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Abstra
tA

urate numeri
al evaluation of boundary integrals is fundamental to produ
ing use-ful results with the boundary element method. This paper introdu
es a generalisationof a re
ently introdu
ed 
ombined method (subtra
tion of singularity followed by a non-linear transformation), whi
h takes into a

ount the e�e
t of the basis fun
tions. Thenew method is applied to solve weakly singular integrals whi
h arise in the solution ofthe two dimensional Lapla
e equation. The new method was found, in the 
ases 
onsid-ered, to be numeri
ally superior to both the 
ombined method and any of the non-lineartransformation methods.

Running Title: Evaluating Weakly Singular Integrals.

Keywords: Singular Integrals, Boundary Element Method, Non{Linear Transformation, Sin-gularity Subtra
tion, Lapla
e's Equation.
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1 Introdu
tionWhen the boundary element method is used to solve the two dimensional Lapla
e equation,it is ne
essary to be able to a

urately numeri
ally integrate the weakly singular boundaryintegrals involved. Considerable interest has been shown in developing te
hniques to solvethese integrals, in
luding the following non-linear transformation te
hniques [1, 2, 3, 4, 5, 6℄and those mentioned below.Singh and Tanaka [7℄ re
ently studied the various non-linear transformation methods at-tributed to Telles [8℄, Sato et al. [9℄, Doblar�e and Gra
ia [10℄ and Johnston [11℄, as applied toa simple 
lass of weakly singular integrals. These methods all involve the use of a non-lineartransformation followed by Gaussian quadrature.Singh and Tanaka's 
on
lusions [7℄ in
lude the following:(1) Non-linear transformations valid for end-point singularities perform mu
h better than gen-eralized transformations valid for any lo
ation of singularity. Hen
e, if the singular point lies inthe interior of the integration element, non-linear transformations should be used in 
onjun
tionwith partitioning.(2) Higher-order transformations of Sato et al. [9℄ represent a superset of transformations ofTelles [8℄ and the most a

urate end-point transformation of Doblar�e and Gra
ia [10℄. Thesetransformations are also the most a

urate amongst the ones 
onsidered in this study.It is worth noting, in relation to (1), that it is already known from theory [12℄ that aGauss-Legendre quadrature rule performs better for end-point singularities than for internalsingularities of the integrand fun
tion and that the order of 
onvergen
e for the �rst 
ase isabout twi
e that a
hieved in the se
ond 
ase.It is also worth noting that the higher-order transformation of Sato et al., referred to in (2)above, has been shown to be equivalent to the Monomial transformation re
ently introdu
ed3



by one of the authors [13℄. This transformation arose out of previous studies on sigmoidaltransformations [11, 14℄, where the Monomial transformation is a limit of the 1m th sigmoidaltransformation as m!1.There are some advantages to using the Monomial rather than Sato's transformation: the�rst is that mu
h higher transformation orders 
an be used, for a parti
ular number of Gaussianpoints, without limits of ma
hine pre
ision be
oming an issue [15℄ and the se
ond is that theerror analysis asso
iated with sigmoidal transformations 
an be utilised [13, 16℄. Hen
e the termMonomial(Sato) method is used in this paper. Details of the Monomial method are presentedin Appendix 1.Singh and Tanaka [7℄ also introdu
e a new method in the above mentioned paper, the
ombined Subtra
tion of Singularity and Non-Linear Transformation approa
h (SSNT) andapply it to a weakly singular integral, whi
h arises in the solution of the two dimensional Lapla
eequation. They use Sato's transformation, dis
ussed above, for the non-linear transform partof the SSNT method and also, along with Gaussian quadrature, as a basis of 
omparison withthe SSNT method. They 
on
lude that `the proposed 
omposite approa
h is more a

urate,eÆ
ient and robust than the singularity subtra
tion and the non-linear transform methods'.Se
tion 2 of this paper de�nes the weakly singular integrals being 
onsidered, while Se
tion3 looks at applying the SSNT method to a larger number of integrals and 
ompares the resultswith the Monomial(Sato) method. It then goes on, in Se
tion 4, to present a generalised SSNTmethod (GSSNT) and to study the a

