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Abstract

The concept of entropy plays a major part in communication theory. The Shannon entropy is a
measure of uncertainty with respect to a priori probability distribution. In algorithmic information
theory the information content of a message is measured in terms of the size in bits of the smallest
program for computing that message. This paper discusses the classical entropy and entropy rate
for discrete or continuous Markov sources, with finite or continuous alphabets, and their relations
to program-size complexity and algorithmic probability. The accent is on ideas, constructions and
results; no proofs will be given.

1 Introduction

In the classical theory of information the entropy is a measure of uncertainty contained in a stochastic
system which can be described through a probability distribution. It does not allow one to call a
particular outcome random, except in an intuitive, heuristic sense; it gives no explicit definition of
“randomness”, which is considered implicitly, by means of probability fields, random variables and
stochastic processes.

In algorithmic information theory information is measured in terms of program-size complexity of
self-delimited programs and algorithmic probabilities. The information-theoretic complexity of an object
is given by the size in bits of the smallest program for computing that object, i.e. its program-size
complexity; see, for example, [8, 3, 9, 10, 11]. Algorithmic information theory offers an algorithmic way
to define the notions of random (finite) string and random (infinite) sequence.

This paper discusses the classical entropy and entropy rate for discrete or continuous Markov sources,
with finite or continuous alphabets, and their relations to program-size complexity and algorithmic
probability. We will concentrate on ideas, constructions and results; no proofs will be given.

2 Notation

An information source produces a message or sequences of messages to be transmitted through a com-
munication channel. Messages can be generated either continuously or at discrete moments of time, and
the alphabet A of the source can be either finite or an arbitrary subset of real numbers. Let us denote
by T the time set for broadcasting; for example, T can be the set of integers or a set of real numbers.

An information source is an infinite probability space
(
AT ,KT , µ

)
, and its output consists of a

stochastic process {Xt, t ∈ T} with the time parameter t ∈ T, the state space A and the probability
distribution µ.

A Markov information source satisfies the condition

Pr (Xt ∈ B | Xu, u ≤ s) = Pr (Xt ∈ B | Xs) ,



for every s < t and every Borel set B, where Pr (Xt ∈ B | Y ) denotes the conditional probability of
{Xt ∈ B} given Y.

An information source is called stationary if the distribution µ is shift invariant; that is, the distri-
bution of (Xt1+s, . . . , Xtn+s) is independent of s for any positive integer n and t1, . . . , tn ∈ T. For more
details we refer to [14, 19].

By N,Z,Q and R, we denote the sets of nonnegative integers, integers, rationals and reals, respec-
tively. By log we denote the base 2 logarithm; exp denotes the exponential function. The set of all
strings over the finite alphabet A is denoted by A∗. The length of a string s is denoted by |s|; by An

we denote the set of all strings of length n. A string s is a prefix of a string t (s ⊆ t) if there is a string
r ∈ A∗ such that sr = t. A subset S of A∗ is prefix-free if whenever s and t are in S and s ⊆ t, then
s = t. For example, the set {1i0 | i ≥ 0} is prefix-free.

We shall employ a special model of deterministic Turing machine, namely self-delimiting Turing ma-
chines or (Chaitin) machines (simply, machines): these are Turing machines (transforming binary strings
into binary strings) having prefix-free domains. Note that every prefix-free computably enumerable set of
strings is the domain of some machine. We refer to [25, 3] for more about Turing machines, computable
sets and functions, computably enumerable (c.e.) sets.

The program-size complexity induced by the machine M is HM (x) = min{|z| | M(z) = x}, with the
convention that the minimum of the empty set is undefined. The algorithmic probability of the machine
M to produce the output x is

PM (x) =
∑

M(u)=x

2−|u|, (1)

and the halting probability of M is ΩM =
∑

x∈A∗ PM (x).
A machine U is universal if for every machine M , there is a constant cM (depending upon M) with the

following property: if M(x) halts, then there is an x′ ∈ A∗ such that U(x′) = M(x) and |x′| ≤ |x|+ cM ;
cM is the simulation constant of M on U . Universal machines can be effectively constructed. See more
in [3].

3 Discrete Time Markov Sources

In this section we discuss the entropy of various discrete time Markov sources.

