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AbstratAurate numerial evaluation of boundary integrals is fundamental to produing use-ful results with the boundary element method. This paper introdues a generalisationof a reently introdued ombined method (subtration of singularity followed by a non-linear transformation), whih takes into aount the e�et of the basis funtions. Thenew method is applied to solve weakly singular integrals whih arise in the solution ofthe two dimensional Laplae equation. The new method was found, in the ases onsid-ered, to be numerially superior to both the ombined method and any of the non-lineartransformation methods.
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1 IntrodutionWhen the boundary element method is used to solve the two dimensional Laplae equation,it is neessary to be able to aurately numerially integrate the weakly singular boundaryintegrals involved. Considerable interest has been shown in developing tehniques to solvethese integrals, inluding the following non-linear transformation tehniques [1, 2, 3, 4, 5, 6℄and those mentioned below.Singh and Tanaka [7℄ reently studied the various non-linear transformation methods at-tributed to Telles [8℄, Sato et al. [9℄, Doblar�e and Graia [10℄ and Johnston [11℄, as applied toa simple lass of weakly singular integrals. These methods all involve the use of a non-lineartransformation followed by Gaussian quadrature.Singh and Tanaka's onlusions [7℄ inlude the following:(1) Non-linear transformations valid for end-point singularities perform muh better than gen-eralized transformations valid for any loation of singularity. Hene, if the singular point lies inthe interior of the integration element, non-linear transformations should be used in onjuntionwith partitioning.(2) Higher-order transformations of Sato et al. [9℄ represent a superset of transformations ofTelles [8℄ and the most aurate end-point transformation of Doblar�e and Graia [10℄. Thesetransformations are also the most aurate amongst the ones onsidered in this study.It is worth noting, in relation to (1), that it is already known from theory [12℄ that aGauss-Legendre quadrature rule performs better for end-point singularities than for internalsingularities of the integrand funtion and that the order of onvergene for the �rst ase isabout twie that ahieved in the seond ase.It is also worth noting that the higher-order transformation of Sato et al., referred to in (2)above, has been shown to be equivalent to the Monomial transformation reently introdued3



by one of the authors [13℄. This transformation arose out of previous studies on sigmoidaltransformations [11, 14℄, where the Monomial transformation is a limit of the 1m th sigmoidaltransformation as m!1.There are some advantages to using the Monomial rather than Sato's transformation: the�rst is that muh higher transformation orders an be used, for a partiular number of Gaussianpoints, without limits of mahine preision beoming an issue [15℄ and the seond is that theerror analysis assoiated with sigmoidal transformations an be utilised [13, 16℄. Hene the termMonomial(Sato) method is used in this paper. Details of the Monomial method are presentedin Appendix 1.Singh and Tanaka [7℄ also introdue a new method in the above mentioned paper, theombined Subtration of Singularity and Non-Linear Transformation approah (SSNT) andapply it to a weakly singular integral, whih arises in the solution of the two dimensional Laplaeequation. They use Sato's transformation, disussed above, for the non-linear transform partof the SSNT method and also, along with Gaussian quadrature, as a basis of omparison withthe SSNT method. They onlude that `the proposed omposite approah is more aurate,eÆient and robust than the singularity subtration and the non-linear transform methods'.Setion 2 of this paper de�nes the weakly singular integrals being onsidered, while Setion3 looks at applying the SSNT method to a larger number of integrals and ompares the resultswith the Monomial(Sato) method. It then goes on, in Setion 4, to present a generalised SSNTmethod (GSSNT) and to study the auray of this new method. In Setions 5 and 6, theGSSNT, SSNT and Monomial(Sato) methods are applied to a simpler lass of integrals, sothat various features of the new method an be studied aross the full range of singular values.Some theory assoiated with the GSSNT and SSNT methods is presented in Setion 7 withonlusions from this study being presented in Setion 8.