ura
y of this new method. In Se
tions 5 and 6, theGSSNT, SSNT and Monomial(Sato) methods are applied to a simpler 
lass of integrals, sothat various features of the new method 
an be studied a
ross the full range of singular values.Some theory asso
iated with the GSSNT and SSNT methods is presented in Se
tion 7 with
on
lusions from this study being presented in Se
tion 8.
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2 Weakly Singular IntegralsThis paper is 
on
erned with methods for solving the weakly singular integrals whi
h arise inthe solution of the two-dimensional Lapla
e equation. These integrals are of the formI(xs; k) = Z�e �k(x) ln jx� xsj d�(x) (2.1)where �e is the 
urrent boundary element, xs is the 
ollo
ation point and �k denotes the shapefun
tion asso
iated with the kth lo
al node of the element. Clearly, I(xs; k) is weakly singularwhen xs 2 �e.The usual pra
ti
e is to rewrite the integral in terms of the lo
al 
oordinate �, �1 � � � 1,so that I(xs; k) = Z 1�1 �k(�) ln jx� xsjJ(�) d� (2.2)where J is the Ja
obian of the transformation of �e onto [-1,1℄.
3 SSNT Approa
hRe
ently, Singh and Tanaka [7℄ introdu
ed a new 
ombined approa
h to the solution of weaklysingular integrals, the so-
alled SSNT approa
h (Singularity Subtra
tion followed by a Non-linear Transformation).The idea behind the SSNT approa
h is to re-write the integral as the sum of a singularintegral, whi
h 
an be evaluated analyti
ally, and a regular integral, whi
h 
ould be evaluatedusing Gaussian quadrature but is, in fa
t, evaluated by �rst using a non-linear transformationto obtain a smoother integrand, and then by Gaussian quadrature. See [7℄ for a full explanationof the method.When the SSNT approa
h is applied to the integrals given in equation (2.2), Singh andTanaka suggest two possible 
hoi
es for the fun
tion fs(�; �s) to be subtra
ted from the inte-5



grand:(1) The (LOGA) approa
h, where fs(�; �s) = J(�s) ln jx� xsj, givingI(xs; k) = Z 1�1 J(�s) ln jx� xsj d� + Z 1�1 [�k(�)J(�)� J(�s)℄ ln jx� xsj d� (3.1)and(2) the (LOGB) approa
h, where fs(�; �s) = J(�s) ln j� � �sj, givingI(xs; k) = Z 1�1 J(�s) ln j� � �sj d� + Z 1�1 (�k(�)J(�) ln jx� xsj � J(�s) ln j� � �sj) d� (3.2)In ea
h 
ase the �rst integral is evaluated analyti
ally and the se
ond integral is evaluatedby applying a non-linear transformation, that of Sato et al. [9℄ of order 3 or 4, followed byGaussian quadrature.3.1 Per
entage Relative ErrorThe various methods 
onsidered here will be 
ompared in terms of the Per
entage RelativeError, de�ned by Per
entage Relative Error = jIapproximate � Iexa
tjIexa
t � 100 (3.3)where Iexa
t is found using Mathemati
a [17℄. Double pre
ision arithmeti
 has been used innumeri
al 
al
ulations.3.2 SSNT ResultsIn their paper [7℄, Singh and Tanaka 
onsider a 
urved quadrati
 element with nodes x1=(1,1),x2=(2.5,3) and x3=(2,5), in whi
h x2 is the middle node and this will be used here.Table 1 in
ludes the 
ase 
onsidered by Singh and Tanaka, that is I(x3; 3), but a wider rangeof integrals is in
luded; that is, I(x1; 1), I(x2; 2) and I(x3; 3), as well as the quasi-singular [7℄integrals I(x1; 2), I(x1; 3), I(x2; 1), I(x2; 3), I(x3; 1) and I(x3; 2). Note that it is worth applying6



a transformation to quasi-singular integrals as, although they are bounded at the singular pointof the logarithm fun
tion, the integral exhibits rapid 
hange near that point. It is well knownthat 
lustering integration points in a region where the integrand 
hanges rapidly improves thea

