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Abstract

Combinatorial optimization problems defined on sets of phylogenetic trees are an
important issue in computational biology, for instance the problem of reconstruction
a phylogeny using maximum likelihood or parsimony approaches. The collection of
possible phylogenetic trees is arranged as a so-called Robinson graph by means of
the nearest neighborhood interchange move. The coherent algebra and spectra of
Robinson graphs are discussed in some detail as their knowledge is important for
an understanding of the landscape structure. We consider simple model landscapes
as well as landscapes arising from the maximum parsimony problem, focusing on
two complementary measures of ruggedness: the amplitude spectrum arising from
projecting the cost functions onto the eigenspaces of the underlying graph and the
topology of local minima and their connecting saddle points.
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1 Introduction

Trees are used extensively in many fields to depict hierarchical relationships.
In biology evolutionary relationships between species or individual genes are
customarily represented in this way. The building of phylogenetic trees from
sequence (and, more recently, structural) data is hence a central problem in
computational biology. The vertices of a phylogenetic tree represent taxonomic
units, the graph’s topology delineates the genealogical relationships between
them, and the branch lengths reflect the time of divergence. Many methods
exist for the construction of phylogenetic trees. The more sophisticated among
them seek those trees in which the taxonomic units evolve with the least
evolutionary change [14] (most parsimonious trees) or trees with the maximum
likelihood given a stochastic model of sequence evolution [16].

In mathematical terms we can rephrase the phylogeny reconstruction problem
as follows: Let A be a set of extant taxonomic units or “species”. A phyloge-
netic tree on A is an unrooted unordered tree all inner vertices of which have
degree 3 and such that the leaves are uniquely labeled by the elements of A.
Furthermore, we are given a cost function f that allows us to determine “how
well” a particular tree fits the genealogical relationships among the species
in A. A particular example, the so-called parsimony score will be discussed
in some detail in section 4.2. The search for the optimal tree is hence recast
as a combinatorial optimization problem: Given given A, BA, and the fitness
function f on BA, finding the optimal phylogenetic tree consists of minimizing
f . We write Bn for B{1,2,...,n}.

The basic variants of these tree reconstruction problems are all NP-complete
[21, 12]. There are

|Bn| =
n−2
∏

k=1

(2k − 1) = 1 · 3 · 5 · (2n − 5) (1)

phylogenetic trees on n species [41, 39]. Exhaustive search is hence limited to
small values of n, say n ≤ 12 with |B12| ≈ 6.5 108 different trees. Computer
programs such as Felsenstein’s PHYLIP hence resort to heuristic searches [17].

We will be concerned here with qualitative features of landscapes on spaces of
phylogenetic trees. From the mathematical point of view, a landscape consists
of a finite set X of configurations, a fitness functions f : V → R, and a
neighborhood relation N on X. In other words, (X,N ) forms a (finite) graph
Γ, and the landscape is viewed as function of its vertices [42].

The focus of this paper is to cast the reconstruction problem for phyloge-
netic trees in an algebraic framework. Early work of Robinson [39] is used
to construct a graph on Bn by using the nearest neighbor interchange move
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Fig. 1. Nearest neighbor interchange moves

set. In this setting, cost functions can be studied as elements in an associated
coherent algebra and associated fitness landscapes can be analyzed according
to their amplitude spectrum [25, 42, 29] and by means of their barrier trees
[22, 20]. The maximum parsimony problem is used as an illustrative example.

2 Robinson Graphs

2.1 Definition

If T ∈ Bn, we write E(T ) for the edge set of the tree and V (T ) for its vertex
set. A vertex is interior if it is not a leaf. An edge is interior if its connects
two interior vertices. We denote the set of interior vertices and edges by V̂ (T )
and Ê(T ), respectively. For later reference we note that |V (T )| = 2n − 2,
|E(T )| = 2n − 3, |V̂ (T )| = n − 2, and |Ê(T )| = n − 3. The interior subtree
T ◦ = (V̂ , Ê) of T consists of the interior vertices and edges.

A nearest neighbor interchange (nni) at the interior edge e = {x, y} consists of
exchanging a subtree attached to x with a subtree attached to y, see Fig. 1.
Clearly only two of the four possible swaps yield distinct trees. Since there are
|Ê(T )| = n− 3 interior edges for each T ∈ Bn, there are 2(n− 3) possible nni

moves, each leading to a different tree.