3.1 Finite alphabet stationary sources

Let
(
AZ,KZ, µ

)
be a discrete time information source, with a finite alphabet A. For an n-dimensional

outcome (X1, . . . , Xn) , Shannon’s entropy is defined by the relation

H (X1, . . . , Xn) = −
∑

x1,...,xn∈A

µ (x1, . . . , xn) log µ (x1, . . . , xn) .

In most cases, the entropy H (X1, . . . , Xn) diverges as n → ∞, hence, the source has infinitely large
entropy. This fact suggests that what is important is not the limit of H (X1, . . . , Xn), but its rate of
growth. Thus, the entropy of the source is defined by

H (X) = lim
n→∞

H (X1, . . . , Xn)
n

,

when the limit exists.

Proposition 3.1 If the discrete time information source
(
AZ,KZ, µ

)
, with a finite alphabet A is sta-

tionary, then the entropy of the source exists and is equal to infn
H(X1,...,Xn)

n .

Proposition 3.2 Let
(
AZ,KZ, µ

)
be a discrete time stationary information source, with a finite alphabet

A, such that

µ (x1, . . . , xn) = p (x1)
n−1∏
i=1

p (xi+1 | xi) ,
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and
p (x) ≥ 0,

∑
x∈A

p (x) = 1,

p (x′ | x) ≥ 0,
∑
x′∈A

p (x′ | x) = 1, for every x ∈ A.

Then its entropy is given by the formula:

H (X) = H (X1 | X0) = −
∑
x∈A

p (x)
∑
x′∈A

p (x′ | x) log p (x′ | x) .

The proofs of the above results can be found in [19].

3.2 Finite alphabet non-stationary sources

In many applications, the discrete Markov information source is not stationary, but there exists a sta-
tionary source which may be associated with it. An important example is a source which produces
messages representing a random walk with two absorbing barriers. This model was studied in [16].

Let us suppose that the letters of the alphabet A are simply denoted by 0, 1, . . . , s. Broadcasting is
governed by the parameter θ which gives the probability of a jump from the ith letter to the (i − 1)th
letter. Suppose that the transition matrix P of the associated Markov chain has the elements

pθ (0 | 0) = pθ (s | s) = 1, for every θ, (2)

pθ (i− 1 | i) = θ, pθ (i + 1 | i) = 1− θ, i = 1, . . . , s− 1. (3)

This means that the states 0 and s are absorbing (i.e. once one of these states is reached it is not possible
to move to any other state), while 1, . . . , s− 1 are transient (i.e. the probability that the process returns
into one of these states after a finite period of time is less than 1).

If we consider a permutation of letters of the alphabet, say 0, s, 1, 2, . . . , s−2, s−1, then the transition
matrix P is of the form

P =
(

I 0
p (θ) Q (θ)

)
,

where I is the 2× 2 identity matrix, 0 is a 2× (s− 1) matrix of zeros, p (θ) is a (s− 1)× 2 matrix and

Q (θ) =




0 1− θ 0 . . . 0 0 0
θ 0 1− θ . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . θ 0 1− θ
0 0 0 . . . 0 θ 0


 .

Notice that Q (θ) is not a stochastic matrix.
Let (X1, . . . , Xn) be the output of the source for n consecutive moments of time, and let us assume

that the absorption has not taken place (i.e. Xn 
= 0, s). When this assumption is true for large n,
one says that “the absorption has not taken place and will not take place for a long time”. Conditional
on this fact, one can associate a stationary Markov source, with alphabet A′ = {1, . . . , s − 1}, which
gives the conditional broadcast of the initial source. According to well known properties of absorbing
Markov chains (see [1]), the elements which define the probability distribution for this new source are
constructed as follows.

• The stationary distribution on A′ is

πθ (j) = vjwj , j ∈ A′,

where v = (v1, .., vs−1)
′ and w = (w1, . . . , ws−1)

′ are the left and right eigenvectors of the matrix
Q(θ) corresponding to the largest eigenvalue λ1 (θ) , such that

s−1∑
j=1

vj = 1,

s−1∑
j=1

vjwj = 1.
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• The transition matrix of the associated stationary Markov source, denoted R (θ) , has the elements

rθ (j | i) =
1

λ1 (θ)
pθ (j | i) wj

wi
, i, j = 1, . . . , s− 1.

