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Abstract

Accurate numerical evaluation of boundary integrals is fundamental to producing use-
ful results with the boundary element method. This paper introduces a generalisation
of a recently introduced combined method (subtraction of singularity followed by a non-
linear transformation), which takes into account the effect of the basis functions. The
new method is applied to solve weakly singular integrals which arise in the solution of
the two dimensional Laplace equation. The new method was found, in the cases consid-
ered, to be numerically superior to both the combined method and any of the non-linear

transformation methods.
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1 Introduction

When the boundary element method is used to solve the two dimensional Laplace equation,
it is necessary to be able to accurately numerically integrate the weakly singular boundary
integrals involved. Considerable interest has been shown in developing techniques to solve
these integrals, including the following non-linear transformation techniques [1, 2, 3, 4, 5, 6]
and those mentioned below.

Singh and Tanaka [7] recently studied the various non-linear transformation methods at-
tributed to Telles [8], Sato et al. [9], Doblaré and Gracia [10] and Johnston [11], as applied to
a simple class of weakly singular integrals. These methods all involve the use of a non-linear
transformation followed by Gaussian quadrature.

Singh and Tanaka’s conclusions [7] include the following:

(1) Non-linear transformations valid for end-point singularities perform much better than gen-
eralized transformations valid for any location of singularity. Hence, if the singular point lies in
the interior of the integration element, non-linear transformations should be used in conjunction
with partitioning.

(2) Higher-order transformations of Sato et al. [9] represent a superset of transformations of
Telles [8] and the most accurate end-point transformation of Doblaré and Gracia [10]. These
transformations are also the most accurate amongst the ones considered in this study.

It is worth noting, in relation to (1), that it is already known from theory [12] that a
Gauss-Legendre quadrature rule performs better for end-point singularities than for internal
singularities of the integrand function and that the order of convergence for the first case is
about twice that achieved in the second case.

It is also worth noting that the higher-order transformation of Sato et al., referred to in (2)

above, has been shown to be equivalent to the Monomial transformation recently introduced



by one of the authors [13]. This transformation arose out of previous studies on sigmoidal
transformations [11, 14], where the Monomial transformation is a limit of the %th sigmoidal
transformation as m — oo.

There are some advantages to using the Monomial rather than Sato’s transformation: the
first is that much higher transformation orders can be used, for a particular number of Gaussian
points, without limits of machine precision becoming an issue [15] and the second is that the
error analysis associated with sigmoidal transformations can be utilised [13, 16]. Hence the term
Monomial(Sato) method is used in this paper. Details of the Monomial method are presented
in Appendix 1.

Singh and Tanaka [7] also introduce a new method in the above mentioned paper, the
combined Subtraction of Singularity and Non-Linear Transformation approach (SSNT) and
apply it to a weakly singular integral, which arises in the solution of the two dimensional Laplace
equation. They use Sato’s transformation, discussed above, for the non-linear transform part
of the SSNT method and also, along with Gaussian quadrature, as a basis of comparison with
the SSNT method. They conclude that ‘the proposed composite approach is more accurate,
efficient and robust than the singularity subtraction and the non-linear transform methods’.

Section 2 of this paper defines the weakly singular integrals being considered, while Section
3 looks at applying the SSN'T method to a larger number of integrals and compares the results
with the Monomial(Sato) method. It then goes on, in Section 4, to present a generalised SSN'T
method (GSSNT) and to study the accuracy of this new method. In Sections 5 and 6, the
GSSNT, SSNT and Monomial(Sato) methods are applied to a simpler class of integrals, so
that various features of the new method can be studied across the full range of singular values.
Some theory associated with the GSSNT and SSNT methods is presented in Section 7 with

conclusions from this study being presented in Section 8.



2 Weakly Singular Integrals

This paper is concerned with methods for solving the weakly singular integrals which arise in

the solution of the two-dimensional Laplace equation. These integrals are of the form

[(Xg,k):/r or(x) In |x — x4| dT'(x) (2.1)

where I, is the current boundary element, x; is the collocation point and ¢; denotes the shape
function associated with the k™ local node of the element. Clearly, I(x,, k) is weakly singular
when x, € T'..