Clearly, an nni can be undone by a second nni using the same edge. Thus we
may regard Bn as the vertex set of an undirected graph Γn in which edges
connect trees that differ by a single nni move. The following basic properties
of Γn are verified already in Robinson’s original paper [39]:
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(i) Γn is 2(n − 3) regular.
(ii) Γn is connected.
(iii) Γn is not distance degree regular for n ≥ 6 because the number w2(T ) of

neighbors in distance 2 depends on the topology of the interior interior
subtree T ◦ of T ∈ Bn. Γ4 = K3 and Γ5 are distance degree regular.

The diameter of Γn is considered in detail in [34].

Note that nni is by no means the only reasonable edit operation on phylogenetic
trees. Other commonly used move sets are “Subtree Pruning and Regrafting”
spr and “Tree Bisection-Reconnection” tbr, see [45]. It can be shown that a
nni-move is also a spr-move and a spr-move is also a tbr-move. The Robinson
graphs are hence subgraphs of the spr and tbr graphs, which will be studied
elsewhere.

2.2 Coherent Algebras

A matrix algebra is a linear space of matrices which is closed with respect to
matrix multiplication. The full matrix algebra with rows and columns indexed
by elements of X is denoted MatX . Various subalgebras appear as subsets of
MatX specified by requiring certain constraints on the entries.

Let I be the unit matrix of MatX and J the matrix with all entries equal to
1. For two matrices A and A′ define the component-wise product A ◦ A′ by

(A ◦ A′)ij = AijA
′
ij. (2)

A sub-algebra A of MatX is called a coherent or a cellular algebra (on X) if it
contains I and J, and if it is closed with respect to the component-wise product
and with respect to transpose. Coherent algebras have been introduced and
studied first in [50, 49], and independently in [26, 27, 28]. Since then a rich
theory has been built up around them in the literature. Today, the notion of
coherent algebra and the equivalent notion coherent configuration (see [27])
are among the main tools of algebraic combinatorics. A friendly introduction
to coherent algebras taking into account the interests of chemists is given
in [31], while the paper [13] is written for mathematicians and covers the
most important theoretical aspects. We list here some properties of coherent
algebras, relevant for the analysis which follows. For proofs see [26].

(i) Every coherent algebra possesses a unique linear basis A1, . . . ,As con-
sisting of 0, 1-matrices Ai, called the standard basis, such that
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(a) I=
t
∑

i=1

Ai for some t, 1 ≤ t < s, and (3)

(b) J=
s
∑

i=1

Ai (4)

The second condition says that Ai ◦ Aj = 0 for i 6= j.
(ii) For every basis matrix Ai there is a basis matrix Ai′ such that Ai′ = AT

i .
Note that in general i′ 6= i, the matrices Ai with i > t are not necessarily
symmetric.

(iii) The product of two basis matrices is a linear form

AiAj =
r
∑

k=1

pk
ijAk (5)

with integral coefficients pk
ij which are called the structure constants of

the algebra.
(iv) According to (i.a) the sets Ci = {v ∈ X : (Ai)vv = 1}, 1 ≤ i ≤ t, form

a partition CX of X, called the cell partition. The sets Ci are called the
cells of the coherent algebra. The cell partition is equitable 1 with respect
to (the graph associated with) every basis matrix Ai.

(v) The basis matrices Ai can be considered as adjacency matrices of (in
general directed) graphs Gi = (X, Ei), the basis graphs. Their arc sets
are Ei = {(u, v) : (Ai)uv = 1}. The sets Ei, 1 ≤ i ≤ s, are called the
basis sets of the algebra. They form a partition of X ×X which is called
a coherent configuration.

(vi) For each basis set Ei there are cells Cj, Ck ∈ CX such that Ei ⊆ Cj ×Ck.
Further, in this case,

|{v : (u, v) ∈ Ei}| =











|Ei|
/

|Cj| for u ∈ Cj

0 otherwise.

|{v : (v, u) ∈ Ei}| =











|Ei|
/

|Ck| for u ∈ Ck

0 otherwise.