Theorem 3.3 Let
(
AZ,KZ, µ

)
be a Markov information source with alphabet A = {0, 1, . . . , s} and

transition matrix given by (2) and (3). Under the assumption that the absorption has not taken place
and will not take place for a long time, the entropy of the stationary associated source is

H (X) = −
s−1∑
i=1

π (i)
∑

j=1s−1

r (j | i) log r (j | i) ,

where the stationary distribution {πθ (j) , j = 1, . . . , s− 1} and the transition matrix are independent of
θ:

π (j) =

(
s−1∑
i=1

sin2 iπ

s

)−1

sin2 jπ

s
, j = 1, . . . , s− 1,

r (j | i) =




1, j = 2, i = 1,

sin (i−1)π
s

(
2 cos π

s sin iπ
s

)−1
, j = i− 1, i = 2, . . . , s− 2,

sin (i+1)π
s

(
2 cos π

s sin iπ
s

)−1
, j = i + 1, i = 2, . . . , s− 2,

1, j = s− 2, i = s− 1,
0, otherwise.

3.3 Infinite alphabet sources

We discuss now the case of a Markov information source with discrete time and alphabet A = R. The
Shannon’s entropy is replaced by an entropic measure which takes into account the continuous character
of the measure µ.

We assume that the vector (X1, . . . , Xn) has a probability density f (x1, . . . , xn) with respect to the
Lebesgue measure. Then, the Boltzmann entropy is

h (X1, . . . , Xn) = −
∫

Rn

f (x1, . . . , xn) log f (x1, . . . , xn) dx1 . . . dxn, (4)

provided the integral exists.
In contrast with Shannon’s entropy, h (X1, . . . , Xn) itself does not work as a measure of uncertainty.

However, it is well known that the difference h (X1, . . . , Xn)−h (X ′1, . . . , X
′
n) of the entropies indicates the

difference of uncertainties of (X1, . . . , Xn) and (X ′1, . . . , X
′
n) , see [20]. This is an important difference

between the continuous entropy and the discrete one: in the discrete case the entropy measures the
uncertainty in an absolute way, while in the continuous case the measurement is only relative. Note also
that the discrete entropy is always non-negative while the continuous one can be negative.

The entropy rate (or the per unit time entropy) of a discrete information source with alphabet A = R
can be defined by

h (X) = lim
n→∞

h (X1, . . . , Xn)
n

,

when the limit exists. The proof of the following result can be found in [20].

Theorem 3.4 Suppose that the information source with discrete time and alphabet A = R is stationary
and has finite continuous entropy for every n. Then, the entropy rate h (X) exists, and is equal to the
conditional entropy of one step “future” X1 when the “past” (. . . , X−1, X0) is known, that is,

h (X) = lim
n→∞

h (X1 | X0, . . . , X−n) ,

where

h (X1 | X0, . . . , X−n) = −
∫

Rn+2

f (x−n, . . . , x0, x1) log
f (x−n, . . . , x0, x1)

f (x−n, . . . , x0)
dx−n . . . dx0dx1.
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Corollary 3.5 Let
(
AZ,KZ, µ

)
be a Markov, stationary information source, with discrete time and

alphabet A = R, such that

f (x1, . . . , xn) = f (x1)
n−1∏
i=1

f (xi+1 | xi) ,

and
f (x) ≥ 0,

∫
R

f (x) dx = 1,

f (x′ | x) ≥ 0,

∫
R

f (x′ | x) dx′ = 1, for every x ∈ R.

Then its entropy rate has the value

h (X) = h (X1 | X0) = −
∫
R2

f (x) f (x′ | x) log f (x′ | x) dx′dx.