The usual practice is to rewrite the integral in terms of the local coordinate n, —1 < n <1,

so that
1
k) = [ o) Infx = .| 70n) d 22)

where J is the Jacobian of the transformation of ', onto [-1,1].

3 SSNT Approach

Recently, Singh and Tanaka [7] introduced a new combined approach to the solution of weakly
singular integrals, the so-called SSNT approach (Singularity Subtraction followed by a Non-
linear Transformation).

The idea behind the SSNT approach is to re-write the integral as the sum of a singular
integral, which can be evaluated analytically, and a regular integral, which could be evaluated
using Gaussian quadrature but is, in fact, evaluated by first using a non-linear transformation
to obtain a smoother integrand, and then by Gaussian quadrature. See [7] for a full explanation
of the method.

When the SSNT approach is applied to the integrals given in equation (2.2), Singh and

Tanaka suggest two possible choices for the function fy(n,n;) to be subtracted from the inte-



grand:

(1) The (LOGA) approach, where fs(n,ns) = J(ns)In |x — x|, giving

I(x,, k) Z/_ J(ns>1nlx—xs!d77+/_l [pr(n) T () — T(n)] In|x — x| dn (3.1)

1

and

(2) the (LOGB) approach, where fs(n,ns) = J(ns)In|n — ns|, giving

T(x,, k) = / T(n)In ly — nldn + / (I Inx x| = Ty =) dy (32

1 _
In each case the first integral is evaluated analytically and the second integral is evaluated
by applying a non-linear transformation, that of Sato et al. [9] of order 3 or 4, followed by

Gaussian quadrature.

3.1 Percentage Relative Error

The various methods considered here will be compared in terms of the Percentage Relative

Error, defined by

[a roximate ~ [eamc
Percentage Relative Error = Lopy ! d x 100 (3.3)

[exact
where I..qq¢ is found using Mathematica [17]. Double precision arithmetic has been used in

numerical calculations.

3.2 SSNT Results

In their paper [7], Singh and Tanaka consider a curved quadratic element with nodes x;=(1,1),
x2=(2.5,3) and x3=(2,5), in which x5 is the middle node and this will be used here.

Table 1 includes the case considered by Singh and Tanaka, that is I(x3, 3), but a wider range
of integrals is included; that is, I(xy, 1), I(x2,2) and I(xs,3), as well as the quasi-singular [7]
integrals I(x1,2), I(x1,3), I(x2,1), I(x2,3), I(x3,1) and I(x3,2). Note that it is worth applying
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a transformation to quasi-singular integrals as, although they are bounded at the singular point
of the logarithm function, the integral exhibits rapid change near that point. It is well known
that clustering integration points in a region where the integrand changes rapidly improves the
accuracy of the numerical approximation to the value of the integral.

Comparisons of Percentage Relative Errors between SSNT(LOGA) and SSNT(LOGB) with
orders 3 and 4 and the Monomial(Sato) method as well as Gaussian quadrature are presented
for various numbers of Gaussian points, NG.

Perusal of Table 1 indicates:

(1) SSNT(LOG A) and SSNT(LOG B) yield very similar results.

(2) SSNT of order 3 is ‘best’ (gives the lowest Percentage Relative Errors) for the weakly
singular integrals I(xy, k) where k=1, 2, 3.

(3) The Monomial(Sato) method is almost always ‘best’ for the rest of the integrals (that is,
the quasi-singular integrals) except sometimes when NG=6 when either SSNT or Gaussian

quadrature is best.

4 A Generalised SSNT Approach

Since the SSN'T method produces superior results to the Monomial(Sato) method for only the
three nodes where ¢x(nr) = 1, that is I(x1,1), I(x2,2) and I(x3,3), it would be useful if a
modification to this method could be found which would take account of the behaviour of

o1 (n) and therefore be applicable over the whole range of n; values, n, € [—1,1].