ura
y of the numeri
al approximation to the value of the integral.Comparisons of Per
entage Relative Errors between SSNT(LOGA) and SSNT(LOGB) withorders 3 and 4 and the Monomial(Sato) method as well as Gaussian quadrature are presentedfor various numbers of Gaussian points, NG.Perusal of Table 1 indi
ates:(1) SSNT(LOG A) and SSNT(LOG B) yield very similar results.(2) SSNT of order 3 is `best' (gives the lowest Per
entage Relative Errors) for the weaklysingular integrals I(xk; k) where k=1; 2; 3.(3) The Monomial(Sato) method is almost always `best' for the rest of the integrals (that is,the quasi-singular integrals) ex
ept sometimes when NG=6 when either SSNT or Gaussianquadrature is best.
4 A Generalised SSNT Approa
hSin
e the SSNT method produ
es superior results to the Monomial(Sato) method for only thethree nodes where �k(�k) = 1, that is I(x1; 1), I(x2; 2) and I(x3; 3), it would be useful if amodi�
ation to this method 
ould be found whi
h would take a

ount of the behaviour of�k(�) and therefore be appli
able over the whole range of �s values, �s 2 [�1; 1℄.
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Consideration of equation (3.1) for I(xk; k) givesI(xk; k) = Z 1�1 1 � J(�k) ln jx� xkj d� + Z 1�1(�k(�) � J(�)� 1 � J(�k)) ln jx� xkj d�= Z 1�1 �k(�k) � J(�k) ln jx� xkj d�+ Z 1�1(�k(�) � J(�)� �k(�k) � J(�k)) ln jx� xkj d� (4.1)
and this leads to the generalised SSNT(LOGA) method, GSSNT(LOGA):I(xk; k) = Z 1�1 �k(�s) � J(�s) ln jx� xsj d�+ Z 1�1(�k(�) � J(�)� �k(�s) � J(�s)) ln jx� xsj d�= ISA(xs; k) + IRA(xs; k) (4.2)
where ISA is the singular integral and IRA is the regular integral mentioned in Se
tion 3.Expressions for ln jx � xsj and J(�) are given in Se
tion 5 for the 
urved element used inSe
tion 3. Using these a value for R 1�1 ln jx� xsj d� is found using Mathemati
a [17℄ and hen
eISA is evaluated. The regular integral IRA is 
al
ulated using the Monomial(Sato) methodoutlined in the Appendix.A similar approa
h is followed for the generalised SSNT(LOGB) method, GSSNT(LOGB);using equation (3.2),I(xk; k) = Z 1�1 �k(�s) � J(�s) ln j� � �sj d�+ Z 1�1(�k(�) � J(�) ln jx� xsj � �k(�s) � J(�s) ln j� � �sj) d�= ISB(xs; k) + IRB(xs; k) (4.3)
where again ISB is the singular integral and IRB is the regular integral mentioned in Se
tion 3.Note that here R 1�1 ln j� � �sj d� and hen
e ISB 
an be found analyti
ally. Clearly, this is amajor advantage of the (LOGB) te
hnique over the (LOGA) te
hnique.It 
an be seen from equations (4.1) and (4.2), that for the integrals I(xk; k) where k=1, 2, 3,�k(�s) = �k(�k) = 1 and GSSNT is equivalent to SSNT. In the 
ase of the quasi-singular8



integrals I(xs; k) (s 6= k where s, k = 1; 2; 3), �k(�s) = 0 and GSSNT simply be
omes theMonomial(Sato) method. This neatly a

