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Abstract

We revisit the Cauchy problem for the time-fractional diffusion equation, which is
obtained from the standard diffusion equation by replacing the first-order time deriv-
ative with a fractional derivative of order f8 € (0,2]. By using the Fourier-Laplace
transforms the fundamentals solutions (Green functions) are shown to be high tran-
scendental functions of the Wright-type that can be interpreted as spatial probability
density functions evolving in time with similarity properties. We provide a general
representation of these functions in terms of Mellin—Barnes integrals useful for nu-
merical computation.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Time-fractional diffusion equations, obtained from the standard diffusion
equation by replacing the first-order time derivative by a fractional derivative
(of order 0 < <2, in Riemann—Liouville or Caputo sense), have been treated
in different contexts by a number of authors, see, e.g. the reviews in [1,13,19],
and references therein. In this paper we intend to provide more insights for the
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fundamental solutions of the general time-fractional diffusion equation, based
on the recent results by Mainardi et al. [15].
By time-fractional diffusion equation we mean the evolution equation
o o?
—u(x,t):az u(x,t), 0<pB<2, xeR, t€Ry, (1.1)
X

where the time-fractional derivative is intended in the Caputo sense. For a
detailed discussion on this fractional derivative we refer the reader to e.g.
[8,20]. When f is not integer (f # 1,2) the L.H.S. of (1.1) is intended to be

1 10 dz .
o B —F(l—ﬁ)/o [au(x,r)} 7@—1)/{7 fo<p<l,

@u(x,t) = (21 ﬁ)/ [62 u(r, ﬂ]ﬁ’ if 1< p<2.

(1.2)

When f is integer (f = 1,2) the R.H.S. of (1.2) is intended to reduce to the
corresponding partial derivative of integer order, namely we recover,

for p =1, the diffusion equation:

0 ?

P u(x, 1) = a2 u(x,t), xeR, teR], (1.3)
for f = 2, the D’Alembert wave equation:

o? o?

o u(x, ) = R u(x,t), xeR, reRy. (1.4)

For 1 < f < 2 the fractional equation in (1.1) is expected to interpolate (1.3)
and (1.4), thus in this case it could be referred to as the time-fractional diffusion-
wave equation. Suitable integrations allow us to eliminate the time-fractional
derivative in (1.1) and obtain the integro-differential equations:

if0<p<l,
= u(x,0" L a—zux‘c — 1) de
) = us.0) + s [ Suteo] - 0/ (15)
it1<p<2,
u(x, ) = u(x,0%) + fu,(x,0") +F(1[3) /0 {aaxzu(x ‘E):| (t—0)'de. (1.6

In order to correctly formulate and solve the Cauchy problem for (1.1) we
have to select explicit initial conditions concerning u(x,0%) if 0 < <1 and
u(x,0M), u,(x,07) if 1 < f<2. If ¢(x) and y(x) denote sufficiently well-behaved
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real functions defined on R, the Cauchy problem consists in finding the solu-
tion of (1.1) subjected to the initial conditions:

u(x,0") = d(x), xeR, if0<pLI, (1.7a)
u(x,07) = ¢(x), w(x,0") =ykx), xeR, if 1<p<L2. (1.7b)

We note that if we set y(x) = 0 in (1.7b) we ensure the continuous dependence
of the corresponding solution with respect to the parameter f§ in the transition
from f =1 to f = 1" as it turns out by comparing Egs. (1.5) and (1.6).

2. The Green functions: scaling and similarity properties

The Cauchy problems can be conveniently treated by making use of the
most common integral transforms, i.e. the Fourier transform (in space) and the
Laplace transform (in time). ' Indeed, the composite Fourier—Laplace trans-
forms of the solutions of the two Cauchy problems:

(@) {(1.1) + (1.72)} if 0 < B<1,
(b) {(L.1)+ (L7b)} if 1 < p<2,

turn out to satisfy the following algebraic equations

—Kzﬁ(ms) = sﬁﬁ(;c,s) —sﬁ’](/ﬁ(;c), 0<p<l, (2.1a)

o~

—;czﬁ(;c,s) = s/‘ﬁ(ic, s) — sﬁ_la(;c) —s" (), 1< p<2, (2.1b)
from which we obtain

. g1

a(K,s)zma(K), 0<p<1, (2.2a)

! In what follows we shall meet only functions that are defined and continuous in x € R and/or
te(0,7), VT >0 except, possibly, at isolated points where these functions can be infinite.
Following Marichev [17] we restrict our attention to the classes of such functions for which the
Riemann improper integrals in x and in ¢ absolutely converges on R and (0,7), VT >0,
respectively. We denote these classes as L°(R), L¢(0,T). Let

k) = F{f(x);x} = /+OC e fx)dx, K €R,

—00

denote the Fourier transform of a function f(x) € L*(R), and let
76 = 205y = [ e %) > ay,
0

denote the Laplace transform of a function f(¢) € L¢(0, 7). We denote by Z and & the juxtapo-
sition of a function with its Fourier and Laplace transform, respectively.
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= st sP=2
M(K,S) :m (K)+ml//(K), 1 < ﬁ§2 (22b)