Consideration of equation (3.1) for I(xy, k) gives
1 1
Tork) = [ Vs T = xuldn+ [ (@uln) T00) L TGae)) I = i
—1 -1
1
= [ oulm) T = ] dy (41)
~1

+ /1<¢k(77) x J(n) — dr(m) * J(ne)) In |x — x| dn

and this leads to the generalised SSNT(LOGA) method, GSSNT(LOGA):
1
I(Xkak) = / ¢k(ns) * J(ns) ln|X_Xs|d77
-1

+[xmmewwwmmem»mM—xmm (4.2)

1
= Isa(Xs, k) + TRa(Xs, k)

where g4 is the singular integral and Iz, is the regular integral mentioned in Section 3.

Expressions for In |x — x| and J(n) are given in Section 5 for the curved element used in
Section 3. Using these a value for fjl In |x — x| dn is found using Mathematica [17] and hence
Is4 is evaluated. The regular integral Ir4 is calculated using the Monomial(Sato) method
outlined in the Appendix.

A similar approach is followed for the generalised SSNT(LOGB) method, GSSNT(LOGB);

using equation (3.2),
1
Hmiﬂz/¥mmg*ﬂmﬂﬂn—mwn
1
+/5mmwanmx—&v¢meJwgmM—mwm (4.3)

= Isp(xs, k) + Irp(Xs, k)
where again Igp is the singular integral and Igp is the regular integral mentioned in Section 3.
Note that here f_ll In |n — ns| dn and hence Isp can be found analytically. Clearly, this is a
major advantage of the (LOGB) technique over the (LOGA) technique.
It can be seen from equations (4.1) and (4.2), that for the integrals I(xy, k) where k=1,2,3,
dr(ns) = or(m) = 1 and GSSNT is equivalent to SSNT. In the case of the quasi-singular
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integrals I(x,, k) (s # k where s, k = 1, 2, 3), ¢x(ns) = 0 and GSSNT simply becomes the
Monomial(Sato) method. This neatly accounts for the results of Section 3, which found that
SSNT is superior for the weakly singular integrals and that Monomial(Sato) is almost always

superior for the quasi-singular integrals.

4.1 GSSNT Results

Table 2 presents results taken from Table 1 and compares them with results for GSSNT for the
(LOGB) case of order 3. Only order 3 and (LOGB) results are given since the other results
are already available in Table 1 and also because Table 1 shows that (LOGA) and (LOGB)
results are very similar. The Table 2 results show that GSSNT is superior, or equal, to both
the Monomial(Sato) method and SSNT, in all but two cases where NG=6. This was, of course,
to be expected, as GSSNT defaults to either the SSNT method or the Monomial(Sato) method
at the node points.

So far all the cases considered have involved a singularity at one of the node points. In the
case where (9, # —1, 0, 1) it is obviously more difficult to calculate the ‘exact’ value of the
integral and also Is4 and so only two cases are presented here. As mentioned previously, Isg,
however, is only a multiple of fjl In | — ns| dn and can therefore be found easily (analytically).

Table 3 gives results for two cases, 17,=0.5 and 1,=-0.1, where 7, is not a node point and
therefore ¢(n;) # 0 or 1. The results indicate that GSSNT is superior or equal to both SSNT
and the Monomial(Sato) method, in all but one case where NG=6. Also, note that order 3

results are better than order 4 results.



5 A Simpler Case

In this section, a study is made comparing the GSSNT, SSNT and the Monomial(Sato) methods

applied to a simpler version of the integrals considered in the previous section,

Lo, k) = / un) Il =] dn (5.1)

where the Jacobian J(n) = 1 and the kernel In | — 7| is used.

The purpose of this simplification is so that the complete range of values of 1, € [—1,1] can
be considered, rather than primarily the node points as in Sections 3 and 4 . The aim here is to
first learn about the range across which GSSNT is superior to the other two methods. A later
task will be to study the non-linear transformation order and its effect on the relative errors of
the evaluated integrals.