ounts for the results of Se
tion 3, whi
h found thatSSNT is superior for the weakly singular integrals and that Monomial(Sato) is almost alwayssuperior for the quasi-singular integrals.4.1 GSSNT ResultsTable 2 presents results taken from Table 1 and 
ompares them with results for GSSNT for the(LOGB) 
ase of order 3. Only order 3 and (LOGB) results are given sin
e the other resultsare already available in Table 1 and also be
ause Table 1 shows that (LOGA) and (LOGB)results are very similar. The Table 2 results show that GSSNT is superior, or equal, to boththe Monomial(Sato) method and SSNT, in all but two 
ases where NG=6. This was, of 
ourse,to be expe
ted, as GSSNT defaults to either the SSNT method or the Monomial(Sato) methodat the node points.So far all the 
ases 
onsidered have involved a singularity at one of the node points. In the
ase where (�s 6= �1; 0; 1) it is obviously more diÆ
ult to 
al
ulate the `exa
t' value of theintegral and also ISA and so only two 
ases are presented here. As mentioned previously, ISB,however, is only a multiple of R 1�1 ln j�� �sj d� and 
an therefore be found easily (analyti
ally).Table 3 gives results for two 
ases, �s=0.5 and �s=-0.1, where �s is not a node point andtherefore �(�s) 6= 0 or 1. The results indi
ate that GSSNT is superior or equal to both SSNTand the Monomial(Sato) method, in all but one 
ase where NG=6. Also, note that order 3results are better than order 4 results.
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5 A Simpler CaseIn this se
tion, a study is made 
omparing the GSSNT, SSNT and the Monomial(Sato) methodsapplied to a simpler version of the integrals 
onsidered in the previous se
tion,I0(�s; k) = Z 1�1 �k(�) ln j� � �sj d� (5.1)where the Ja
obian J(�) � 1 and the kernel ln j� � �sj is used.The purpose of this simpli�
ation is so that the 
omplete range of values of �s 2 [�1; 1℄ 
anbe 
onsidered, rather than primarily the node points as in Se
tions 3 and 4 . The aim here is to�rst learn about the range a
ross whi
h GSSNT is superior to the other two methods. A latertask will be to study the non-linear transformation order and its e�e
t on the relative errors ofthe evaluated integrals.Clearly, the (LOGA) and (LOGB) te
hniques are identi
al for I0(�s; k) and so Figures 1and 2 show the Per
entage Relative Error for ea
h of the three methods GSSNT, SSNT andMonomial(Sato), all of order 4 and NG=10 for I0(�s; k), where �s ranges from -1 to 1, for k=1and k=2 respe
tively. The graph for k=3 is simply the re
e
tion in �s about 0 of the graph fork=1, sin
e �1(��) = 12(��)(1� (��)) = �12(�)(1 + �) = ��3(�) and so this is omitted.Figures 1 and 2 show that GSSNT produ
es relative errors smaller than or equal to bothother methods for all �s for 10 Gaussian points. Similar graphs show that for NG=6, GSSNTis superior to or equal to SSNT for all �s and that GSSNT is generally superior to the Mono-mial(Sato) method ex
ept near 1 for �1 and near �1 for �2.Note that in Figures 1 and 2 for �1, SSNT=GSSNT at �s=-1 and for �2, SSNT=GSSNTat �s=0. This is be
ause at these node points �1(�1) = �2(0) = �3(1) = 1 and as previouslydis
ussed in Se
tion 4, this means that the GSSNT and SSNT methods are identi
al at thatpoint. It 
an also be seen that results from Monomial(Sato) and GSSNT are equal at �s=0and 1 for �1 and at �s=-1 and 1 for �2. This is due to the fa
t that for these values of �s10



�k(�s) = 0, whi
h 
auses the GSSNT and Monomial(Sato) methods to be identi
al as pointedout in Se
tion 4.
6 `Optimal' Transformation OrdersThe �nal question to be 
onsidered relates to the order whi
h should be 
hosen for the Mono-mial(Sato) transformation in the GSSNT method. Sin
e the method defaults to either theMonomial(Sato) method or the SSNT method at the node points, but not elsewhere, it isworth beginning with previously drawn 
on
lusions relating to the other methods. Singh andTanaka [7℄ suggest that for the Monomial(Sato) method a 
onservative 
hoi
e would be order4 or 5 for double pre
ision 
al
ulations and that the use of order 3 would be suÆ
ient for theSSNT method.It, therefore, seems worthwhile to 
onsider the GSSNT method with transformation orders3, 4 and 5 as applied to I0(�s; k). Both Figures 3 and 4 do this for NG=6 and �1, and NG=10and �2 respe
tively, with order 6 being in
luded in the 10 Gaussian point 
ase as well. Figure3 shows that for six Gaussian points, order 3 produ
es superior results to order 4 (and order5) for all values of �s, and the same was found to be true for �2. The situation is somewhatmore 
omplex for 10 Gaussian points. Figure 4 shows that order 5 produ
es superior results toorder 4 (and 3) but that results for order 6 are not always superior to those of order 5. Similarremarks apply to the NG=10 and �1 
ase.Studies for higher numbers of Gaussian points show that even order 3 and 4 transformationsgive Trun
ation Errors (jIexa
t � Iapproximatej) near the limits of ma
hine pre
ision.Based on these observations, as well as Tables 2 and 3, it would seem that, in general, atransformation order of 3 is quite suÆ
ient for the GSSNT method to produ
e very a

