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Abstract

We consider a parametrically-driven nonlinear ODE, which encompasses a simple
model of an electronic circuit known as a parametric amplifier, whose linearisation has a
zero eigenvalue. By adopting two different approaches, we obtain conditions for the origin
to be a global attractor which is approached (a) non-monotonically and (b) monotonically.
In case (b), we obtain an asymptotic expression for the convergence to the origin. Some
further numerical results are reported.
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1 Introduction

In this paper we consider the behaviour of the following nonlinear, parametrically driven ODE

d2x

dt2
+ γ

dx

dt
+ f(t)x2m+1 = 0 (1.1)

where γ > 0, m ∈ Z
+ and f(t) > 0 is bounded above and below for all t ≥ 0. This differential

equation arises as a simple model of a nonlinear electronic circuit known as a parametric
amplifier [1], in which f(t) is the signal to be amplified, and x(t) is the output of the circuit.
We denote the upper and lower bounds of f(t) as f+ and f− respectively. Equation (1.1) can
be re-written as a pair of coupled, first-order differential equations as

ẋ = y

ẏ = −γy − f(t)x2m+1 (1.2)

where (x, y) ∈ R
2 and a dot placed above a variable indicates differentiation with respect to

time. We refer to the differential equation in this form as the ‘original system’.
It is well known that the phase space structure of time-dependent dynamical systems is
in general very intricate: there are systems possessing bounded periodic and non-periodic
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solutions, quasi-periodic solutions and unbounded non-periodic solutions of oscillatory type
with any prescribed number of zeros, see for example the papers by V.M. Alekseev [2].
There exist some results on a large class of time-dependent potentials in the undamped case.
For example, it has been proved that for superquadratic potentials which are parametrically
driven by a positive time-periodic function, as in (1.1) when γ = 0 and f(t+ T0) = f(t), all
the solutions are bounded for all time and in fact most of the motion is quasiperiodic [3, 4].
Moreover the search for periodic solutions in time-dependent dynamical systems has proven
very fruitful by using a number of techniques such as the calculus of variations [5] and the
Poincaré-Birkhoff theorem [6, 7, 8].
Some work has also been done on the classification of the asymptotic behaviour of solutions
of nonlinear differential equations; see [9] and references therein.
Another natural question one may ask is: do there exist time-dependent potentials such
that all the solutions of the corresponding differential equations are bounded in phase space?
The answer is naturally of fundamental importance for the stability properties of dynamical
systems and there currently exists a substantial body of work on this problem in the zero-
damping case [10]–[15]. The essential idea used to show boundedness of solutions for these
potentials is to transform the system, by a sequence of canonical transformations, into a
near-integrable one, and then to apply KAM theory and the Moser twist theorem.
It is not difficult to prove that a certain amount of damping guarantees boundedness of
solutions of equation (1.1), but we go further in this paper, and derive conditions under
which the origin is a global attractor. We also derive a further bound on the damping which
forces all solutions to decay to the origin in a non-oscillatory way.
The system (1.2) has just one fixed point, namely the origin, (x, y) = (0, 0). The eigenvalues
of the linearised system at the origin are 0 and −γ, so that the origin is marginally stable as a
solution of the linearised system. Our aim is to establish sufficient conditions for the origin to
be a global attractor, i.e., for all initial values (x(0), y(0)) ∈ R

2, limt→∞(x(t), y(t)) = (0, 0).
With zero as an eigenvalue of the linearised problem, even the local stability of the origin is
not determined by the linearised equations and thus the problem of the global attractivity is
a particularly delicate one. This paper will establish the global attractivity of the origin for
sufficiently large γ > 0, and also a condition on γ which guarantees that the convergence is
monotone.

2 Global attractivity of the origin

2.1 Oscillatory decay

We use the following transformation, which is due to Liouville:

τ = G(t) =

∫ t

0

√

f(s)ds.