(6)

(vii) A coherent algebra for which t = 1 (or with other words, in which I is a
basis matrix) is called homogeneous. In a homogeneous coherent algebra
C1 = X, so the cell partition is trivial.

The smallest coherent algebra containing the adjacency matrix A of a graph
Γ is called the coherent algebra generated by Γ and denoted by 〈〈Γ〉〉.

1 A partition {C1, . . . , Cm} of the vertex set of a graph is equitable if, for any choice
of i and j, all vertices in Ci have the same number Âij of neighbours in Cj . The
matrix Â is the collapsed adjacencency matrix.
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Fig. 2. Interior tree topologies for n = 4 to n = 9.

2.3 The Cell Partition of Robinson Graphs

The structure of the coherent algebra 〈〈Γn〉〉 and its spectral properties can be
understood in terms of natural symmetries of Γn.

Theorem 1 Let T1 and T2 be two phylogenetic trees such that their interior
trees are equal, T ◦

1 = T ◦
2 . Then there is an automorphism α : Bn → Bn of Γn

such that α(T2) = T1.

Proof. Let π be a permutation of {1, 2, . . . , n}. Then the action of π on
{1, 2, . . . , n} extends to an action απ on Bn by permuting the labels on the
leaves. The action of απ clearly commutes with any nni move, hence απ is an
automorphism of Γn. For each pair T1, T2 of trees with the same interior tree
T ◦ there is a permutation π such that T1 = π(T2), hence trees with the same
interior tree are contained in the same orbit of Aut[Γn].

Definition 1 The interior tree partition of Bn consists of the classes of trees
that have the same interior tree.

Using definition 1 we can rephrase Theorem 1 as follows: The interior tree
partition of Bn is finer than the cell partition of the coherent algebra 〈〈Γn〉〉.

For n = 5 there is only a single interior tree, which is isomorphic to the path
P3. By theorem 1 Aut[Γ5] has only a single orbit, i.e., Γ5 is vertex transitive.
This is not true for n ≥ 6. In Figure 2 we show the interior trees for n = 4 to
n = 9.
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A most appealing result on Robinson graphs is the following converse of The-
orem 1:

Theorem 2 The interior tree partition of Bn equals the cell partition of the
coherent algebra 〈〈Γn〉〉.

Proof. The proof of this theorem requires the knowledge of quite a few details
of the structure of Γn. Therefore, we only give a short sketch here. For the
complete proof we refer to [4].

Let Cn be the cell partition of Γn. As mentioned in 2.2(iv), Cn is equitable with
respect to every basis matrix Ai. This implies that the entries of any two rows
(columns) of an arbitrary matrix A′ in 〈〈Γn〉〉 belonging to trees T and T ′ in
the same cell of Cn must sum to the same amount. In particular, this means
that for any k, the number of trees at distance k must be the same for both
T or T ′. We use this criterion several times in order to distinguish trees which
belong to different cells.

Interior trees have vertices of degree 1, 2, or 3. Let their numbers be n1, n2, and
n3, respectively. These numbers are not independent. We have n2 = n1−2 and
n3 = n−2n1. In [39] it was shown that the number of trees at distance 2 from
a given tree T depends only on the number n1. From this we see immediately
that n1, n2, and n3 are constant on each cell of Cn. Since a path is the only
tree with n3 = 0, all trees in Γn the interior tree of which is a path belong to a
single cell, say to C1. Since any two paths of the same length are isomorphic,
C1 is an orbit of Aut[Γn].

Any single nni can change the diameter of a tree by at most one unit. The
diameter increases if and only if the nni is made using an edge having exactly
one of its vertices on a longest path in the interior tree, while it decreases if
and only if the nni is made using an edge which is part of all longest interior
paths. This information together with the fact that the maximum diameter
is realized in trees of C1 only, can be used to prove (by downward induction)
that the diameter is constant on each cell.

The remaining steps in the proof for the theorem are more involved. Essen-
tially, it depends upon showing that the interior tree T ◦ of a tree T is uniquely
determined up to isomorphism by the number of its neighbors having larger
diameter and by the isomorphism type of the interior trees of these neighbors.
All details are given in [4].

2.4 Small Robinson Graphs

For small values of n a complete analysis of the Robinson graphs is feasible.
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Fig. 3. Γ5 = L[P ].