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2 Weakly Singular IntegralsThis paper is onerned with methods for solving the weakly singular integrals whih arise inthe solution of the two-dimensional Laplae equation. These integrals are of the formI(xs; k) = Z�e �k(x) ln jx� xsj d�(x) (2.1)where �e is the urrent boundary element, xs is the olloation point and �k denotes the shapefuntion assoiated with the kth loal node of the element. Clearly, I(xs; k) is weakly singularwhen xs 2 �e.The usual pratie is to rewrite the integral in terms of the loal oordinate �, �1 � � � 1,so that I(xs; k) = Z 1�1 �k(�) ln jx� xsjJ(�) d� (2.2)where J is the Jaobian of the transformation of �e onto [-1,1℄.
3 SSNT ApproahReently, Singh and Tanaka [7℄ introdued a new ombined approah to the solution of weaklysingular integrals, the so-alled SSNT approah (Singularity Subtration followed by a Non-linear Transformation).The idea behind the SSNT approah is to re-write the integral as the sum of a singularintegral, whih an be evaluated analytially, and a regular integral, whih ould be evaluatedusing Gaussian quadrature but is, in fat, evaluated by �rst using a non-linear transformationto obtain a smoother integrand, and then by Gaussian quadrature. See [7℄ for a full explanationof the method.When the SSNT approah is applied to the integrals given in equation (2.2), Singh andTanaka suggest two possible hoies for the funtion fs(�; �s) to be subtrated from the inte-5



grand:(1) The (LOGA) approah, where fs(�; �s) = J(�s) ln jx� xsj, givingI(xs; k) = Z 1�1 J(�s) ln jx� xsj d� + Z 1�1 [�k(�)J(�)� J(�s)℄ ln jx� xsj d� (3.1)and(2) the (LOGB) approah, where fs(�; �s) = J(�s) ln j� � �sj, givingI(xs; k) = Z 1�1 J(�s) ln j� � �sj d� + Z 1�1 (�k(�)J(�) ln jx� xsj � J(�s) ln j� � �sj) d� (3.2)In eah ase the �rst integral is evaluated analytially and the seond integral is evaluatedby applying a non-linear transformation, that of Sato et al. [9℄ of order 3 or 4, followed byGaussian quadrature.3.1 Perentage Relative ErrorThe various methods onsidered here will be ompared in terms of the Perentage RelativeError, de�ned by Perentage Relative Error = jIapproximate � IexatjIexat � 100 (3.3)where Iexat is found using Mathematia [17℄. Double preision arithmeti has been used innumerial alulations.3.2 SSNT ResultsIn their paper [7℄, Singh and Tanaka onsider a urved quadrati element with nodes x1=(1,1),x2=(2.5,3) and x3=(2,5), in whih x2 is the middle node and this will be used here.Table 1 inludes the ase onsidered by Singh and Tanaka, that is I(x3; 3), but a wider rangeof integrals is inluded; that is, I(x1; 1), I(x2; 2) and I(x3; 3), as well as the quasi-singular [7℄integrals I(x1; 2), I(x1; 3), I(x2; 1), I(x2; 3), I(x3; 1) and I(x3; 2). Note that it is worth applying6



a transformation to quasi-singular integrals as, although they are bounded at the singular pointof the logarithm funtion, the integral exhibits rapid hange near that point. It is well knownthat lustering integration points in a region where the integrand hanges rapidly improves theauray of the numerial approximation to the value of the integral.Comparisons of Perentage Relative Errors between SSNT(LOGA) and SSNT(LOGB) withorders 3 and 4 and the Monomial(Sato) method as well as Gaussian quadrature are presentedfor various numbers of Gaussian points, NG.Perusal of Table 1 indiates:(1) SSNT(LOG A) and SSNT(LOG B) yield very similar results.(2) SSNT of order 3 is `best' (gives the lowest Perentage Relative Errors) for the weaklysingular integrals I(xk; k) where k=1; 2; 3.(3) The Monomial(Sato) method is almost always `best' for the rest of the integrals (that is,the quasi-singular integrals) exept sometimes when NG=6 when either SSNT or Gaussianquadrature is best.