Since f(t) > 0 and bounded above for all t, G(t) is a monotonically increasing function of t
and G−1 exists. Introducing F (τ) := f(t) = f(G−1(τ)), equation (1.1) is transformed into
the system

x′ = y
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y′ = − y√
F

(

F ′

2
√
F

+ γ

)

− x2m+1 (2.1)

where prime denotes differentiation with respect to τ . Defining the Hamiltonian, H(x, y), as
H = x2m+2/(2m+ 2) + y2/2 gives

H ′ = − y2

√
F

(

F ′

2
√
F

+ γ

)

. (2.2)

Hence, provided

γ > −min
τ≥0

(

F ′(τ)

2
√

F (τ)

)

= −min
t≥0

(

ḟ(t)

2f(t)

)

(2.3)

we have H ′(τ) ≤ 0 so that x and y are both bounded. Also, for all τ ≥ 0,

H(τ) +

∫ τ

0

y2(s)
√

F (s)

(

F ′(s)

2
√

F (s)
+ γ

)

ds = H(0).

Letting τ → ∞ and using (2.3), and also the boundedness above and below of F (τ), we
conclude that

min
s≥0

{

1
√

F (s)

(

F ′(s)

2
√

F (s)
+ γ

)}

∫ ∞

0
y2(s) ds <∞.

Therefore, y → 0 as τ → ∞ (and hence also as t → ∞). We shall now revert to the
system in the form (1.2) to show that x → 0 as t → ∞. Let k > 0 be arbitrary and
U = {(x, y) ∈ R2 : H(x, y) < k}. Let S = {(x, y) ∈ U : Ḣ = 0} and let M denote the
largest invariant set in S. Then, by the La Salle’s invariance principle [16, Theorem 9.22],
every solution of (1.2) that starts in U has its ω-limit set in M . In this case, S consists of
points with y = 0 and, from (1.2), it follows immediately that M consists solely of the origin.
Since k > 0 was arbitrary, we may now state:

Proposition 1 Let γ satisfy (2.3). Then all solutions of (1.2) satisfy (x(t), y(t)) → (0, 0) as
t→ ∞.

2.2 Non-oscillatory decay

This section aims to discover further conditions on γ and on the initial conditions which will
guarantee that convergence of solutions of (1.2) to the origin is monotone.
It will be advantageous to introduce the new state variables u(t) and v(t) defined by

u = x−2m, v = u̇. (2.4)

The main result of this section follows by a careful analysis of the various regions of the (u, v)
phase plane, and this analysis is carried out below.
With u = x−2m, we have on differentiating

ẋ = −x
2m+1

2m
u̇ and ẍ =

x2m+1

2m

[

(2m+ 1)

2m

u̇2

u
− ü

]

.
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Substituting these into (1.1) and defining u̇ = v gives

u̇ = v

v̇ = 2mf(t) − γv +
(2m+ 1)

2m

v2

u
(2.5)

which we refer to as the transformed system. In the transformed system, u(t) > 0, since u =
x−2m, but v(t) may be of either sign. We therefore need to conduct a thorough investigation
of the right half u > 0 of the (u, v) phase plane. Note that the transformed system (2.5)
cannot have any fixed points. First, we have

Proposition 2 Let the hypotheses of Proposition 1 hold. Then, trajectories of (2.5) must
enter the open first quadrant in finite time, and then remain there.

Proof. It is trivial to see that the open first quadrant is positively invariant and so we simply
need to address the fate of a trajectory that starts in the fourth quadrant, i.e., has v(0) < 0.
Since, by Proposition 1, x and y are bounded, any crossing of the v-axis is impossible so
u(t) > 0 is bounded below for all t. Also

v̇ = 2mf(t) − γv +
(2m+ 1)

2m

v2

u
≥ 2mf− − γv. (2.6)

By a standard comparison argument, we conclude that v(t) becomes positive in finite time.
The proof is complete.
In the light of the above Proposition, it is sufficient to consider trajectories that start in the
open first quadrant and thus we may assume from now on that u(t), v(t) > 0 for all t ≥ 0.
The next proposition is important. Of course, our transformation u = x−2m clearly requires
x 6= 0. It is implicitly assumed at the outset that the convergence of x(t) and y(t) to zero (the
main result we are aiming for) is a non-oscillatory convergence, i.e., either x(t) > 0 for all
t ≥ 0, or x(t) < 0 for all t ≥ 0. As we might expect physically, this will be the case only if the
damping parameter γ is sufficiently large (see Proposition 3 below). We address this point
below by giving conditions on γ, and on the initial conditions, which ensure that neither u(t)
nor v(t) reaches infinity in finite time.