• Γ1 = Γ2 = Γ3 = K1 since there is only a single phylogenetic tree with n = 1,
2, or 3 end-vertices.

• Γ4 = K3, since there are only the three trees shown in Figure 1.
• Γ5 is easily constructed explicitly, see Figure 3. It is distance regular with

diameter 3. The collapsed adjacency matrix (structure matrix)

Â =





















0 4 0 0

1 1 2 0

0 1 2 1

0 0 4 1





















(7)

(or, more precisely the off-diagonal entries known as the intersection array)
identify Γ5 as a known distance-transitive graph, namely the line graph of
the Petersen graph L[P ] [6, Thm.7.5.3]. Since it contains K5 as a minor it
is not planar. The Laplacian spectrum of Γ5 is easily computed explicitly:

j = 0 1 2 3

Λj = 0 2 5 6

mult(Λj) = 1 5 4 5

(8)

For n ≤ 9 we were able to generate the Robinson graphs on the computer. For
n = 6, 7 the adjacency matrix is still small enough so that the spectrum of
the Laplacian can computed directly via matrix diagonalization. Additional
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Table 1
Some numerical data on small Robinson graphs. The values for diamΓn are taken
from [34].

n |V | deg diam Cells dim〈〈Γn〉〉 |spec| Λmax

3 1 0 0 1 1 1 0

4 3 2 1 1 2 2 3

5 15 4 3 1 4 4 6

6 105 6 5 2 31 10 9

7 945 8 7 2 243 46 12

8 10395 10 10 4 ? 213 15

9 135135 12 12 6 ? ≥1041 18

algebraic information can be obtained by computing the coherent algebra 〈〈Γ〉〉
using Oliver Bastert’s program qweil [2]. In particular, the algebra 〈〈Γ〉〉 is
not homogeneous (and hence not commutative [26]) for n ≥ 6. Summary
information on the coherent algebras of Γ6 and Γ7 can be found in Table 1.

Theorem 1 together with the following result from [44] sets the stage for an
efficient way of computing the spectrum of Γn for a few larger values.

Theorem 3 Let π(κ) = {X (κ)
1 , . . . , X(κ)

sκ
}, 1 ≤ κ ≤ ν, be a sequence of equi-

table partitions satisfying the condition that for every x ∈ X there is a κ with
{x} ∈ π(κ). Then

ν
⋃

κ=1

spec(C(κ)) =
ν
⋃

κ=1

spec(R(κ)) ⊆ spec(A) ⊆
ν
⋃

κ=1

spec(R(κ)), (9)

The structure matrices R(κ) and C(κ) of π(κ) are defined by

R
(κ)
ik =

∑

x∈X
(κ)
k

Aux independent of u ∈ X
(κ)
i

C
(κ)
ik =

∑

x∈X
(κ)
i

Axy independent of y ∈ X
(κ)
k

(10)

The equitable partitions obtained from different representatives T of the same
class of the cell partition of A are equivalent in the sense that they yield the
same structure matrices (possibly up to permutations of the indices). Thus we
obtain the complete spectrum of A as the union of the spectra of the structure
matrices R(κ) where κ now indexes the classes of the cell partition of 〈〈Γn〉〉.
This is equivalent to computing equitable partitions for a single reference tree
from each class of the interior degree partition.
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Fig. 4. Laplacian Spectra of the Robinson graphs Γ6, Γ7 and Γ8

The point is that the equitable partition “anchored” at a tree T can be com-
puted very efficiently in O(|E| log |V |) time and O(|E|) space using qstab [3].
This has to be done only for a single representative of each class of interior
trees. Furthermore, the dimension of the structure matrices R(κ) is in general
much smaller than |V |. The spectra of R(κ) can either be computed directly, or
one can try to find equitable partitions of R(κ) and to compose spec(R(κ)) from
a collection of even smaller matrices, following the procedure outlined in [44].
The eigenvectors can then be obtained by numerically solving (A− λI)x = 0.
The use of symmetry-based techniques for block diagonalization of adjacency
matrices also has been used to analyze the spectra of Cayley graphs (see eg.
[33]).