Clearly, the (LOGA) and (LOGB) techniques are identical for Iy(ns, k) and so Figures 1
and 2 show the Percentage Relative Error for each of the three methods GSSNT, SSNT and
Monomial(Sato), all of order 4 and NG=10 for I,(n;, k), where n, ranges from -1 to 1, for k=1
and k=2 respectively. The graph for k=3 is simply the reflection in 7, about 0 of the graph for
k=1, since ¢1(—n) = 1(—n)(1 — (=n)) = —3(n)(1 + n) = —¢3(n) and so this is omitted.

Figures 1 and 2 show that GSSNT produces relative errors smaller than or equal to both
other methods for all n, for 10 Gaussian points. Similar graphs show that for NG=6, GSSNT
is superior to or equal to SSNT for all i, and that GSSNT is generally superior to the Mono-
mial(Sato) method except near 1 for ¢; and near 1 for ¢,.

Note that in Figures 1 and 2 for ¢;, SSNT=GSSNT at n,=-1 and for ¢, SSNT=GSSNT
at 7s=0. This is because at these node points ¢1(—1) = ¢2(0) = ¢3(1) = 1 and as previously
discussed in Section 4, this means that the GSSNT and SSNT methods are identical at that
point. It can also be seen that results from Monomial(Sato) and GSSNT are equal at 7,=0
and 1 for ¢; and at n,=-1 and 1 for ¢». This is due to the fact that for these values of 7,
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ér(ns) = 0, which causes the GSSNT and Monomial(Sato) methods to be identical as pointed

out in Section 4.

6 ‘Optimal’ Transformation Orders

The final question to be considered relates to the order which should be chosen for the Mono-
mial(Sato) transformation in the GSSNT method. Since the method defaults to either the
Monomial(Sato) method or the SSNT method at the node points, but not elsewhere, it is
worth beginning with previously drawn conclusions relating to the other methods. Singh and
Tanaka [7] suggest that for the Monomial(Sato) method a conservative choice would be order
4 or 5 for double precision calculations and that the use of order 3 would be sufficient for the
SSNT method.

It, therefore, seems worthwhile to consider the GSSNT method with transformation orders
3, 4 and 5 as applied to Iy(ns, k). Both Figures 3 and 4 do this for NG=6 and ¢;, and NG=10
and ¢, respectively, with order 6 being included in the 10 Gaussian point case as well. Figure
3 shows that for six Gaussian points, order 3 produces superior results to order 4 (and order
5) for all values of 7,, and the same was found to be true for ¢,. The situation is somewhat
more complex for 10 Gaussian points. Figure 4 shows that order 5 produces superior results to
order 4 (and 3) but that results for order 6 are not always superior to those of order 5. Similar
remarks apply to the NG=10 and ¢; case.

Studies for higher numbers of Gaussian points show that even order 3 and 4 transformations
give Truncation Errors (|Zepact — Lapproximate|) Dear the limits of machine precision.

Based on these observations, as well as Tables 2 and 3, it would seem that, in general, a
transformation order of 3 is quite sufficient for the GSSNT method to produce very accurate

evaluations of weakly singular integrals.
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7 Theory

When Singh and Tanaka [7] introduced the SSNT method, they pointed out that the function
fr(n,ms), created by the subtraction of singularity, is now regular, that is, lim,_,,_ f.(17,7;) =0
(or C where C is a bounded constant). Thus I,(xg, k) = fil fr(n,n5) dn can be evaluated using
Gaussian quadrature; but it is, in fact, integrated using a Monomial(Sato) transformation to

obtain a smoother integrand followed by Gaussian quadrature.