Proposition 3 Suppose (WLOG) that u(0), v(0) > 0, that the hypotheses of Proposition 1
hold, that

γ2 >
4f+

u(0)
(2.7)

and that
v(0)

u(0)
< m

(

γ +
√

γ2 − 4f+/u(0)
)

.

Then u(t) and v(t) remain finite for all times t.

Proof. It is sufficient to prove that v(t)/u(t) is bounded for all t, for then we have

u̇(t) ≤ const. u(t)
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so that u(t) (and hence also v(t)) does not blow up. Let

φ(t) =
v(t)

u(t)
.

Straightforward calculations yield that

φ̇ =
2mf(t)

u(t)
− γφ+

1

2m
φ2.

Now, the open first quadrant is positively invariant and so u̇ = v > 0. Hence u(t) is strictly
increasing and so u(t) > u(0) for all t > 0. Hence

φ̇ ≤ 2mf+

u(0)
− γφ+

1

2m
φ2.

Solutions of the above differential inequality are bounded by the solution of the correspond-
ing differential equation. Simple arguments for one-dimensional ODEs, together with the
hypotheses on γ and φ(0), immediately yield that φ(t) is bounded for all t. The proof is
complete.
We may now state the main theorem of this section.

Theorem 1 Let the hypotheses of Proposition 3 hold. Then solutions of (1.2) satisfy

(x(t), y(t)) → (0, 0)

monotonically, as t→ ∞.

Proof. To show that x(t) → 0 we must show u(t) → ∞ as t→ ∞. Also, since

2my = − v

u(2m+1)/(2m)

then, to show that y(t) → 0 we shall show that ψ(t) → 0 where

ψ =
v

u(2m+1)/(2m)
> 0. (2.8)

From inequality (2.6) we have that

lim inf
t→∞

v(t) ≥ 2mf−/γ.

Hence, there exists t1 > 0 such that, for all t ≥ t1,

v(t) ≥ mf−/γ.

Therefore, for t ≥ t1,

u(t) = u(t1) +

∫ t

t1

v(s) ds

≥ u(t1) +
mf−

γ
(t− t1)
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so that u(t) → ∞.
Now, with ψ defined by (2.8) it is straightforward to see that

ψ̇ =
2mf(t)

(u(t))(2m+1)/(2m)
− γψ.

Let ε > 0 be arbitrary. Since u(t) → ∞ as t → ∞, and since f(t) is bounded, there exists
t2 > 0 such that, for all t ≥ t2,

2mf(t)

(u(t))(2m+1)/(2m)
< ε.

Then, for t ≥ t2, we have
ψ̇ ≤ ε− γψ

from which it follows that
lim sup

t→∞

ψ(t) ≤ ε

γ
.

Since ε > 0 was arbitrary, it follows that lim supt→∞ ψ(t) ≤ 0. But ψ(t) > 0 for all t. Hence
limt→∞ ψ(t) = 0 and so limt→∞ y(t) = 0 also. The proof of the theorem is complete.

3 Asymptotics and numerical simulations

In this section we shall conduct some further examination of the (u, v) phase space, together
with some numerical simulations, to gain further insight into the dynamics of the system and,
in particular, the manner of the convergence of (x(t), y(t)) to (0, 0) as t → ∞ for suitably
large γ > 0.
Our numerical simulations indicate that, as t → ∞, trajectories in the (u, v) phase plane
typically become trapped between the horizontal asymptotes of the two curves Γ+ and Γ−

defined below, and shown in Fig. 1.
Note that

dv

du
=
v̇

u̇
=

2mf(t)

v
− γ +

(2m+ 1)

2m

v

u

and so, in particular, dv/du < 0 in regions where

2mf+

v
− γ +

(2m+ 1)