The results for n = 6, n = 7, and n = 8 are summarized in Figure 4. For n = 9
we obtain 6 inequivalent equitable partitions with 1534, 3610, 5901, 10815,
19698, and 21252 cells, respectively. The structure matrices of the smallest four
partitions were diagonalized directly, yielding a lower bound of 1041 distinct
eigenvalues.

3 Rugged Landscapes

3.1 Correlation Measures and Amplitude Spectra

All measures discussed in this section are invariant under affine transforma-
tion. Hence we may assume

f =
1

|X|

∑

x∈X

f(x) = 0

Var[f ] =
∑

x∈X

(

f 2(x) − f
2
)

= 〈f, f〉 = 1
(11)

Let Γ = (X,N ) be a graph with adjacency matrix A. Then the diagonal ma-
trix of vertex degrees D has diagonal entries Dxx =

∑

y Axy. The canonical
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Markov transition operator on Γ is T = AD−1. The “random-walk” autocor-
relation function [48] of the landscape f satisfying (11) is [42]

r(s) = 〈f,Tsf〉 (12)

From (12) one obtains the correlation length of f on Γ as ` =
∑∞

s=0 r(s).

The Laplacian matrix of Γ is defined as

−∆ = D − A (13)

is a particularly useful algebraic representation of Γ. It is a symmetric non-
negative definite matrix with smallest eigenvalue 0, the multiplicity of which
equals the number of connected components. For surveys on graph Laplacians
see e.g. [36, 37] and the book [10].

In order to show ∆,T ∈ 〈〈Γ〉〉 it suffices to verify that D ∈ 〈〈Γ〉〉, which follows
from the fact that the degree partition is coarser than the cell partition for any
graph, see e.g. [31]. If Γ is regular, as is the case with the Robinson graphs,
then A, T and −∆ have the same eigenvectors since D is a multiple of the
identity matrix. Let {ϕk} be an orthonormal basis of −∆ with associated
eigenvalues Λk. The decomposition

f =
∑

k

akϕk (14)

is sometimes called a Fourier decomposition of the landscape. The amplitude
B(Λ) of f on the eigenspace EΛ = {ξ| − ∆ξ = Λξ} is the fraction of the
landscape variance that is contributed by the projection of f onto EΛ. Thus
B(Λ) is invariant under affine transformations f → σf +f . Using (11) we can
express B(Λ) in terms of the the Fourier decomposition (14) in the form

B(Λ) =
∑

k:−∆ϕk=Λϕk

a2
k (15)

for all eigenvalues Λ 6= 0. By (11) we have
∑

k a2
k = 1 and B(0) = a2

0 = f
2

= 0.
The corresponding expressions for non-normalized landscapes can be found
in [42]. In general we have B(Λ) ≥ 0 and

∑

Λ B(Λ) = 1, with the lanscape
becoming more rugged as the high-Λ amplitudes increase.

In the case of D-regular graphs, which of course includes the Robinson graphs,
there are simple expressions for the correlation function r(s) and the correla-
tion length ` in terms of the amplitude spectrum [42]:

r(s) =
∑

Λ

B(Λ)
(

1 −
Λ

D

)s

and ` = D
∑

Λ

B(Λ)

Λ
(16)
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The amplitude spectrum is therefore a detailed correlation measure, with the
landscape becoming more rugged the larger the high-Λ amplitudes are. A land-
scape that is – up to an additive constant – an eigenfunction of −∆, i.e., for
which B(Λ) = 1 for one eigenvalue Λ 6= 0 and B(Λ′) = 0 for all Λ′ 6= Λ is called
elementary. This notion is important because on the one hand many of the
best studied combinatorial optimization problems form elementary landscapes
on their “natural” configurations graphs [24, 42, 43], and on the other hand
eigenfunctions of the graphs Laplacian have a number of distinct geometric
properties: All their local minima have a value below the landscape average
[24], and they satisfy a version of Courant’s nodal domain theorem, implying
that ruggedness indeed increases with the location in the spectrum of −∆

[11].

3.2 Computing Amplitude Spectra on Very Large Graphs

For graphs with more than a few thousand vertices it becomes impossible
to compute all eigenvectors directly (e.g. using the QR algorithm) since the
Laplacian matrix −∆ becomes too large even to fit into the computer’s mem-
ory. However, in many cases these matrices are extremely sparse. Moreover, we
may know the Laplacian eigenvalues from its equitable partitions. In this case
we use the accompanying knowledge of the spectral radius of the Laplacian to
transform the problem to a more tractable eigenspace computation.