3.4 Gaussian sources

An information source
(
AZ,KZ, µ

)
with A = R is called Gaussian if its output {Xt, t ∈ Z} is a Gaussian

process; that is, the joint distribution of (Xt1 , . . . , Xtn) is Gaussian for every finite set {t1, . . . , tn} ⊂ Z.
Let us denote by N

(
n;mt1,...,tn ,Σt1,...,tn

)
the n-dimensional Gaussian distribution of (Xt1 , . . . , Xtn

) .
When the source is stationary, the mean vector mt1,...,tn has equal components, and the elements of
Σt1,...,tn (covariances) depend only on the time intervals (i.e. cov

(
Xti

, Xtj

)
= γ (ti − tj) , i, j = 1, . . . , n).

Theorem 3.6 Let
(
AZ,KZ, µ

)
be a stationary information source, with discrete time and alphabet A =

R, such that (X1, . . . , Xn) has an n-dimensional Gaussian distribution N (n;m,Σ) . Then the Boltzmann
entropy is given by

h (X1, . . . , Xn) =
1
2

log ((2πe)n | Σ |) .

In particular, if X1 is an one-dimensional Gaussian random variable with distribution N
(
m1, σ

2
)
,

then h (X1) = 1
2 log

(
2πeσ2

)
. It is noticed that the Boltzmann entropy for Gaussian sources does not

depend on mean vectors.
A stochastic process {Xt, t ∈ Z} is called autoregressive of first order (denoted AR(1)) if its elements

are given by the relation

Xt = φXt−1 + ξt, (5)

where φ ∈ R and {ξt, t ∈ Z} is a sequence of independent, identical distributed random variables (the
white noise which generates the process). An AR(1) process is stationary if | φ |< 1.

Theorem 3.7 Let {Xt, t ∈ Z} be a stationary Gaussian process. Then {Xt, t ∈ R} is a Markov chain if
and only if it is an autoregressive process AR(1), given by the relation (5), where | φ |< 1 and {ξt, t ∈ Z}
is a Gaussian white noise with variance 1.

For proofs see [14, 20]. Using Corollary 3.5, and Propositions 3.6, 3.7 one can obtain the following
property.

Proposition 3.8 The value of the entropy rate of a stationary Gaussian Markov source is independent
of its AR(1) representation, and is equal to

h (X) =
1
2

log (2πe) .

4 Continuous Time Markov Sources

Let
(
AT ,KT , µ

)
be a continuous time information source, with T = R, such that its output is the

stochastic process {Xt, t ∈ R}. Defining the entropy rate of such a source is rather complicate, even for
stationary Gaussian sources, where canonical representations are available.
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4.1 Gaussian sources

We consider, first, the case A = R. The statisticians’ approach is based on the fact that observation is
made only discretely, for example at every k units of time. Then the mathematical model of observed
values is given by X(k) = {Xnk | n ∈ Z}. The observed process X(k) may be called the discretization
process of {Xt, t ∈ R} with time interval k.

Proposition 4.1 Let
(
AT ,KT , µ

)
be a Markov stationary Gaussian information source, with T = R

and A = R. Then the process X(k) = {Xnk, n ∈ Z} is an AR(1) process, hence a discrete time Markov
stationary Gaussian process. Thus, the entropy rate may be evaluated when the initial source is observed
with time interval k.

For the proof of this result we refer to [20]. It goes without saying that, in general, {Xt, t ∈ R}
cannot be recovered from X(k), and we only can estimate the structure of the initial information source
from the observed discretization process.

4.2 Pure jump sources

Now we consider the case of a finite alphabet A = {1, . . . , s} and time T = [0,∞). Let {Xt, t ≥ 0} be
the outcome of the Markov source

(
AT ,KT , µ

)
and let us assume that the transition probabilities

pt (j | i) = Pr (Xs+t = j | Xs = i) ,

are independent of s and continuous at every t, including t = 0.
Suppose the following limits exist and are finite:

qij = lim
t→0

pt (j | i)− δij

t
, i, j = 1, . . . s, (6)

where δij is Kronecker’s symbol. Then the process {Xt, t ≥ 0} is called a Markov pure-jump process,
with the infinitesimal generator Q =‖ qij ‖i,j=1,...,s .

Let us put
qi = −qii, (7)

assume qi > 0, for every i = 1, . . . , s, and notice that∑
j 	=i

qij = qi, i = 1, . . . , s. (8)

We also assume that pt (j | i) > 0 for all i, j ∈ A and all t > 0. Then, the stationary distribution of
the process {πj , j ∈ A} exists, and satisfies the following relations:

lim
t→∞

pt (j | i) = πj > 0, for every i ∈ A,

∑
j∈A

πj = 1,
∑
i∈A

πi · pt (j | i) = πj , for all t.