Now in the case of the GSSNT(LOGA) method, using equation (4.2) gives

fr(”a 773) = [¢k(ﬂ)J<77) - ¢k(ns>‘](ns>] In |X - Xs| (71>

and for the case of the curved quadratic element used in Section 3.2

1 17
in e — .| = Infy — ] + 5 In [<n+ns><n+ns 1+ z] (7.2)

and

1
2

s = -+ =2 1= 3] (739

Then it can be shown that expanding J(7) using a Binomial series gives

o1 (m)J (1) — dr(ns) I (0s) = (0 — ns) gr (1, 7M5) (7.4)

where lim,_,, gi(n,ns) = C for C a constant and £ = 1,2, 3. Hence f, is regular since

lim,, ., f(n,ns) = 0.

For the GSSNT(LOGB) method

fr(na 775) = ¢k(77)J(77> In ’X - Xs| - ¢k(775)‘](775> In ’77 - 775’ (75>

and using a similar approach to the above gives lim,_,, f.(n,7s) = ¢ for ¢ a constant, and thus
f» is regular in this case also.

The fact that f, is regular for both the GSSNT(LOGA) and GSSNT(LOGB) methods can
also be shown for a general curved element.
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This is not the case, however, for the SSN'T method in general, although for the three cases
where SSNT works well, that is at the three nodes where ¢ (1) = 1, it can be shown similarly

to the above, that f, is regular.

8 Conclusions

This paper has introduced a generalisation of the SSN'T (Subtraction of Singularity followed by a
Non-Linear Transformation) method, recently introduced by Singh and Tanaka [7], to improve
the accuracy of evaluating weakly singular boundary integrals. Both methods introduce a
function, fs(n,ns), of the form, constant multiplied by a logarithm function, for the subtraction
of singularity, but the new generalised SSN'T method (GSSNT) takes into account the behaviour
of the basis functions, whereas the SSNT method does not. The regular integral that remains
after the subtraction of singularity, is then evaluated, for both methods, by splitting the interval
at the singularity and then applying a Monomial(Sato) transformation followed by Gaussian
quadrature.

The GSSNT method has been implemented and numerically compared with both the SSN'T
and the Monomial(Sato) methods for the weakly singular integrals which arise in the boundary
element solution to the two dimensional Laplace equation. In almost every case considered,
the new technique is either equivalent or superior to both the SSNT and the Monomial(Sato)
methods, bearing in mind that prior to Singh and Tanaka’s introduction of the SSN'T method
[7], the Monomial(Sato) method was regarded as the preferred technique for these integrals (see
(2) in the Introduction).

It is worth noting that in both the GSSNT and SSNT methods, there are two possible
choices for the function fs(n, n;s): the so-called (LOGA) version, where f(n,n;) = c*In|x; — x|

and the (LOGB) version which involves fs(n,ns) = ¢ In|n — ns|, where ¢ is a constant. Since
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it is possible to analytically integrate f_ll In | — 1| dn and the results for the two techniques
are almost identical in the cases considered, (LOGB) is clearly the more easily implemented
technique of the two.

The question of the ‘optimal’ order of the transformation to be used for the Monomial(Sato)
transformation part of the GSSNT method was also considered. It was found that a transfor-
mation order of three is sufficient to produce very accurate results for the evaluation of weakly
singular boundary integrals.

Given that the GSSNT method is so successful in evaluating one dimensional singular in-
tegrals, it might be worth extending it to two dimensions to determine its applicability and
accuracy there. Possible applications would be to two different types of weakly singular bound-
ary integrals: those which arise when considering the three dimensional Laplace equation and
also those involved in the solution of Poisson’s equation in two dimensions.

In summary then, the GSSN'T method presented above almost always yields more accurate
values, for the weakly singular integrals considered, than both the SSNT and the non-linear
transformation methods, with the (LOGB) version of the technique being preferred because of

its ease of implementation.