Lemma 1 Let B be a matrix with spectral radius %(B) let ξ be an eigenvector
of B belonging to the eigenvalue λ. Then the matrix Qλ, defined by

Qλ = I −
1

2 (1 + %(B)2)
(B − λI)2 (17)

has spectral radius %(Qλ) = 1 and ‖Qλξ‖ = ‖ξ‖ if and only if Bξ = λξ.

Proof. Consider an eigenvector ζ of B with eigenvalue µ. We have

1 ≥
〈ζ,Qλζ〉

〈ζ, ζ〉
= 1 −

(µ − λ)2

2(%(B)2 + 1)
≥ 1 −

2%(B)2

1 + %(B)2
> −1

We see immediately that 〈ζ,Qζ〉 ≤ 〈ζ, ζ〉 with equality if and only if µ = λ.
The lemma now follows directly from the properties of the Rayleigh quotient.

Lemma 1 allows us to obtain the amplitude of a landscape f within the
eigenspace of B belonging to λ from Qλ by an iterative procedure.

Lemma 2 Let f be a landscape satisfying (11) and let λ be an eigenvalue of
B. Then the amplitude B(λ) of f within the eigenspace of B belonging to λ

12



satisfies

B(λ) = lim
k→∞

〈f,Qk
λf〉 (18)

Proof. Let {ϑk} be an orthonormal basis of eigenvectors of Q with associated
eigenvalues µk. We expand f =

∑

k akϑk and obtain

〈f,Qk
λf〉 =

∑

i,j

aiµ
k
jaj〈ϑi, ϑj〉 =

∑

i

a2
i µ

k
i

Lemma 1 now implies
∑

i:µi=1 a2
i = B(λ) because the eigenvectors of Qλ with

eigenvalues µk = 1 span the eigenspace of B with eigenvalue λ.

The utility of (18) derives from the fact that by the definition of Qλ (17) we
may compute Qλf by instead computing Bf and B2f without storing more
than the “adjacency list” of the graph. If we use βx to denote the set of vertices
adjacent to x we obtain

[Bf ]x =
∑

y∈βx

f(y) and [B2f ]x =
∑

y∈βx

∑

z∈βy

f(z) (19)

On the other hand (18) is inconvenient for practical computations since inac-
curacies in Qλ are amplified exponentially. Thus we first iterate
f (k+1) = (1/‖Qλf

(k)‖)Qλf
(k) to convergence and compute B(λ) = 〈f, f (∞)〉.

If B(λ) = 0, or is very small, then it is possible that f (k) can converge to
an eigenvector of Qλ whose eigenvalue associated eigenvalue is smaller than
1, but whose projection onto the eigenspace is still non-vanishing. Hence it is
necessary to check that ‖f (∞)−Qλf

(∞)‖ is smaller than a prescribed tolerance.
Otherwise we have B(λ) = 0 (within the numerical tolerance).

The major drawback of this approach is that the speed of convergence implicit
in (18) can be very poor. The error term is given by the contributions of all
other eigenspaces and hence is bounded above by ε(k) = µk

2 after k iterations,
where µ2 denotes the second-largest eigenvalue of Qλ. From (17) we have

µ2 ≈ 1 −
1

2

(

∆λ

%(B)

)2

, (20)

where ∆λ is the minimum difference between λ and the next closest eigenvalue
of B. The number of iteration required to reach an accuracy of K digits
therefore scales as O [K · (%(B)/∆λ)2]. A more efficient numerical procedure
would therefore be desirable if the Laplacian spectrum contains eigenvalues
which are not well separated. We remark that a straightforward application of
a Lanczos iteration does not work because of the large multiplicities of most
eigenvalues [23].
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3.3 Barrier Trees

Local optima offer an alternative approach to quantify ruggedness. Intuitively,
a more rugged landscape implies more local optima. It suffices to consider only
local minima.

Definition 2 A vertex x is a local minimum of a landscape f on Γ = (X,N )
if f(x) ≤ f(y) for all neighbors y of x.

The use of ≤ instead of < is customary in discrete systems.