urateevaluations of weakly singular integrals. 11



7 TheoryWhen Singh and Tanaka [7℄ introdu
ed the SSNT method, they pointed out that the fun
tionfr(�; �s), 
reated by the subtra
tion of singularity, is now regular, that is, lim�!�s fr(�; �s) = 0(or C where C is a bounded 
onstant). Thus Ir(xs; k) = R 1�1 fr(�; �s) d� 
an be evaluated usingGaussian quadrature; but it is, in fa
t, integrated using a Monomial(Sato) transformation toobtain a smoother integrand followed by Gaussian quadrature.Now in the 
ase of the GSSNT(LOGA) method, using equation (4.2) givesfr(�; �s) = [�k(�)J(�)� �k(�s)J(�s)℄ ln jx� xsj (7.1)and for the 
ase of the 
urved quadrati
 element used in Se
tion 3.2ln jx� xsj = ln j� � �sj+ 12 ln�(� + �s)(� + �s � 1) + 174 � (7.2)and J(�) =r4�2 � 2� + 174 = 2 �1 + (� � 14)2� 12 (7.3)Then it 
an be shown that expanding J(�) using a Binomial series gives�k(�)J(�)� �k(�s)J(�s) = (� � �s)gk(�; �s) (7.4)where lim�!�s gk(�; �s) = C for C a 
onstant and k = 1; 2; 3. Hen
e fr is regular sin
elim�!�s fr(�; �s) = 0.For the GSSNT(LOGB) methodfr(�; �s) = �k(�)J(�) ln jx� xsj � �k(�s)J(�s) ln j� � �sj (7.5)and using a similar approa
h to the above gives lim�!�s fr(�; �s) = 
 for 
 a 
onstant, and thusfr is regular in this 
ase also.The fa
t that fr is regular for both the GSSNT(LOGA) and GSSNT(LOGB) methods 
analso be shown for a general 
urved element. 12



This is not the 
ase, however, for the SSNT method in general, although for the three 
aseswhere SSNT works well, that is at the three nodes where �k(�k) = 1, it 
an be shown similarlyto the above, that fr is regular.
8 Con
lusionsThis paper has introdu
ed a generalisation of the SSNT (Subtra
tion of Singularity followed by aNon-Linear Transformation) method, re
ently introdu
ed by Singh and Tanaka [7℄, to improvethe a

ura
y of evaluating weakly singular boundary integrals. Both methods introdu
e afun
tion, fs(�; �s), of the form, 
onstant multiplied by a logarithm fun
tion, for the subtra
tionof singularity, but the new generalised SSNT method (GSSNT) takes into a

ount the behaviourof the basis fun
tions, whereas the SSNT method does not. The regular integral that remainsafter the subtra
tion of singularity, is then evaluated, for both methods, by splitting the intervalat the singularity and then applying a Monomial(Sato) transformation followed by Gaussianquadrature.The GSSNT method has been implemented and numeri
ally 
ompared with both the SSNTand the Monomial(Sato) methods for the weakly singular integrals whi
h arise in the boundaryelement solution to the two dimensional Lapla
e equation. In almost every 
ase 
onsidered,the new te
hnique is either equivalent or superior to both the SSNT and the Monomial(Sato)methods, bearing in mind that prior to Singh and Tanaka's introdu
tion of the SSNT method[7℄, the Monomial(Sato) method was regarded as the preferred te
hnique for these integrals (see(2) in the Introdu
tion).It is worth noting that in both the GSSNT and SSNT methods, there are two possible
hoi
es for the fun
tion fs(�; �s): the so-
alled (LOGA) version, where fs(�; �s) = 
� ln jxs�xjand the (LOGB) version whi
h involves fs(�; �s) = 
 � ln j� � �sj, where 
 is a 
onstant. Sin
e13



it is possible to analyti
ally integrate R 1�1 ln j� � �sj d� and the results for the two te
hniquesare almost identi
al in the 
ases 
onsidered, (LOGB) is 
learly the more easily implementedte
hnique of the two.The question of the `optimal' order of the transformation to be used for the Monomial(Sato)transformation part of the GSSNT method was also 
onsidered. It was found that a transfor-mation order of three is suÆ
ient to produ
e very a

urate results for the evaluation of weaklysingular boundary integrals.Given that the GSSNT method is so su

essful in evaluating one dimensional singular in-tegrals, it might be worth extending it to two dimensions to determine its appli
ability anda