4 A Generalised SSNT ApproahSine the SSNT method produes superior results to the Monomial(Sato) method for only thethree nodes where �k(�k) = 1, that is I(x1; 1), I(x2; 2) and I(x3; 3), it would be useful if amodi�ation to this method ould be found whih would take aount of the behaviour of�k(�) and therefore be appliable over the whole range of �s values, �s 2 [�1; 1℄.
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Consideration of equation (3.1) for I(xk; k) givesI(xk; k) = Z 1�1 1 � J(�k) ln jx� xkj d� + Z 1�1(�k(�) � J(�)� 1 � J(�k)) ln jx� xkj d�= Z 1�1 �k(�k) � J(�k) ln jx� xkj d�+ Z 1�1(�k(�) � J(�)� �k(�k) � J(�k)) ln jx� xkj d� (4.1)
and this leads to the generalised SSNT(LOGA) method, GSSNT(LOGA):I(xk; k) = Z 1�1 �k(�s) � J(�s) ln jx� xsj d�+ Z 1�1(�k(�) � J(�)� �k(�s) � J(�s)) ln jx� xsj d�= ISA(xs; k) + IRA(xs; k) (4.2)
where ISA is the singular integral and IRA is the regular integral mentioned in Setion 3.Expressions for ln jx � xsj and J(�) are given in Setion 5 for the urved element used inSetion 3. Using these a value for R 1�1 ln jx� xsj d� is found using Mathematia [17℄ and heneISA is evaluated. The regular integral IRA is alulated using the Monomial(Sato) methodoutlined in the Appendix.A similar approah is followed for the generalised SSNT(LOGB) method, GSSNT(LOGB);using equation (3.2),I(xk; k) = Z 1�1 �k(�s) � J(�s) ln j� � �sj d�+ Z 1�1(�k(�) � J(�) ln jx� xsj � �k(�s) � J(�s) ln j� � �sj) d�= ISB(xs; k) + IRB(xs; k) (4.3)
where again ISB is the singular integral and IRB is the regular integral mentioned in Setion 3.Note that here R 1�1 ln j� � �sj d� and hene ISB an be found analytially. Clearly, this is amajor advantage of the (LOGB) tehnique over the (LOGA) tehnique.It an be seen from equations (4.1) and (4.2), that for the integrals I(xk; k) where k=1, 2, 3,�k(�s) = �k(�k) = 1 and GSSNT is equivalent to SSNT. In the ase of the quasi-singular8



integrals I(xs; k) (s 6= k where s, k = 1; 2; 3), �k(�s) = 0 and GSSNT simply beomes theMonomial(Sato) method. This neatly aounts for the results of Setion 3, whih found thatSSNT is superior for the weakly singular integrals and that Monomial(Sato) is almost alwayssuperior for the quasi-singular integrals.4.1 GSSNT ResultsTable 2 presents results taken from Table 1 and ompares them with results for GSSNT for the(LOGB) ase of order 3. Only order 3 and (LOGB) results are given sine the other resultsare already available in Table 1 and also beause Table 1 shows that (LOGA) and (LOGB)results are very similar. The Table 2 results show that GSSNT is superior, or equal, to boththe Monomial(Sato) method and SSNT, in all but two ases where NG=6. This was, of ourse,to be expeted, as GSSNT defaults to either the SSNT method or the Monomial(Sato) methodat the node points.So far all the ases onsidered have involved a singularity at one of the node points. In thease where (�s 6= �1; 0; 1) it is obviously more diÆult to alulate the `exat' value of theintegral and also ISA and so only two ases are presented here. As mentioned previously, ISB,however, is only a multiple of R 1�1 ln j�� �sj d� and an therefore be found easily (analytially).Table 3 gives results for two ases, �s=0.5 and �s=-0.1, where �s is not a node point andtherefore �(�s) 6= 0 or 1. The results indiate that GSSNT is superior or equal to both SSNTand the Monomial(Sato) method, in all but one ase where NG=6. Also, note that order 3results are better than order 4 results.