2m

v

u
< 0 (3.1)

and dv/du > 0 in regions where

2mf−

v
− γ +

(2m+ 1)

2m

v

u
> 0. (3.2)

Recalling that u(t) increases in the open first quadrant, any trajectory can be characterised
as the graph of a function, v = v(u). A trajectory has a turning point at any time when
dv/du = 0. This will happen at any time with

v =
mγu

2m+ 1

[

1 ±
√

1 − 4(2m+ 1)f(t)

γ2u

]

. (3.3)

Replacing f(t) in (3.3) by its upper and lower bounds defines two non-intersecting curves
(provided f+ 6= f−) in the (u, v) plane; we refer to these curves as Γ+ and Γ− (they are
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Γ+Γ−

dv/du < 0dv/du > 0

v

u

v 
= 

2m
γ u

/(2
m

+1
) -

 2
m

f+ /γ

v 
= 

2m
γ u

/(2
m

+1
) -

 2
m

f- /γ

dv/du > 0

v = 2mf 
-
/γ

v = 2mf 
+
/γ

Figure 1: The curves Γ+ and Γ− and their asymptotes. To the left of Γ−, dv/du is positive
and to the right of Γ+ it is negative. Between Γ+ and Γ−, dv/du can be positive, negative or
zero.

also defined by replacing the inequalities in (3.1) and (3.2) by equalities). Only in the region
between Γ+ and Γ− can a trajectory v(u) have a turning point. The curves Γ+ and Γ− each
possess two asymptotes, obtained by Taylor expanding (3.3). These are

Asymptotes to Γ± =
2mγ

2m+ 1
u− 2m

γ
f±,

2m

γ
f± (3.4)

Since the horizontal asymptotes both have v > 0, and the other two asymptotes have neg-
ative intercept with the v-axis, Γ+ and Γ− must be confined to the first quadrant u, v > 0.
Furthermore, in this quadrant v̇, and hence dv/du, are positive everywhere to the left of Γ−;
similarly, dv/du < 0 everywhere to the right of Γ+. For v ≤ 0, dv/du is everywhere positive.
The situation is sketched in Fig. 1.
Typical solutions for various different initial data satisfying the conditions of Theorem 1 are
illustrated in Fig. 2. The observations we have made so far indicate that, typically, u(t) → ∞
with v(t) remaining bounded, and these are borne out by the numerical solutions in Fig. 2.
For any value of γ and any initial data giving such an outcome, we can formally approximate
the differential equations (2.5) in the limit as t→ ∞ to yield the approximated system

u̇ = v

v̇ = 2mf(t) − γv. (3.5)

Solving the second of these equations and ignoring the transient term gives

v(t) = 2m

∫ t

0
e−γ(t−s)f(s) ds
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Figure 2: Numerically-obtained periodic solutions starting from various points in the u, v-
plane, with f(t) = 3 + 2 cos 2πt so f+ = 5, and parameters that satisfy the conditions of
Theorem 1: m = 1, u(0) = 1, γ = 5. The curves Γ− and Γ+ are shown dotted.

from which it follows that u(t) is given asymptotically by

u(t) ∼ 2m

∫ t

0

∫ ξ

0
e−γ(ξ−s)f(s) ds dξ

or, on reversing the order of integration,

u(t) ∼ 2m

γ

∫ t

0
f(s)(1 − e−γ(t−s)) ds.

Thus, for suitably large γ and suitable initial data, the convergence of x(t) to zero is given
asymptotically by

x(t) ∼ 1
(

2m
γ

∫ t
0 f(s)(1 − e−γ(t−s)) ds

)
1

2m

.

Attraction to the origin is not the only dynamics displayed by Equation (1.1); a variety of
periodic solutions exist as well, as shown in Figure 3.
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Figure 3: Numerical solutions to (1.1) with f(t) = 3 + 2 cos 2πt and γ = 0.04. In all four
graphs, x is plotted horizontally and y vertically. The top left graph shows three period-
one (same period as f(t)) solutions; the top right graph shows three period-two solutions
(repeating every two periods of f(t)). Bottom left: three period-four solutions; bottom right,
one period-ten solution.
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