ura
y there. Possible appli
ations would be to two di�erent types of weakly singular bound-ary integrals: those whi
h arise when 
onsidering the three dimensional Lapla
e equation andalso those involved in the solution of Poisson's equation in two dimensions.In summary then, the GSSNT method presented above almost always yields more a

uratevalues, for the weakly singular integrals 
onsidered, than both the SSNT and the non-lineartransformation methods, with the (LOGB) version of the te
hnique being preferred be
ause ofits ease of implementation.
AppendixMonomial MethodTo apply the Monomial method [13℄ to a one dimensional integral with an arbitrary singularity�s 2 (�1; 1), �rstly split the interval at the singularity, then 
hange the variable of integrationso that both integrals are evaluated over [0,1℄, with the singularity mapping to 0 in both 
ases,and then apply the Monomial transformation to ea
h of the resulting integrals.

14



For example, in the 
ase of the weakly singular integrals given in equation (2.2),I(xs; k) = Z �s�1 �k(�) ln jx� xsjJ(�) d� + Z 1�s �k(�) ln jx� xsjJ(�) d�Now 
hange the variable of integration to evaluate both integrals over the range [0,1℄, ensuringthat the point �s maps to 0 in ea
h 
ase. That is, for the �rst integral in the equation above,apply � = �s � (1 + �s)t and for the se
ond apply, � = �s + (1� �s)t, givingI(xs; k) =(1 + �s) Z 10 �k(�s � (1 + �s)t) ln jx(�s � (1 + �s)t)� xsjJ(�s � (1 + �s)t) dt+(1� �s) Z 10 �k(�s + (1� �s)t) ln jx(�s + (1� �s)t)� xsjJ(�s + (1� �s)t) dtNext a Monomial transformation of order n is applied, where t = 
(w;n) = wn, givingI(xs; k) =(1 + �s)Z 10 �k(�s � (1 + �s)wn) ln jx(�s � (1 + �s)wn)� xsjJ(�s � (1 + �s)wn)nwn�1 dw+(1� �s)Z 10 �k(�s + (1� �s)wn) ln jx(�s + (1� �s)wn)� xsjJ(�s + (1� �s)wn)nwn�1 dwFinally, apply Gaussian quadrature to ea
h of the above integrals.
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CaptionsTable 1: Per
entage Relative Errors for various methods used to evaluate I(xs; k) = R 1�1 �k(�) ln jx�xsjJ(�) d� at the node points for transformation orders 3 and 4, for all basis fun
tions and var-ious numbers of Gaussian points.Table 2: Per
entage Relative Errors for the GSSNT, SSNT and Monomial(Sato) methods, allof order 3, used to evaluate I(xs; k) = R 1�1 �k(�) ln jx � xsjJ(�) d� at the node points, for allbasis fun
tions and various numbers of Gaussian points.Table 3: Per
entage Relative Errors for evaluating I(xs; k) = R 1�1 �k(�) ln jx�xsjJ(�) d� usingthe GSSNT, SSNT and Monomial(Sato) methods, for various numbers of Gaussian points for�s = 0:5 and �1, and �s = �0:1 and �2 respe