The source broadcasting has the following constructive development:

• At t = 0 the source broadcasts the signal i with probability πi.

• The emission time of this first signal is a random variable T0, with probability density

fT0 (t) = qi exp (−qit) , t > 0.

• At time t = T0 the signal j (j 
= i) is broadcast with probability qij/qi.

• The random emission time of j is T1, with probability density

fT1 (t) = qj exp (−qjt) , t > 0.

• At time t = T0 + T1 the process jumps to the signal k (k 
= j) with probability qjk/qj , and so on.

6



Let {Z0, Z1, . . .} be the successive states the system passes through. The bivariate discrete-time
process {(Zn, Tn) , n = 0, 1, . . .} is a Markov process (called the embedded process) with the state space
A× [0,∞), initial probabilities

Pr (Z0 = i, T0 > t) = πi exp (−qit) ,

and transition probabilities

Pr (Zn+1 = j, Tn+1 > t | Zn = i, Tn = u) =
{

(qij/qi) exp (−qit) , j 
= i,
0, j = i.

Let us suppose that the emission of the source is observed during a fixed interval of time [0, t] and let
us denote by v = ((z0, t0) , . . . , (zn−1, tn−1) , zn) the recorded trajectory of the embedded process. The
probability density corresponding to this sample is

ft (v) =




πz0 exp (−qz0t) , if v = (z0) ,

πz0

∏n−1
j=0 qzjzj+1 exp

[
−

(
qzj − qzn

)
tj − qznt

]
, if

∑n−1
j=0 tj < t,

0, otherwise.

Let nt (i, j) be the total number of jumps from i to j during [0, t] and let rt (i) be the total time
during which signal i is broadcast. Then

ft (v) = K
∏

i,j∈A, i 	=j

(qij)
nt(i,j)

∏
i∈A

exp (−qi · rt (i)) ,

where K is a positive constant, independent of the elements of Q.

We define the Boltzmann entropy for the observation interval [0, t] by

ht = −
∫

ft (v) log ft (v) dµ (v)

and the entropy rate of the source by

h= lim
t→∞

ht

t
.

By direct calculation one can obtain the expression of ht:

ht = − log K − t

ρ

∑
i,j∈A, i 	=j

Qiiqij log qij +
t

ρ

∑
i∈A

Qiiqi,

where Qii be the (i, i) cofactor of the matrix Q and ρ be the product of the non-zero eigenvalues of Q.

Theorem 4.2 Let us consider the Markov source
(
AT ,KT , µ

)
with A = {1, . . . , s}, T = [0,∞) and the

infinitesimal generator Q given by the relations (6), (7), (8). Let Qii be the (i, i) cofactor of Q and ρ be
the product of the non-zero eigenvalues of Q. Then the entropy rate of the source exists and is given by

h=
1
ρ

∑
i,j∈A

Qiiqij (1− log qij) .

5 Entropy and Complexity

In this section we explore some connections between program-size complexity, algorithmic probability
and entropy of information sources with a binary1 alphabet and discrete time.

1All results actually hold for an arbitrary finite alphabet, cf. [3].
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5.1 Discrete Markov sources

Consider a discrete Markov binary information source, i.e. a finite ergodic Markov chain (see [21] with
alphabet (states) A = {s1, s2, . . . , sm} with the following property: for every 1 ≤ j ≤ m, there exist two
states si0, si1 such that the transition probability from sj to si0 is pi, the transition probability from
sj to si1 is 1 − pi, and the transition probability from sj to any sk with k 
= i0, i1 is 0. We assume
that each pi is a computable real, that is, there is an algorithm which when presented a non-negative
integer l produces the first l digits of the binary expansion of that number. Transitions from sj to si0

are labelled by 0 and transitions from sj to si1 are labelled by 1. The source generates a binary string
by starting in some arbitrary fixed state, and producing the labels of transitions it takes. We denote
by Pr the probability distribution of strings generated by the source. According to proposition 3.2, the
entropy is defined by

H= −
m∑

i=1

ai(pi log pi + (1− pi) log(1− pi)).

