derivation of P ∪ {Q} that is similar to #.

Let !′ = !′1!′2. By Lemma 2.3, Q! and Q!′ are variants of each other.
Consider now the set S ′ = VIn∗((B;C)!′1). We prove that !′2|S′ is a renaming for (B;C)!′1. Let

x ∈ S ′. There are two cases.

(a) x ∈ VIn∗(B!′1). By Lemma A.2 (iii), VIn∗(B!′1) ⊆ Var(VIn∗(B)!′1). Then, there exists z ∈
VIn∗(B) such that x ∈ Var(z!′1). By well-modedness of c :=p(u; v) ← B, z ∈ Var(u). Since u!′1 =
s!′1, we have that there exists y ∈ Var(s), i.e., y ∈ VIn∗(Q), such that x ∈ Var(y!′1).

(b) x ∈ VIn∗(C!′1) and x �∈ Var(Out(B!′1)). We distinguish two cases.
(b1) x ∈ Var(t!′1). From the fact that t!′1 = v!′1, we have that x ∈ Var(v!′1), i.e., there exists z ∈

Var(v) such that x ∈ Var(z!′1). Since z occurs in an output position of the head of c :=p(u; v)← B
and c is well-moded, we have that either z ∈ Var(Out(B)) or z ∈ Var(u). Let us distinguish these
two cases.

(b11) z ∈ Var(Out(B)). In this case x ∈ Var(z!′1) ⊆ Var(Out(B!′1)). However, this contradicts
the hypothesis that x �∈ Var(Out(B!′1)).

(b12) z ∈ Var(u). In this case, since u!′1 = s!′1, we have that x ∈ Var(s!′1). Hence, there exists
y ∈ Var(s), i.e., y ∈ VIn∗(Q), such that x ∈ Var(y!′1).
(b2) x �∈ Var(t!′1). By Lemma A.2 (iii), VIn∗(C!′1) ⊆ Var(VIn∗(C)!′1). Thus, there exists y ∈

VIn∗(C) such that x ∈ Var(y!′1). Note that y �∈ Var(t), otherwise we would have x ∈ Var(t!′1)
contradicting the hypothesis. Hence, y ∈ VIn∗(Q).

We have proved that
(3) for all x ∈ S ′, there exists y ∈ VIn∗(Q) such that x ∈ Var(y!′1).
From the fact that Q! and Q!′ are variants of each other and !|VIn∗(Q) is a renaming for Q, it

also follows that !′|VIn∗(Q) is a renaming for Q.
Let S ′′ = {x ∈ VIn∗(Q)| x �∈ Dom(!′1)}. By Claim 2, !′2|Ran(!′1|VIn∗(Q))∪S′′ is a renaming for Q!′1. By

(3), S ′ ⊆ Ran(!′1|VIn∗(Q)) ∪ S ′′. Hence, by standardization apart, !′2|S′ is a renaming for (B;C)!′1. By
the induction hypothesis, there exists a partial LD-derivation

(4) (B;C)!′1
!′′2→Q′′′

which is similar to (B;C)!′1
!′2→Q′′ and it is input-consuming.

Hence, by (1), (2) and (4),

#′ :=p(s; t);C
!′1⇒ (B;C)!′1

!′′2→Q′′′

is an input-consuming partial LD-derivation of P ∪ {Q} such that # and #′ are similar.
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