Appendix

Monomial Method

To apply the Monomial method [13] to a one dimensional integral with an arbitrary singularity
ns € (—1,1), firstly split the interval at the singularity, then change the variable of integration
so that both integrals are evaluated over [0,1], with the singularity mapping to 0 in both cases,

and then apply the Monomial transformation to each of the resulting integrals.
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For example, in the case of the weakly singular integrals given in equation (2.2),

Ns 1
I(xs, k) = 1¢k<n)1nlx—xs|J<n)dn+ dr(n) In |x — x,|J(n) dn

— s

Now change the variable of integration to evaluate both integrals over the range [0,1], ensuring
that the point 1, maps to 0 in each case. That is, for the first integral in the equation above,
apply n =ns; — (1 + n,)t and for the second apply, n = ns + (1 — n,)t, giving
1
I(xs, k) =(1+ 7)5)/ dr(ns — (L+ns)t) In |x(ns — (1 +ns)t) — x4]J(ns — (1 4 n5)t) dt
0
1
+(1 - 775)/ dr(ns + (L —ms)t) In |x(ns + (1 — ns)t) — x4 J(ns + (1 — ns)t) dt
0
Next a Monomial transformation of order n is applied, where ¢t = y(w;n) = w", giving
1
I(xs, k) =(1+ 7]5)/0 Pr(ns — (L +ms)w"™) In|x(ns — (1 +ns)w") — xs[J(ns — (1 + US)wn)nwnil dw

1
+(1 - ns)/o QZ)k(ns + (1 - ns)wn) In |x(775 + (1 - ns)wn) - XS|J(T]5 + (1 - ns)wn)nwnil dw

Finally, apply Gaussian quadrature to each of the above integrals.
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Captions

Table 1: Percentage Relative Errors for various methods used to evaluate I (xs, k) = fjl ér(n) In |x—
x;|J(n) dn at the node points for transformation orders 3 and 4, for all basis functions and var-
ious numbers of Gaussian points.

Table 2: Percentage Relative Errors for the GSSNT, SSNT and Monomial(Sato) methods, all
of order 3, used to evaluate [(xs, k) = f_ll ér(n) In |x — x| J(n) dn at the node points, for all
basis functions and various numbers of Gaussian points.

Table 3: Percentage Relative Errors for evaluating I(xg, k) = f_ll ér(n) In |x —x4|J (1) dn using
the GSSNT, SSNT and Monomial(Sato) methods, for various numbers of Gaussian points for
ns = 0.5 and ¢4, and n;, = —0.1 and ¢, respectively.

Figure 1: Graph of Percentage Relative Errors for the GSSNT, SSNT and Monomial(Sato)
methods evaluating Iy(ns, 1) = fjl o1(n) In |n —ns| dn for ns varying between -1 and 1, 10 Gaus-
sian points and transformation order 4.

Figure 2: Graph of Percentage Relative Errors for the GSSNT, SSNT and Monomial(Sato)
methods evaluating Iy(7s,2) = fjl b2(n) In |n — ns| dn for ns varying between -1 and 1, 10 Gaus-
sian points and transformation order 4.

Figure 3: Graph of Percentage Relative Errors for the GSSNT method evaluating Io(ns, 1) =
f_ll é1(n) In|n — ns| dn for n, varying between -1 and 1, 6 Gaussian points and transformation
orders 3, 4 and 5.

Figure 4: Graph of Percentage Relative Errors for the GSSNT method evaluating Io(ns, 2) =
f_ll b2(n) In|n — ns| dn for n, varying between -1 and 1, 10 Gaussian points and transformation

orders 3, 4, 5 and 6.
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61

Percentage Relative Errors

ns | ¢i | NG SSNT SSNT SSNT SSNT Monomial | Monomial | Gaussian
(LOGA) (LOGA) (LOGB) (LOGB) (Sato) (Sato) Quad.
order 3 order 4 order 3 order 4 order 3 order 4

Al 6 ]92x103 [ 93x107 | 1.3x1072 | 94x1071 | 41x1072 | 94 %1071 | 1.0 x 10!
10 | 1.8x107% | 3.2x107% | 1.8x107* | 32x1073 | 1.7x1073 | 3.3 x 1073 | 3.9 x 10°