The next result was proven in [22]:

Theorem 5.1 Let U be a universal machine. Then,

H= lim
n→∞

1
n

∑
|x|=n

HU (x) Pr(x).

To understand better the phenomenon let’s consider a special case of Markov information sources,
namely a Bernoulli source. To this aim consider the set of all binary strings of length n and assign a
probability to each digit 0,1: Pr(0) = P0,Pr(1) = P1, P0 + P1 = 1, 0 ≤ P0, P1,≤ 1. The alphabet is
A = {0, 1} and the probability of a string x = a1a2 . . . an is

∏n
i=1 Pr(ai). Shannon’s entropy of the source

becomes H= −P0 log P0 − P1 log P1. Let x1, x2, . . . x2n be all strings of length n arranged in order of
decreasing probability, r ∈ (1/2, 1), and let k(n) be the least integer such that

∑k(n)
i=1 Pr(xi) > r.

The intuition, expressed in [2], is that “the most likely strings have a complexity asymptotically equal
to the entropy”. The precise form was conjectured in [2] and proven in [18].

Theorem 5.2 Let U be a universal machine. Then,

H= lim
n→∞

1
nk(n)

k(n)∑
i=1

HU (xi).

In fact a stronger result is true (note that both Theorems 5.1 and 5.2 have been stated in terms of
blank end-marker complexity K; however, they can be re-phrased in terms of program-size complexity
due to the observation stated in [26] that on average it doesn’t matter which complexity we use as
| HU (x)−KW (x) |≤ o(n) for all strings on length n).

Theorem 5.3 Let U be a universal machine. For every ε > 0 let

Hε
\ = {§ ∈ A∗ | |§| = \,H −ε <

HU (§)
\ < H +ε}.

Then,
lim

n→∞
Pr(Hε

\) =∞.

5.2 Entropy of Computable Semi-Distributions

A function P : A∗ → [0, 1] such that
∑

x∈A∗ P (x) ≤ 1 is called a semi-distribution over the strings. In
case

∑
x P (x) = 1, P is a distribution. Any distribution P can be extended to a probability distribution

µ, defined on the σ-field generated by cylinders.
A semi-distribution P is semi-computable from below (above) in case the set {(x, r) | x ∈ A∗, r ∈

Q, P (x) > r} ({(x, r) | x ∈ A∗, r ∈ Q, P (x) < r}) is c.e. A semi-distribution P is computable
if it is semi-computable from below and from above. For example, the algorithmic probability PM
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defined by (1) is a semi-distribution semi-computable from below. If M = U is a universal machine,
then ΩU =

∑
x∈A∗ PU (x) is a c.e. and random real, a Chaitin’s Omega number [4]. The function

P (x) = 2−2|x|−1 is a computable distribution. Computability is preserved via the extension µ of P ; see,
for example, [5, 3].

A prefix-code (instantaneous code) for strings is an one-one function C : D → A∗, D ⊂ A∗ such that
C(D) is prefix-free. For example, C : An → A∗ given by C(x) = x is a prefix-code. Another example:
for every surjective machine M , CM (x) = x∗M is a prefix-code (here x∗M = min{u | M(u) = x}, where
the minimum is taken according to the quasi-lexicographical ordering of strings); universal machines are
surjective.

To motivate the next result we re-phrase Shannon-Fano theorem (see [19]; compare also with theo-
rem 5.3) in terms of stationary Markov sources. Consider a stationary Markov information source with
a finite alphabet

(
AN,KN, µ

)
and denote by Pr(x) the probability corresponding to the distribution µ

of the source. The average length of the prefix-code C : An → A∗ is the number

LC,Pr =
∑

x∈An

Pr(x) · |C(x)|.

Theorem 5.4 Let
(
AN,KN, µ

)
be a stationary Markov information source with a finite alphabet A. For

every positive number ε > 0 there exists n0 such that for every positive integer n ≥ n0 there exists a
prefix-code C : An → A∗ such that

H −ε <
LC,Pr

n
< H +ε.