tively.Figure 1: Graph of Per
entage Relative Errors for the GSSNT, SSNT and Monomial(Sato)methods evaluating I0(�s; 1) = R 1�1 �1(�) ln j���sj d� for �s varying between -1 and 1, 10 Gaus-sian points and transformation order 4.Figure 2: Graph of Per
entage Relative Errors for the GSSNT, SSNT and Monomial(Sato)methods evaluating I0(�s; 2) = R 1�1 �2(�) ln j���sj d� for �s varying between -1 and 1, 10 Gaus-sian points and transformation order 4.Figure 3: Graph of Per
entage Relative Errors for the GSSNT method evaluating I0(�s; 1) =R 1�1 �1(�) ln j� � �sj d� for �s varying between -1 and 1, 6 Gaussian points and transformationorders 3, 4 and 5.Figure 4: Graph of Per
entage Relative Errors for the GSSNT method evaluating I0(�s; 2) =R 1�1 �2(�) ln j� � �sj d� for �s varying between -1 and 1, 10 Gaussian points and transformationorders 3, 4, 5 and 6.
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Per
entage Relative Errors�s �i NG SSNT SSNT SSNT SSNT Monomial Monomial Gaussian(LOGA) (LOGA) (LOGB) (LOGB) (Sato) (Sato) Quad.order 3 order 4 order 3 order 4 order 3 order 4-1 �1 6 9:2 � 10�3 9:3� 10�1 1:3� 10�2 9:4 � 10�1 4:1� 10�2 9:4 � 10�1 1:0� 10110 1:8 � 10�4 3:2� 10�3 1:8� 10�4 3:2 � 10�3 1:7� 10�3 3:3 � 10�3 3:9� 10020 9:7� 10�10 4:2� 10�8 9:7 � 10�10 4:2 � 10�8 2:7� 10�5 3:6 � 10�7 1:0� 100�2 6 1:1 � 10�1 8:1� 10�1 1:1� 10�1 8:0 � 10�1 9:8� 10�2 8:0 � 10�1 1:8� 10�110 1:2 � 10�3 4:2� 10�3 1:2� 10�3 4:2 � 10�3 5:6� 10�4 4:2 � 10�3 2:5� 10�220 1:2 � 10�5 1:5� 10�7 1:2� 10�5 1:5 � 10�7 2:8� 10�9 1:6 � 10�8 1:7� 10�3�3 6 8:7 � 10�2 4:7� 10�1 8:9� 10�2 4:7 � 10�1 1:1� 10�1 4:8 � 10�1 8:7� 10�210 6:7 � 10�4 2:1� 10�3 6:7� 10�4 2:1 � 10�3 5:8� 10�4 2:2 � 10�3 1:2� 10�220 2:2 � 10�5 2:9� 10�7 2:2� 10�5 2:9 � 10�7 2:4� 10�9 3:2 � 10�8 7:8� 10�40 �1 6 3:1 � 10�2 6:9� 10�2 3:1� 10�2 6:9 � 10�2 4:5� 10�4 7:3 � 10�2 2:2� 10�310 1:7 � 10�3 7:4� 10�5 1:7� 10�3 7:4 � 10�5 2:5� 10�7 3:1 � 10�6 1:2� 10�420 3:0 � 10�5 3:5� 10�7 3:0� 10�5 3:5 � 10�7 4:0 � 10�13 4:2� 10�13 2:6� 10�6�2 6 1:3 � 10�3 5:3� 10�2 1:3� 10�3 5:3 � 10�2 1:0� 10�2 5:2 � 10�2 4:0� 10010 4:4 � 10�8 2:8� 10�7 4:4� 10�8 2:4 � 10�7 6:1� 10�4 2:8 � 10�5 1:5� 10020 1:9� 10�13 4:3� 10�14 2:4 � 10�13 1:4� 10�14 1:1� 10�5 1:2 � 10�7 4:0� 10�1�3 6 6:2 � 10�2 1:4� 10�1 6:2� 10�2 1:4 � 10�1 3:4� 10�3 1:5 � 10�1 2:8� 10�310 3:5 � 10�3 1:7� 10�4 3:5� 10�3 1:7 � 10�4 5:3� 10�7 8:4 � 10�6 1:5� 10�420 6:2 � 10�5 7:2� 10�7 6:2� 10�5 7:2 � 10�7 3:9 � 10�13 1:2� 10�13 2:6� 10�61 �1 6 5:8 � 10�3 3:5� 10�1 5:7� 10�3 3:3 � 10�1 2:1� 10�2 3:3 � 10�1 5:5� 10�210 9:6 � 10�4 9:5� 10�4 9:5� 10�4 9:7 � 10�4 1:6� 10�4 9:3 � 10�4 7:5� 