By fundamental solutions (or Green functions) of the above Cauchy problems
we mean the (generalized) solutions corresponding to the initial conditions

Gy (x,07) = d(x), if 0<p<I, (2.3a)

Gy (x,00) =0(x), [G(x,0") =0,
if 1 <p<2. (2.3b)

0
Gy (x,0%) = 8(x),

9
Gﬁ (xa O+) = 07 &

o
Here d(x) is the delta-Dirac generalized function whose (generalized) Fourier
transform is known to be one. Thus, the Fourier—Laplace transforms of these
Green functions turn out to be

—

— B—Jj
h S
G (k,5) =

We note that the function G;f) (x,t) along with its Fourier—Laplace trans-
form is well defined also for 0 < f< 1 even if it loses its meaning of being a
fundamental solution of (1.1). Then, by recalling the Fourier convolution
property in the inversion of the Fourier—Laplace transforms of (2.2a) and
(2.2b), we note that the Green functions allow us the represent the solutions of
the above two Cauchy problems through the relevant integral formulas

u@J)z/wmcygﬁw@-gym, 0<p<l, (2.52)

o0

u(x, 1) = / OO[GE;”(é,t)qﬁ(x—é)+G§f)(é7t)¢(x—i)}dé, 1< B<2.

o0

(2.5b)

By using the known scaling rules for the Fourier and Laplace transforms,
and introducing the similarity variable x/t*/*, we infer from (2.4) (thus without
inverting the two transforms) the scaling properties of the Green functions,

Gy (x,0) = PR (x/iP2), G (x,0) = PR (x /1), (2.6)

where the one-variable functions K /gl)(x), K;,z) (x) are referred to as the reduced
Green functions. We note that all Green functions are symmetric with respect
to x and

K{(x) = G (. 1) = K (=), j=1,2. (2.7)
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3. Mellin—Barnes integral representation of the Green functions

To determine the two Green functions in the space-time domain we can
follow two alternative strategies related to the different order in carrying out
the inversion of the Fourier—Laplace transforms in (2.4), (2.5a) and (2.5b).
Indeed we can —

(S1): invert the Fourier transforms getting Gﬁ (x,5), Gﬁ (x,s), and then invert
these Laplace transforms,

(S2): invert the Laplace transforms getting G ( 1), Gfgz) (x,t), and then invert
these Fourier transforms.

Strategy (S1): Recalling the Fourier transform pair,

aj F aj 7‘)(‘})1/2

b+ 2bl2 :

b>0, (3.1)

and setting a; = s, b = s/ we get

— 2
- P2 g2

Gg)(x,s):Te W=, (3.2)

Strategy (S2): Recalling the Laplace transform pair, see e.g. [8,20],

sP=J @ .
S By (—at), e >0, (3.3)
S C

where E;; denotes the two-parameter Mittag—Lefller function 2 and setting
c = K> we get

G (k,1) = 7 Eg (—i*), j=1,2. (3.4)

The strategy (S1) has been followed by Mainardi [11-13] to obtain the first
Green function as

2 The Mittag—Leffler function E pu With B, 1> 0 is an entire transcendental function of order
p = 1/p, defined in the complex plane by the power series

Ep,(2) Zfﬂn+ p,u>0, zeC.

Originally, at the beginning of 1900, Mittag-Leffler introduced and investigated (in five notes from
1902 to 1905) the function

o
Ez = o 1 ) )
(2) > T ) 2>0, zeC

as an instructive example of entire function that generalizes the exponential. For more information
on the Mittag—Leffler-type functions the reader may consult the classical handbook of the Bateman
Project [3, vol. 3, Chapter 18] and e.g. [7,8,10,14,20,21].
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Gy (x, 1) = W PPMy, (x| /12),  —oco <x < 400, =0, (3.5)

where Mp,/, denotes the so-called M function of order /2, see also [9,20], which
is a noteworthy case of the Wright function. ®> As far as the second Green

function is concerned, we note from (3.2) that G;f) (x,8) = G,(gl)(x,s) /s, SO

t
GE?(x,t):/o G;jl)(x,‘c)dr. (3.6)

Closed form solutions are found in the special case f = 1 (diffusion equation)
and in the limiting case § = 2 (D’Alembert wave equation). We easily recognize
for f=1:

12 2 2 112 2 X X
:ﬁe k /(4t), G(l )(x, t) :ﬁe /@ —Eerfc(m), (37)

where erfc denotes the complementary error function, and, for = 2:

G (x, 1) = O(x+t) 4+ 0(x — 1) G ) = O +1)—0(x—1) |
2 2
where 0 denotes the unit-step Heaviside function.
The strategy (S2) has been followed by Gorenflo, Iskenderov & Luchko [4]
and by Mainardi, Luchko & Pagnini [15] to obtain the first Green function of
the more general space—time-fractional diffusion equations. For the determi-

G (x,1)

(3.8)

? The function M, (z) is defined for any order v € (0,1) and Vz € C by
0 (=2)"

M@= 2 it =)

, 0<v<l, zeC.

n

It turns out that M, (z) is an entire function of order p = 1/(1 — v), which provides a generalization
of the Gaussian and of the Airy function. In fact we obtain

1
Mp(z) = NG exp (—22/4), M;(z) = 377Ai(z/3'73).
The M function is a special case of the Wright function defined by the series representation, valid in
the whole complex plane,
= z"
b, = —_— 1>, C, C.
o) =S gy 7 e 5

Indeed, we recognize
M,(z) =D, 1_(-2), O0<v<l

Originally, Wright introduced and investigated this function with the restriction 4 > 0 in a series of
notes starting from 1933 in the framework of the asymptotic theory of partitions. Only later, in
1940, he considered the case —1 < 4 < 0. We note that in the handbook of the Bateman Project [3,
vol. 3, Chapter 18], presumably for a misprint, 1 is restricted to be non-negative. For more in-
formation on the Wright-type functions in time-fractional diffusion equations the interested reader
may consult e.g. [5,6,9].
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nation of the reduced Green functions Kg) (x) = Gg) (x,1) we can restrict our
attention to x > 0, and thus write in view of (3.4) and (2.7)

, 1 [
K,&’)(x):;/o cos(rkx)Ep,;(— x*)dr, j=1,2. (3.9)

Following the method outlined in [4] and [15] we can invert the Fourier
transforms in (3.9) and obtain

1 1 e (1
o ) F(;( ﬁ/)Z)XSdS 0<y<l, j=12. (3.10)

The above integral is a particular Mellin—Barnes integral according to a
usual terminology. * The readers who are acquainted with the high transcen-
dental Fox H functions can recognize in the R.H.S. of (3.10) the representation
of a certain function of this class see e.g. [1,9,10,17-19,21-23]. Unfortunately,
as far as we know, computing routines for this general class of special functions
are not yet available. Here, following the approach adopted in [15], we intend
to compute the (reduced) Green functions in any space domain by matching a
convergent power series (suitable for small |x|) with an asymptotic represen-
tation (suitable for large |x|).

In order to obtain the convergent power series we transform the original
contour in (3.10) to the loop L, encircling all the poles s, = 1 +n,n € Nj of
the function I'(1 — s) and apply the residue theorem. We obtain

Ky (x) =

Ly -
K 2Zn'r ﬁn/2+(1—ﬁ/2)] j=12 (3.11)

The asymptotic representation can be obtained by using the arguments by
Braaksma [2] (see also [15]) and turns out to be

KV (x) ~ A x%e ™™, x — +00 3.12
B J ) )

where

172
Ay = {27‘5(2 —pep [;<2—2/5>/<2—m} 7
1/2 (3.13)

{ (2 — B)206-8) ﬂ)ﬁ(6—4ﬁ)/(2—ﬂ)}_ :

* In this respect the interested reader can find in e.g. [3], the discussion on the general conditions
of convergence for the typical Mellin—Barnes integral, based on the asymptotic representation of
the gamma function. The names refer to the two authors, who in the beginning of the past century
developed the theory of these integrals using them for a complete integration of the hypergeometric
differential equation. However, as pointed out in [3, vol. 1, Chapter 1, Section 1.19, p. 49], these
integrals were first used by the Italian mathematician S. Pincherle in 1888, see [16].
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Fig. 2. Plot of K} (x) for p = 1.
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Fig. 4. Plot of K} (x) for f = L.5.
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Fig. 6. Plot of K} (x) for p = 1.75.
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_2p-2
T2y

We find it convenient to exhibit in Figs. 1-6 a few plots of the reduced Green
functions K,g’ ) (x) for some “characteristic”’ values of the parameter . The plots
are drawn by using the MATLAB system for the values of the independent
variable x in the range |x| < 5. To give the reader a better impression about the
behaviour of the tails, the logarithmic scale is adopted. Both the Green func-
tions turn out to be non-negative and normalized, so they are of the greatest
interest in view of their interpretation as probability densities.

2

— (2 R YRGB .
b=02-p) Pl e=5—5

(3.14)
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