Consider now prefix-codes C : A∗ → A∗. The average code-string length of a prefix-code C with
respect to a semi-distribution P is the number

LC,P =
∑

x∈A∗

P (x) · |C(x)|.

The minimal average code-string length with respect to a semi-distribution P is

LP = inf {LC,P | C prefix-code}.

The entropy of a semi-distribution P is

HP = −
∑

x∈A∗

P (x) · log P (x).

Shannon’s classical argument [24] (see more in [13]) can be expressed for semi-distributions as follows:

Theorem 5.5 The following inequalities hold true for every semi-distribution P :

HP − 1 ≤ HP +

(∑
x

P (x)

)
log

(∑
x

P (x)

)
≤ LP ≤ HP + 1.

If P is a distribution, then log(
∑

x P (x)) = 0, so we get the classical inequality HP ≥ LP . However,
this inequality is not true for every semi-distribution. For example, take P (x) = 2−2|x|−3, C(x) =
x1x1 . . . xnxn01, and note that LP ≤ LC,P = HP − 1

4 .

Under which conditions given a semi-distribution P can we find a (universal) machine M such that
HM (x) is equal, up to an additive constant, to − log P (x)? In what follows we will assume that P (x) > 0,
for every x. The main technical result was obtained in [6].

Theorem 5.6 Assume that P is a semi-distribution and there exist a c.e. set S ⊂ A∗ × N and a
constant c ≥ 0 such that the following two conditions are satisfied for every x ∈ A∗:

(i)
∑

(x,n)∈S 2−n ≤ P (x),
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(ii) if P (x) > 2−n, then (x, m) ∈ S, for some m ≤ n + c.

Then, there exists a machine M (depending upon S) such that for all x,

− log P (x) ≤ HM (x) ≤ (1 + c)− log P (x).

Specializing P in theorem 5.6 we deduce that minimal programs are almost optimal for P .

Proposition 5.7 Assume that P is a semi-distribution semi-computable from below. Then, there exists
a machine M (depending upon P ) such that for all x,

− log P (x) ≤ HM (x) ≤ 2− log P (x). (9)

Consequently, minimal programs for M are almost optimal: the code CM satisfies the inequalities:

0 ≤ LCM ,P −HP ≤ 2.

Minimal programs of universal machines are almost optimal for every semi-computable semi-distribution
P .

Theorem 5.8 Let P be a semi-distribution semi-computable from below, and U a universal machine.
Then, there exists a constant cP (depending upon P ) such that

0 ≤ LCU ,P −HP ≤ 1 + cP .

Theorem 5.8 generalizes a result in [12] proven for computable distributions; see also [23]. The result
is important only for semi-distributions for which the entropy is infinite. For example, the entropy of
the semi-distribution P (x) = 2−|x|

(|x|+2) log(|x|+2) is infinite.

5.3 Algorithmic coding theorem

A deep relation between entropy and program-size complexity appears in the algorithmic coding theorem
of Chaitin and Gács (see [7, 8, 17, 3, 10]):

Theorem 5.9 There exists a constant c ≥ 0 such that for all strings x, |HU (x) + log PU (x)| ≤ 1 + c
(equivalently, HU (x) = − log PU (x) + O(1)).

The uncertainty given by the unknown, additive, computer-dependent, constant appearing in the-
orem 5.9 is a serious issue of concern for a physical theory, so various attempts have been made to
eliminate it (see, for example, [23]). In [6] one characterizes all machines satisfying theorem 5.9 and one
constructs a class of (universal) machines for which the inequality is satisfied with constant c = 0, that
is, HU (x) = − log PU (x).

Proposition 5.10 Let M be a machine and c ≥ 0. The following statements are equivalent:

(a) for all x, HM (x) ≤ (1 + c)− log PM (x),

(b) for all non-negative n, if PM (x) > 2−n, then HM (x) ≤ n + c.

For any machine M satisfying one of the equivalent conditions in proposition 5.10, theorem 5.9 holds:

|HM (x) + log PM (x)| ≤ 1 + c, (10)

and in fact, a machine M satisfies (10) if and only if (b) is satisfied. Every universal machine U satisfies
condition (b), but not all machines satisfy this condition.

10
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