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5 A Simpler CaseIn this setion, a study is made omparing the GSSNT, SSNT and the Monomial(Sato) methodsapplied to a simpler version of the integrals onsidered in the previous setion,I0(�s; k) = Z 1�1 �k(�) ln j� � �sj d� (5.1)where the Jaobian J(�) � 1 and the kernel ln j� � �sj is used.The purpose of this simpli�ation is so that the omplete range of values of �s 2 [�1; 1℄ anbe onsidered, rather than primarily the node points as in Setions 3 and 4 . The aim here is to�rst learn about the range aross whih GSSNT is superior to the other two methods. A latertask will be to study the non-linear transformation order and its e�et on the relative errors ofthe evaluated integrals.Clearly, the (LOGA) and (LOGB) tehniques are idential for I0(�s; k) and so Figures 1and 2 show the Perentage Relative Error for eah of the three methods GSSNT, SSNT andMonomial(Sato), all of order 4 and NG=10 for I0(�s; k), where �s ranges from -1 to 1, for k=1and k=2 respetively. The graph for k=3 is simply the reetion in �s about 0 of the graph fork=1, sine �1(��) = 12(��)(1� (��)) = �12(�)(1 + �) = ��3(�) and so this is omitted.Figures 1 and 2 show that GSSNT produes relative errors smaller than or equal to bothother methods for all �s for 10 Gaussian points. Similar graphs show that for NG=6, GSSNTis superior to or equal to SSNT for all �s and that GSSNT is generally superior to the Mono-mial(Sato) method exept near 1 for �1 and near �1 for �2.Note that in Figures 1 and 2 for �1, SSNT=GSSNT at �s=-1 and for �2, SSNT=GSSNTat �s=0. This is beause at these node points �1(�1) = �2(0) = �3(1) = 1 and as previouslydisussed in Setion 4, this means that the GSSNT and SSNT methods are idential at thatpoint. It an also be seen that results from Monomial(Sato) and GSSNT are equal at �s=0and 1 for �1 and at �s=-1 and 1 for �2. This is due to the fat that for these values of �s10



�k(�s) = 0, whih auses the GSSNT and Monomial(Sato) methods to be idential as pointedout in Setion 4.
6 `Optimal' Transformation OrdersThe �nal question to be onsidered relates to the order whih should be hosen for the Mono-mial(Sato) transformation in the GSSNT method. Sine the method defaults to either theMonomial(Sato) method or the SSNT method at the node points, but not elsewhere, it isworth beginning with previously drawn onlusions relating to the other methods. Singh andTanaka [7℄ suggest that for the Monomial(Sato) method a onservative hoie would be order4 or 5 for double preision alulations and that the use of order 3 would be suÆient for theSSNT method.It, therefore, seems worthwhile to onsider the GSSNT method with transformation orders3, 4 and 5 as applied to I0(�s; k). Both Figures 3 and 4 do this for NG=6 and �1, and NG=10and �2 respetively, with order 6 being inluded in the 10 Gaussian point ase as well. Figure3 shows that for six Gaussian points, order 3 produes superior results to order 4 (and order5) for all values of �s, and the same was found to be true for �2. The situation is somewhatmore omplex for 10 Gaussian points. Figure 4 shows that order 5 produes superior results toorder 4 (and 3) but that results for order 6 are not always superior to those of order 5. Similarremarks apply to the NG=10 and �1 ase.Studies for higher numbers of Gaussian points show that even order 3 and 4 transformationsgive Trunation Errors (jIexat � Iapproximatej) near the limits of mahine preision.Based on these observations, as well as Tables 2 and 3, it would seem that, in general, atransformation order of 3 is quite suÆient for the GSSNT method to produe very aurateevaluations of weakly singular integrals. 11