20 1 9.7x10710 | 42x10°% | 9.7x10719 | 42x10°8 | 27x107° | 3.6 x 1077 | 1.0 x 10°

p2| 6 | 1.1x1071 | 81x107% | 1.1x107! | 8.0x107t | 98x 1072 | 8.0x 107! | 1.8 x 1071

10 | 1.2x1073 | 42x10°3 | 1.2x107% | 42x1072 | 5.6 x 1074 | 42x 1073 | 2.5 x 1072

20 | 1.2x107° | 1.5x 1077 | 1.2x107® | 1.5 x 1077 | 28 x107° | 1.6 x 1078 | 1.7 x 1073

¢ | 6 | 8.7x1072 | 4.7x1071 | 89x1072 | 47x 107" | 1.1 x 107! | 4.8 x 107 | 8.7 x 1072

10 | 6.7x107% | 21 x10°3 | 6.7x107% | 21 x10°2% | 5.8x10°% | 22x 1073 | 1.2 x 102

20 | 22x107° | 29x 1077 | 22x107° | 29x 1077 | 24x107° | 3.2x 1078 | 7.8 x 107*

01| 6 | 31x1072]69x1072 | 3.1x1072 | 69x1072 | 45x107* | 7.3x107% |22x 1073
10 | 1.7x1073 | 74x107° | 1.7x107% | 74x10° | 25x10°7 | 3.1x10°6 |1.2x10°¢

20 | 3.0x107° | 35x1077 | 3.0x 107 | 3.5 x 1077 | 40x 10713 | 42x 107 | 2.6 x 107

da | 6 | 1.3x1073 | 53x1072 | 1.3x 1073 | 53 x1072 | 1.0x 1072 | 5.2x 1072 | 4.0 x 10°

10 | 44x108% | 28x1077 | 44x10°8 | 24x10°7 | 6.1 x10°% | 28 x10°® | 1.5 x 10°

20 |1.9x10713 | 43x10714 |24 %1078 | 14x107 | 1.1 x107° | 1.2 x 1077 | 4.0 x 10!

p3| 6 | 6.2x1072 | 14x1071 | 6.2x1072 | 1.4x107! | 34x1072 | 1.5 x 107 | 2.8 x 1073

10 | 351073 | 1.7x107* | 35x1073 | 1.7x107% | 5.3 x 1077 | 84 x107% | 1.5 x 107

20 | 62x107° | 72x1077 | 6.2x107° | 72x 1077 | 3.9x10°1 | 1.2x 10713 | 2.6x 106

L |é | 6 | 5.8x1073 | 35x107! [ 5.7x1073 | 3.3x107" | 21 x1072 | 3.3 x 107! | 5.5 x 1072
10 [ 96x107% | 95x107* | 95x107* | 9.7x107* | 1.6 x107* | 9.3 x10™* | 7.5 x 1073

20 | 14x107° | 1.6x10°7 | 14x10° | 1.6 x1077 | 1.4x1071° | 20x 107 | 5.0 x 104

po | 6 | 81x1072 | 56x107t | 81x1072 | 5.8x107! | 6.9x1072 | 5.7x 107 | 1.6 x 10~!

10 | 35 x107% | 1.8 x 1072 | 35 x107% | 1.8 x 1073 | 2.6 x 107* | 1.8 x 1072 | 2.3 x 1072

20 | 1.1x107° | 1.3x1077 | 1.1x107° | 1.3 x10°7 | 7.0x10710 | 7.1 x107? | 1.5 x 1073

p3| 6 | 6.5x1072 | 72x107L | 65x 1072 | 6.8x107! | 85x 1072 | 6.9 x 107 | 7.6 x 10°

10 | 1.2x107° | 5.2x107* | 1.1 x107° | 5.4 x107% | 1.1 x1073 | 49 x107* | 2.8 x 10°

20 | 55x10710 | 1.5x 1078 [ 55x10719 | 1.5x10°8 | 20x107° | 24x 1077 | 7.3 x 1071