Local optima are separated by saddle points and fitness barriers. Let x̂ and ŷ
be two local minima and let p be a path in Γ from x̂ to ŷ. Then the fitness
barrier separating x̂ from ŷ is

f [x̂, ŷ] = min

{

max
[

f(z)
∣

∣

∣z ∈ p
]

∣

∣

∣

∣

∣

p : path from x̂ to ŷ

}

(21)

A point ẑ ∈ X satisfying the minimax condition (21) is a saddle point of
the landscape. The saddle point fitnesses f [x̂, ŷ] form an ultrametric distance
measure on the set of local minima (see e.g. [38]). This hierarchical structure
can be represented by the barrier tree of the landscape. Its leaves are the local
minima and its internal nodes correspond to saddle points.

Barrier trees have been considered recently for various models of disordered
systems ranging from biopolymers to spin glasses and combinatorial optimiza-
tion [5, 18, 20, 22, 32]. In this contribution we use a modified version of the
program barriers, which was originally developed for the analysis of RNA
folding landscapes [20]. A detailed description of the algorithm can be found
in [18], where barriers is used to analyze the energy landscapes of spin glass
models.

Figure 5 shows the amplitude spectrum and barrier tree for an uncorrelated
random landscape on Γ7. The barrier enclosing a local minimum is the height
of the lowest saddle point that gives access to a more favorable minimum. In
symbols:

B(x̂) = min
{

f [x̂, ŷ] − f(x̂)
∣

∣

∣ŷ : local minimum such that f(ŷ) < f(x̂)
}

(22)

The barrier heights can be directly read off the barrier trees. We use the middle
panel of Figure 6 as an example: B(3) = 0.63, the fitness difference between
the local minimum of 3 and the saddle point separating 3 from 2. The value
B(2) = 1.62 is the fitness of the saddle point separating 1 from the subtree
{2, 3, 4, 5, 6}.
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Fig. 5. Amplitude spectrum and barrier tree of a REM on Γ7.

If B(x̂) = 0 then the local minimum x̂ is marginally stable. It is easy to check
that eq.(22) is equivalent to the definition of the depth of a local minimum in
[30]. It agrees for meta-stable states with the more general definition of the
depth of a “cycle” in the literature on inhomogeneous Markov chains [1, 8, 9].
The barrier height B(x̂) essentially measures how hard it is to escape form a
local minimum.

4 Landscapes on Robinson Graphs

4.1 Simple Examples

It will be convenient to represent a phylogenetic tree by the collection of its
splits: Let e ∈ E(T ) is an edge in the phylogenetic tree T , and denote by Le

and L̄e are the sets of leaves in the two connected components of T \ {e}.
The pair sT

e = {Le, L̄e} is the split associated with the edge e. A set of splits
S(T ) = {sT

e |e ∈ T} is compatible if for any two splits {A, A′}, {B, B′} ∈ S(T )
at least one of the four intersections A∩B, A∩B ′, A′∩B, A′∩B′ is empty. The
split set of tree T is always compatible, and conversely, a compatible system
of splits defines a unique tree [7].

Proposition 4 [47, 40] Two phylogenetic trees T and T ′ are nni neighbors if
and only if the symmetric difference S(T )4S(T ′) contains exactly 2 splits.

In the following let v ∈ V̂ (T ) be an interior vertex of T . The three edges
incident with v will be denoted by ev, e

′
v, e

′′
v . The close relationship between

splits and the nni neighborhood suggests that simple landscapes on Robinson
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Fig. 6. Expected Amplitude spectra (l.h.s.) and barrier trees (r.h.s) of the simple
split-based cost functions defined (from top to bottom) in equations (23-25) for
n = 7. The error bars show the standard deviations of the distribution of amplitudes
when the split weights µi(s) are drawn independently from a uniform distribution.
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graphs can be constructed as sums of weights µi(s) defined for the individual
splits. We consider the following three simple cost functions:

f1(T )=
∑

s∈S(T )

µ1(s) (23)

f2(T )=
∑

s∈S(T )

[

µ2(s
T
ev

)µ2(s
T
e′v

) + µ2(s
T
ev

)µ2(s
T
e′′v

) + µ2(s
T
e′v

)µ2(s
T
e′′v

)
]

(24)

f3(T )=
∑

v∈V̂ (T )

µ3(s
T
ev

)µ3(s
T
e′v

)µ3(s
T
e′′v

) (25)

The examples shown in Figure 6, the weights µi(s) drawn independently from
a uniform distribution. Each of these three landscapes has an amplitude spec-
trum that is concentrated around the lowest non-zero eigenvalue Λ1 of the
Laplacian. Their barrier trees are also similar. Not surprisingly, the number
of local minima is much smaller than in the uncorrelated random landscape
of Figure 5. Also note that most local minima have low barriers.