7 TheoryWhen Singh and Tanaka [7℄ introdued the SSNT method, they pointed out that the funtionfr(�; �s), reated by the subtration of singularity, is now regular, that is, lim�!�s fr(�; �s) = 0(or C where C is a bounded onstant). Thus Ir(xs; k) = R 1�1 fr(�; �s) d� an be evaluated usingGaussian quadrature; but it is, in fat, integrated using a Monomial(Sato) transformation toobtain a smoother integrand followed by Gaussian quadrature.Now in the ase of the GSSNT(LOGA) method, using equation (4.2) givesfr(�; �s) = [�k(�)J(�)� �k(�s)J(�s)℄ ln jx� xsj (7.1)and for the ase of the urved quadrati element used in Setion 3.2ln jx� xsj = ln j� � �sj+ 12 ln�(� + �s)(� + �s � 1) + 174 � (7.2)and J(�) =r4�2 � 2� + 174 = 2 �1 + (� � 14)2� 12 (7.3)Then it an be shown that expanding J(�) using a Binomial series gives�k(�)J(�)� �k(�s)J(�s) = (� � �s)gk(�; �s) (7.4)where lim�!�s gk(�; �s) = C for C a onstant and k = 1; 2; 3. Hene fr is regular sinelim�!�s fr(�; �s) = 0.For the GSSNT(LOGB) methodfr(�; �s) = �k(�)J(�) ln jx� xsj � �k(�s)J(�s) ln j� � �sj (7.5)and using a similar approah to the above gives lim�!�s fr(�; �s) =  for  a onstant, and thusfr is regular in this ase also.The fat that fr is regular for both the GSSNT(LOGA) and GSSNT(LOGB) methods analso be shown for a general urved element. 12



This is not the ase, however, for the SSNT method in general, although for the three aseswhere SSNT works well, that is at the three nodes where �k(�k) = 1, it an be shown similarlyto the above, that fr is regular.
8 ConlusionsThis paper has introdued a generalisation of the SSNT (Subtration of Singularity followed by aNon-Linear Transformation) method, reently introdued by Singh and Tanaka [7℄, to improvethe auray of evaluating weakly singular boundary integrals. Both methods introdue afuntion, fs(�; �s), of the form, onstant multiplied by a logarithm funtion, for the subtrationof singularity, but the new generalised SSNT method (GSSNT) takes into aount the behaviourof the basis funtions, whereas the SSNT method does not. The regular integral that remainsafter the subtration of singularity, is then evaluated, for both methods, by splitting the intervalat the singularity and then applying a Monomial(Sato) transformation followed by Gaussianquadrature.The GSSNT method has been implemented and numerially ompared with both the SSNTand the Monomial(Sato) methods for the weakly singular integrals whih arise in the boundaryelement solution to the two dimensional Laplae equation. In almost every ase onsidered,the new tehnique is either equivalent or superior to both the SSNT and the Monomial(Sato)methods, bearing in mind that prior to Singh and Tanaka's introdution of the SSNT method[7℄, the Monomial(Sato) method was regarded as the preferred tehnique for these integrals (see(2) in the Introdution).It is worth noting that in both the GSSNT and SSNT methods, there are two possiblehoies for the funtion fs(�; �s): the so-alled (LOGA) version, where fs(�; �s) = � ln jxs�xjand the (LOGB) version whih involves fs(�; �s) =  � ln j� � �sj, where  is a onstant. Sine13



it is possible to analytially integrate R 1�1 ln j� � �sj d� and the results for the two tehniquesare almost idential in the ases onsidered, (LOGB) is learly the more easily implementedtehnique of the two.The question of the `optimal' order of the transformation to be used for the Monomial(Sato)transformation part of the GSSNT method was also onsidered. It was found that a transfor-mation order of three is suÆient to produe very aurate results for the evaluation of weaklysingular boundary integrals.Given that the GSSNT method is so suessful in evaluating one dimensional singular in-tegrals, it might be worth extending it to two dimensions to determine its appliability andauray there. Possible appliations would be to two di�erent types of weakly singular bound-ary integrals: those whih arise when onsidering the three dimensional Laplae equation andalso those involved in the solution of Poisson's equation in two dimensions.In summary then, the GSSNT method presented above almost always yields more auratevalues, for the weakly singular integrals onsidered, than both the SSNT and the non-lineartransformation methods, with the (LOGB) version of the tehnique being preferred beause ofits ease of implementation.
AppendixMonomial MethodTo apply the Monomial method [13℄ to a one dimensional integral with an arbitrary singularity�s 2 (�1; 1), �rstly split the interval at the singularity, then hange the variable of integrationso that both integrals are evaluated over [0,1℄, with the singularity mapping to 0 in both ases,and then apply the Monomial transformation to eah of the resulting integrals.