10�320 1:4 � 10�5 1:6� 10�7 1:4� 10�5 1:6 � 10�7 1:4 � 10�10 2:0 � 10�9 5:0� 10�4�2 6 8:1 � 10�2 5:6� 10�1 8:1� 10�2 5:8 � 10�1 6:9� 10�2 5:7 � 10�1 1:6� 10�110 3:5 � 10�4 1:8� 10�3 3:5� 10�4 1:8 � 10�3 2:6� 10�4 1:8 � 10�3 2:3� 10�220 1:1 � 10�5 1:3� 10�7 1:1� 10�5 1:3 � 10�7 7:0 � 10�10 7:1 � 10�9 1:5� 10�3�3 6 6:5 � 10�2 7:2� 10�1 6:5� 10�2 6:8 � 10�1 8:5� 10�2 6:9 � 10�1 7:6� 10010 1:2 � 10�5 5:2� 10�4 1:1� 10�5 5:4 � 10�4 1:1� 10�3 4:9 � 10�4 2:8� 10020 5:5� 10�10 1:5� 10�8 5:5 � 10�10 1:5 � 10�8 2:0� 10�5 2:4 � 10�7 7:3� 10�1Table 1:
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�s �i NG Per
entage Relative ErrorsGSSNT(LOG B) SSNT(LOG B) Monomial(Sato)-1 �1 6 1:3� 10�2 1:3� 10�2 4:1� 10�210 1:8� 10�4 1:8� 10�4 1:7� 10�320 9:7� 10�10 9:7� 10�10 2:7� 10�5�2 6 9:8� 10�2 1:1� 10�1 9:8� 10�210 5:6� 10�4 1:2� 10�3 5:6� 10�420 2:8� 10�9 1:2� 10�5 2:8� 10�9�3 6 1:1� 10�1 8:9� 10�2 1:1� 10�110 5:8� 10�4 6:7� 10�4 5:8� 10�420 2:4� 10�9 2:2� 10�5 2:4� 10�90 �1 6 4:5� 10�4 3:1� 10�2 4:5� 10�410 2:5� 10�7 1:7� 10�3 2:5� 10�720 4:0� 10�13 3:0� 10�5 4:0� 10�13�2 6 1:3� 10�3 1:3� 10�3 1:0� 10�210 4:4� 10�8 4:4� 10�8 6:1� 10�420 2:4� 10�13 2:4� 10�13 1:1� 10�5�3 6 3:4� 10�3 6:2� 10�2 3:4� 10�310 5:3� 10�7 3:5� 10�3 5:3� 10�720 3:9� 10�13 6:2� 10�5 3:9� 10�131 �1 6 2:1� 10�2 5:7� 10�3 2:1� 10�210 1:6� 10�4 9:5� 10�4 1:6� 10�420 1:4� 10�10 1:4� 10�5 1:4� 10�10�2 6 6:9� 10�2 8:1� 10�2 6:9� 10�210 2:6� 10�4 3:5� 10�4 2:6� 10�420 7:0� 10�10 1:1� 10�5 7:0� 10�10�3 6 6:5� 10�2 6:5� 10�2 8:5� 10�210 1:1� 10�5 1:1� 10�5 1:1� 10�320 5:5� 10�10 5:5� 10�10 2:0� 10�5Table 2:
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Per
entage Relative ErrorsMethods R 1�1 �1(�) ln j� � 0:5jJ(�) d� R 1�1 �2(�) ln j� + 0:1jJ(�) d�NG=6 NG=10 NG=20 NG=6 NG=10 NG=20GSSNT(LOGA) 3:1� 10�3 2:1� 10�6 5:1� 10�14 2:1� 10�3 3:5� 10�7 1:3� 10�13order 3GSSNT(LOGB) 3:1� 10�3 2:1� 10�6 3:4� 10�14 2:1� 10�3 3:5� 10�7 2:7� 10�13order 3SSNT(LOGA) 1:1� 10�2 8:1� 10�4 1:4� 10�5 2:2� 10�3 6:6� 10�6 1:1� 10�7order 3SSNT(LOGB) 1:2� 10�2 8:1� 10�4 1:4� 10�5 2:2� 10�3 6:6� 10�6 1:1� 10�7order 3Monomial(Sato) 1:5� 10�3 9:2� 10�5 1:6� 10�6 9:5� 10�3 6:2� 10�4 1:1� 10�5order 3GSSNT(LOGA) 8:6� 10�2 1:9� 10�5 7:2� 10�12 6:3� 10�2 1:1� 10�6 5:2� 10�13order 4GSSNT(LOGB) 8:6� 10�2 1:9� 10�5 7:1� 10�12 6:4� 10�2 1:2� 10�6 8:8� 10�13order 4SSNT(LOGA) 8:4� 10�2 5:5� 10�5 1:6� 10�7 6:3� 10�2 1:4� 10�6 1:3� 10�9order 4SSNT(LOGB) 8:4� 10�2 5:5� 10�5 1:6� 10�7 6:3� 10�2 1:5� 10�6 1:3� 10�9order 4Monomial(Sato) 8:6� 10�2 2:3� 10�5 1:8� 10�8 6:2� 10�2 2:7� 10�5 1:3� 10�7order 4 Table 3:
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