4.2 The Maximum Parsimony Problem

Suppose we are given a matrix C = (ci(v)) describing m characters of a set of
n species. In molecular systematics, the m characters are the m positions of
an DNA or protein sequence of length m, or more precisely, C is a multiple
alignment of n sequences, one from each species (see e.g. [46]). What is the
optimal phylogeny for these species, i.e., the one minimizing the number of
mutation events?

Given a tree T and the vector of m characters for each vertex v of T the
parsimony score of ps(T ) is defined as

ps(T ) =
∑

(u,v)∈E(T )

∣

∣

∣{j : cj(u) 6= cj(v)}
∣

∣

∣ (26)

In the context of molecular biology ps(T ) is the total number of mutation
events along the phylogenetic tree. In practice, however, the characters ci(v)
are only known for the leaves of T , not for the internal vertices. The small par-
simony problem consists of finding an assignment of characters to the interior
nodes of T such that ps(T ) is minimized, subject to a given set of characters at
the leaves. This problem can be solved in O(n) steps using Fitch’s algorithm
[19] for a single character c(v) at each leave. The small parsimony problem
is therefore solved by applying Fitch’s algorithm separately for each charac-
ter. The resulting total score can be interpreted as the minimum number of
mutation events that can generate the observed characters at the leaves given
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Table 2
The largest amplitudes of the parsimony landscapes of Figure 7.

p Λp random aligned Picorna

random

1 0.987478 0.7609 0.8325 0.7359

4 2.362683 0.0949 0.0956 0.1889

5 2.670694 0.0075 0.0134 0.0220

8 3.244050 0.0045 0.0046 0.0160

12 4.083940 0.0015 0.0055 0.0104

20 5.000000 0.0318 0.0002 0.0006

35 6.000000 0.0147 0.0002 0.0001

the order of the speciation events (i.e., given the tree T ). It will be denoted
by pc(T ) to emphasize that it depends on the input data c. The maximum
parsimony problem consists of finding the tree that minimizes pc(T ) over the
set of all trees T ∈ Bn. Maximum parsimony is a widely used technique for
inferring molecular phylogenies [17].

Maddison [35] noted that heuristic search procedures for maximum parsimony
trees as implemented in programs such as PAUP or Henning86 can get stuck
in multiple local optima (“tree islands”). This study focussed on the tbr move
set, since this implies the same phenomenon for the more restricted move sets
spr and nni. Maddison reports that multiple local optima are likely for tbr

when the so-called retention index [15] is small.

As a final example we compare here the parsimony score landscapes of three
different datasets consisting of n = 8 sequences each: (a) random sequences
of length 100, (b) aligned random sequences (using ClustalW) of length 100,
and (c) an alignment of eight complete Picorna virus genomes. For each case
we compute both the amplitude spectrum and the the barrier trees (see Fig-
ure 7). A comparison of both the amplitude spectra and the barrier trees of
the parsimony landscapes in Figure 7 with the simple models of the previous
section shows that the parsimony landscape is exceptionally smooth. About
75% of the variance is contained in the eigenspace of the smallest non-zero
eigenvalue Λ1. In table 2 we list those eigenspaces which carry at least 1% of
the variance in one of the three parsimony score landscapes. The landscapes
arising from properly aligned sequences are significantly smoother than the
random sequence version, as can be seen both from the barrier trees and the
amplitude spectrum: the random sequences lead to significant contributions
from large eigenvalues, Λ20 and Λ35 which are virtually absent from the aligned
versions.
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Fig. 7. Parsimony Landscapes. Top row: Parsimony score from random sequences.
Middle row: Parsimony score from Clustal W aligned random sequences, Bottom
row: Parsimony score from an alignment of eight Picorna Virus genomes.
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