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For example, in the ase of the weakly singular integrals given in equation (2.2),I(xs; k) = Z �s�1 �k(�) ln jx� xsjJ(�) d� + Z 1�s �k(�) ln jx� xsjJ(�) d�Now hange the variable of integration to evaluate both integrals over the range [0,1℄, ensuringthat the point �s maps to 0 in eah ase. That is, for the �rst integral in the equation above,apply � = �s � (1 + �s)t and for the seond apply, � = �s + (1� �s)t, givingI(xs; k) =(1 + �s) Z 10 �k(�s � (1 + �s)t) ln jx(�s � (1 + �s)t)� xsjJ(�s � (1 + �s)t) dt+(1� �s) Z 10 �k(�s + (1� �s)t) ln jx(�s + (1� �s)t)� xsjJ(�s + (1� �s)t) dtNext a Monomial transformation of order n is applied, where t = (w;n) = wn, givingI(xs; k) =(1 + �s)Z 10 �k(�s � (1 + �s)wn) ln jx(�s � (1 + �s)wn)� xsjJ(�s � (1 + �s)wn)nwn�1 dw+(1� �s)Z 10 �k(�s + (1� �s)wn) ln jx(�s + (1� �s)wn)� xsjJ(�s + (1� �s)wn)nwn�1 dwFinally, apply Gaussian quadrature to eah of the above integrals.
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CaptionsTable 1: Perentage Relative Errors for various methods used to evaluate I(xs; k) = R 1�1 �k(�) ln jx�xsjJ(�) d� at the node points for transformation orders 3 and 4, for all basis funtions and var-ious numbers of Gaussian points.Table 2: Perentage Relative Errors for the GSSNT, SSNT and Monomial(Sato) methods, allof order 3, used to evaluate I(xs; k) = R 1�1 �k(�) ln jx � xsjJ(�) d� at the node points, for allbasis funtions and various numbers of Gaussian points.Table 3: Perentage Relative Errors for evaluating I(xs; k) = R 1�1 �k(�) ln jx�xsjJ(�) d� usingthe GSSNT, SSNT and Monomial(Sato) methods, for various numbers of Gaussian points for�s = 0:5 and �1, and �s = �0:1 and �2 respetively.Figure 1: Graph of Perentage Relative Errors for the GSSNT, SSNT and Monomial(Sato)methods evaluating I0(�s; 1) = R 1�1 �1(�) ln j���sj d� for �s varying between -1 and 1, 10 Gaus-sian points and transformation order 4.Figure 2: Graph of Perentage Relative Errors for the GSSNT, SSNT and Monomial(Sato)methods evaluating I0(�s; 2) = R 1�1 �2(�) ln j���sj d� for �s varying between -1 and 1, 10 Gaus-sian points and transformation order 4.Figure 3: Graph of Perentage Relative Errors for the GSSNT method evaluating I0(�s; 1) =R 1�1 �1(�) ln j� � �sj d� for �s varying between -1 and 1, 6 Gaussian points and transformationorders 3, 4 and 5.Figure 4: Graph of Perentage Relative Errors for the GSSNT method evaluating I0(�s; 2) =R 1�1 �2(�) ln j� � �sj d� for �s varying between -1 and 1, 10 Gaussian points and transformationorders 3, 4, 5 and 6.