Table 1:




ns | ¢; | NG Percentage Relative Errors
GSSNT(LOG B) | SSNT(LOG B) | Monomial(Sato)
1)1 ] 6 1.3 x 1072 1.3 x 1072 4.1 x 1072
10 1.8 x 107* 1.8 x 10~* 1.7 x 1073
20 9.7 x 10710 9.7 x 10710 2.7 x 107°
o | 6 9.8 x 1072 1.1 x 1071 9.8 x 1072
10 5.6 x 10~* 1.2 x 1073 5.6 x 1074
20 2.8 x 1079 1.2 x10°° 2.8 x 1072
ds | 6 1.1 x101t 8.9 x 102 1.1x101
10 5.8 x 1074 6.7 x 1074 58 x 10~*
20 2.4 x 107 2.2 x 107° 2.4 x 107°
0o | 6 45 % 10°% 3.1x 1072 4.5 % 1074
10 2.5 x 1077 1.7 x 1073 2.5 x 1077
20 4.0 x 10713 3.0 x 107° 4.0 x 10713
G 1.3 x 1073 1.3 x 1073 1.0 x 1072
10 4.4 %1078 4.4 %1078 6.1 x 1074
20 2.4x 1013 2.4 %x 10713 1.1x10°°
b3 | 6 3.4x 1073 6.2 x 1072 3.4x 1073
10 5.3 x 1077 3.5 x 1073 5.3 x 1077
20 3.9 x 10713 6.2 x 107° 3.9 x 10713
1 ¢ ] 6 2.1 x 1072 5.7 x 1073 21x 102
10 1.6 x 10~* 9.5 x 104 1.6 x 1074
20 1.4 x 10710 1.4 x 107° 1.4 x 10710
s | 6 6.9 x 102 8.1 x 1072 6.9 x 102
10 2.6 x 1074 3.5 x 1074 2.6 x 1074
20 7.0 x 10710 1.1 x 107° 7.0 x 10710
b3 | 6 6.5 x 1072 6.5 x 1072 8.5 x 1072
10 1.1 x 107° 1.1 x 107° 1.1 x 1073
20 5.5 x 10710 5.5 x 10710 2.0x 107°
Table 2:

20




1¢

Percentage Relative Errors

Methods J2, é1(n) In |y — 0.5[J () dny 21 $2(n) In|n +0.1]J (n) dn
NG=6 NG=10 NG=20 NG=6 NG=10 NG=20

GSSNT(LOGA) | 3.1 x 1073 | 21 x 107° | 5.1 x 107 [ 21 x 1072 | 3.5 x 1077 | 1.3 x 10713
order 3

GSSNT(LOGB) | 3.1x 1073 [21x10%(34x10 1 |21x103|35x107|27x101®
order 3

SSNT(LOGA) | 1.1x1072 |81 x107* | 1.4x 107 [2.2x 1073 | 6.6 x 107° | 1.1 x 1077
order 3

SSNT(LOGB) |1.2x 1072 |81x107* | 1.4x107° | 22x107% | 6.6 x 107¢ | 1.1 x 1077
order 3

Monomial(Sato) | 1.5 x 1073 | 9.2x 107% | 1.6 x 1075 | 95x 1072 | 62x10* | 1.1 x 1075
order 3

GSSNT(LOGA) [ 8.6 x 1072 |1.9x107° |72x1071? 63 x102|1.1x10°%]|52x10%
order 4

GSSNT(LOGB) | 8.6x 1072 | 1.9x 1075 | 7.1 x 107 | 6.4 x 1072 | 1.2 x 107 | 8.8 x 107**
order 4

SSNT(LOGA) [84x102[55x10°| 1.6 x 107 |63 x1072|14x10°¢| 1.3x10°°
order 4

SSNT(LOGB) |84 x 1072 |55x10°| 1.6 x107 |63 x102|1.5x10°%| 1.3 x107°
order 4

Monomial(Sato) | 8.6 x 1072 | 2.3 x 107> | 1.8 x 107% [ 6.2 x 1072 [ 2.7 x 107> | 1.3 x 107
order 4

Table 3:
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