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Perentage Relative Errors�s �i NG SSNT SSNT SSNT SSNT Monomial Monomial Gaussian(LOGA) (LOGA) (LOGB) (LOGB) (Sato) (Sato) Quad.order 3 order 4 order 3 order 4 order 3 order 4-1 �1 6 9:2 � 10�3 9:3� 10�1 1:3� 10�2 9:4 � 10�1 4:1� 10�2 9:4 � 10�1 1:0� 10110 1:8 � 10�4 3:2� 10�3 1:8� 10�4 3:2 � 10�3 1:7� 10�3 3:3 � 10�3 3:9� 10020 9:7� 10�10 4:2� 10�8 9:7 � 10�10 4:2 � 10�8 2:7� 10�5 3:6 � 10�7 1:0� 100�2 6 1:1 � 10�1 8:1� 10�1 1:1� 10�1 8:0 � 10�1 9:8� 10�2 8:0 � 10�1 1:8� 10�110 1:2 � 10�3 4:2� 10�3 1:2� 10�3 4:2 � 10�3 5:6� 10�4 4:2 � 10�3 2:5� 10�220 1:2 � 10�5 1:5� 10�7 1:2� 10�5 1:5 � 10�7 2:8� 10�9 1:6 � 10�8 1:7� 10�3�3 6 8:7 � 10�2 4:7� 10�1 8:9� 10�2 4:7 � 10�1 1:1� 10�1 4:8 � 10�1 8:7� 10�210 6:7 � 10�4 2:1� 10�3 6:7� 10�4 2:1 � 10�3 5:8� 10�4 2:2 � 10�3 1:2� 10�220 2:2 � 10�5 2:9� 10�7 2:2� 10�5 2:9 � 10�7 2:4� 10�9 3:2 � 10�8 7:8� 10�40 �1 6 3:1 � 10�2 6:9� 10�2 3:1� 10�2 6:9 � 10�2 4:5� 10�4 7:3 � 10�2 2:2� 10�310 1:7 � 10�3 7:4� 10�5 1:7� 10�3 7:4 � 10�5 2:5� 10�7 3:1 � 10�6 1:2� 10�420 3:0 � 10�5 3:5� 10�7 3:0� 10�5 3:5 � 10�7 4:0 � 10�13 4:2� 10�13 2:6� 10�6�2 6 1:3 � 10�3 5:3� 10�2 1:3� 10�3 5:3 � 10�2 1:0� 10�2 5:2 � 10�2 4:0� 10010 4:4 � 10�8 2:8� 10�7 4:4� 10�8 2:4 � 10�7 6:1� 10�4 2:8 � 10�5 1:5� 10020 1:9� 10�13 4:3� 10�14 2:4 � 10�13 1:4� 10�14 1:1� 10�5 1:2 � 10�7 4:0� 10�1�3 6 6:2 � 10�2 1:4� 10�1 6:2� 10�2 1:4 � 10�1 3:4� 10�3 1:5 � 10�1 2:8� 10�310 3:5 � 10�3 1:7� 10�4 3:5� 10�3 1:7 � 10�4 5:3� 10�7 8:4 � 10�6 1:5� 10�420 6:2 � 10�5 7:2� 10�7 6:2� 10�5 7:2 � 10�7 3:9 � 10�13 1:2� 10�13 2:6� 10�61 �1 6 5:8 � 10�3 3:5� 10�1 5:7� 10�3 3:3 � 10�1 2:1� 10�2 3:3 � 10�1 5:5� 10�210 9:6 � 10�4 9:5� 10�4 9:5� 10�4 9:7 � 10�4 1:6� 10�4 9:3 � 10�4 7:5� 10�320 1:4 � 10�5 1:6� 10�7 1:4� 10�5 1:6 � 10�7 1:4 � 10�10 2:0 � 10�9 5:0� 10�4�2 6 8:1 � 10�2 5:6� 10�1 8:1� 10�2 5:8 � 10�1 6:9� 10�2 5:7 � 10�1 1:6� 10�110 3:5 � 10�4 1:8� 10�3 3:5� 10�4 1:8 � 10�3 2:6� 10�4 1:8 � 10�3 2:3� 10�220 1:1 � 10�5 1:3� 10�7 1:1� 10�5 1:3 � 10�7 7:0 � 10�10 7:1 � 10�9 1:5� 10�3�3 6 6:5 � 10�2 7:2� 10�1 6:5� 10�2 6:8 � 10�1 8:5� 10�2 6:9 � 10�1 7:6� 10010 1:2 � 10�5 5:2� 10�4 1:1� 10�5 5:4 � 10�4 1:1� 10�3 4:9 � 10�4 2:8� 10020 5:5� 10�10 1:5� 10�8 5:5 � 10�10 1:5 � 10�8 2:0� 10�5 2:4 � 10�7 7:3� 10�1Table 1:
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�s �i NG Perentage Relative ErrorsGSSNT(LOG B) SSNT(LOG B) Monomial(Sato)-1 �1 6 1:3� 10�2 1:3� 10�2 4:1� 10�210 1:8� 10�4 1:8� 10�4 1:7� 10�320 9:7� 10�10 9:7� 10�10 2:7� 10�5�2 6 9:8� 10�2 1:1� 10�1 9:8� 10�210 5:6� 10�4 1:2� 10�3 5:6� 10�420 2:8� 10�9 1:2� 10�5 2:8� 10�9�3 6 1:1� 10�1 8:9� 10�2 1:1� 10�110 5:8� 10�4 6:7� 10�4 5:8� 10�420 2:4� 10�9 2:2� 10�5 2:4� 10�90 �1 6 4:5� 10�4 3:1� 10�2 4:5� 10�410 2:5� 10�7 1:7� 10�3 2:5� 10�720 4:0� 10�13 3:0� 10�5 4:0� 10�13�2 6 1:3� 10�3 1:3� 10�3 1:0� 10�210 4:4� 10�8 4:4� 10�8 6:1� 10�420 2:4� 10�13 2:4� 10�13 1:1� 10�5�3 6 3:4� 10�3 6:2� 10�2 3:4� 10�310 5:3� 10�7 3:5� 10�3 5:3� 10�720 3:9� 10�13 6:2� 10�5 3:9� 10�131 �1 6 2:1� 10�2 5:7� 10�3 2:1� 10�210 1:6� 10�4 9:5� 10�4 1:6� 10�420 1:4� 10�10 1:4� 10�5 1:4� 10�10�2 6 6:9� 10�2 8:1� 10�2 6:9� 10�210 2:6� 10�4 3:5� 10�4 2:6� 10�420 7:0� 10�10 1:1� 10�5 7:0� 10�10�3 6 6:5� 10�2 6:5� 10�2 8:5� 10�210 1:1� 10�5 1:1� 10�5 1:1� 10�320 5:5� 10�10 5:5� 10�10 2:0� 10�5Table 2:
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Perentage Relative ErrorsMethods R 1�1 �1(�) ln j� � 0:5jJ(�) d� R 1�1 �2(�) ln j� + 0:1jJ(�) d�NG=6 NG=10 NG=20 NG=6 NG=10 NG=20GSSNT(LOGA) 3:1� 10�3 2:1� 10�6 5:1� 10�14 2:1� 10�3 3:5� 10�7 1:3� 10�13order 3GSSNT(LOGB) 3:1� 10�3 2:1� 10�6 3:4� 10�14 2:1� 10�3 3:5� 10�7 2:7� 10�13order 3SSNT(LOGA) 1:1� 10�2 8:1� 10�4 1:4� 10�5 2:2� 10�3 6:6� 10�6 1:1� 10�7order 3SSNT(LOGB) 1:2� 10�2 8:1� 10�4 1:4� 10�5 2:2� 10�3 6:6� 10�6 1:1� 10�7order 3Monomial(Sato) 1:5� 10�3 9:2� 10�5 1:6� 10�6 9:5� 10�3 6:2� 10�4 1:1� 10�5order 3GSSNT(LOGA) 8:6� 10�2 1:9� 10�5 7:2� 10�12 6:3� 10�2 1:1� 10�6 5:2� 10�13order 4GSSNT(LOGB) 8:6� 10�2 1:9� 10�5 7:1� 10�12 6:4� 10�2 1:2� 10�6 8:8� 10�13order 4SSNT(LOGA) 8:4� 10�2 5:5� 10�5 1:6� 10�7 6:3� 10�2 1:4� 10�6 1:3� 10�9order 4SSNT(LOGB) 8:4� 10�2 5:5� 10�5 1:6� 10�7 6:3� 10�2 1:5� 10�6 1:3� 10�9order 4Monomial(Sato) 8:6� 10�2 2:3� 10�5 1:8� 10�8 6:2� 10�2 2:7� 10�5 1:3� 10�7order 4 Table 3:
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