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Abstract 

In this paper we introduce data characterizations for fitting chaotic data to linear 

combinations of one-dimensional maps (say, of the unit interval) for use in subgrid-scale 

turbulence models. We test the efficacy of these characterizations on data generated 

by a chaotically-forced Burgers’ equation and demonstrate, very satisfactory results in 

terms of modeIed time series, power spectra and delay maps. 

I. Introduction 

Techniques have recently been proposed by Hylin and McDonough [l] and McDonough [2] 

for constructing models of hydrodynamic turbulence based on discrete dynamical systems 

(cf. Collet and Eckmann [3]). This approach has been motivated in part by earlier successful 

modeling of transitional pipe flow by Sreenivasan and Ramshankar [4], by the demonstration 

by Pulliam and Vastano [SI that direct numerical simulation (DNS) of flow over an airfoil 

exhibits a bifurcation sequence similar to that of the logistic map (see Feigenbaum [6]), and 

the analogy drawn between a similar quadratic map and the Navier-Stokes (N.-S.) equations 

due to Frisch [7]. 

While several of the abovementioned studies merely sought to demonstrate that specific 

experimental or computational results could be quite adequately represented by a nonlinear 

algebraic map, the work presented in [l, 21 served to demonstiate the potential for construct- 

ing models of turbulent fluctuations to be used as subgrid-scale behavior in computational 

techniques similar to large-eddy simulation (LES). These models have been based on the 

simple representation 

where u* is a fluctuating quantity (e.g., a velocity component), .4 is an amplitude factor 

derived from isotropic turbulence theory (cf. Tennekes and Lumley [SI), C is an anisotropy 
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correction factor constructed via structure functions of high-pass filtered large-scale portions, 

E, of the complete velocity u, and M is obtained from a nonlinear chaotic algebraic map. 

It should be noted that u* is very inexpensive to compute, and the details of formulas 

for A and { (see [l, 21) are well founded in theory. On the other hand, little has been 

done to date to establish the appropriate map(s) M to be used in this formula, or more 

important, how candidate maps might be identified from experimental data. Exceptions are 

the recent work of Mengiis et al. [9] associated with the very specific phenomenon of soot 

volume fraction fluctuations in a turbulent ethylene diffusion flame, and limited theoretical 

analysis in [I], 

The goal of the present study is to provide a systematic, and ultimately automatic, 

approach for determining the best fit of linear combinations of discrete dynamical systems 

to experimental and/or DNS data. We note at the outset that there have been numerous 

previous works devoted to curve fitting of time series of chaotic phenomena (cf. Casdagli and 

Eubank [lo], and references therein). These have typically focused on short-term prediction 

I . .  

based on past data, i.e., extrapolation of polynomial fits of chaotic time series, such as 

described in Hunter [ll]. Our goal in the present case differs from this in that we are 

mainly interested in constructing maps that approximately exhibit the long-time stationary 

behavior, as quantified by certain statistical properties, of the data but in addition yield 

the same physical bifurcation sequence. In one sense, our requirements are less rigid than 

those of many of the previous studies such as in [ll], but in another sense they are far more 

encompassing of the overall underlying physical phenomena. 

In this paper we will study time series obtained from a chaotically-forced Burgers' equa- 

tion and test various quantifications of these data for producing optimal fits to a series of 

modified logistic maps. We will concentrate on one particular time series obtained from a 

single computer solution of the governing equation in order to emphasize the steps neecled to 

carry out the curve-fitting procedure. Our results show that  a linear combination of logistic 
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maps very effectively models the temporal behavior of the Burgers' equation solution in the 

sense of a least squares fit of various quantifying features, and in the somewhat qualitative 

sense of apparent strong similarities between time series, power spectra and delay maps of 

modeled and actual (directly simulated) data. We note, however, that we have not addressed 

the bifurcation sequence problem in this initial paper. I 

The remainder of the paper is organized as follows. In Sec. 2 we introduce the tools for 

analysis of chaotic time series, and we briefly describe the model problem used to produce 

our "experimental" data. Section .3 is devoted to presentation and discussion of results from 

this modeling process, and we provide a summary and conclusions in a final section. 

2. Data Analysis Techniques 

In this section we will discuss the form of chaotic map to which we will attempt to fit data. 

We then describe the methods employed to do this, and end by introducing a model problem 

on which these techniques will be tested. 

2.1. Linear combinations of chaotic maps 

The general form of the linear combination of chaotic maps which will be used in data fitting 

is constructed as , 

h- 

(21 (n+l) Ad* = Qk Sk (Wk,  4, % ( b k ) )  , 
k= 1 

where the superscript (n + 1) indicates an advanced iteration level, and the index k is 

used to distinguish between different maps in the combination. The final value of the map 

combination at  the advanced iteration is constructed by adding a history term 

Here 8 is an implicitness factor which determines the weight assigned to the history term. 

3 



In equation (2) crk is the amplitude, and each mk is a (usually) normalized chaotic map 

which depends on a bifurcation parameter b k .  In general, the m k s  could all be different 

maps, but in the present study the modified logistic map, 

will always be employed. Figure 1 presents the bifurcation diagram for this map for positive 

bk values. A mirror image of this diagram is obtained for negative bk values. 

The coefficient SF') in equation (2) takes on only two values, 0 or 1, and it determines 

if the bth map makes any contribution to the map combination at the (n  + l)th iteration. 

It depends on the frequency of evaluation, wk, and the duration, d k ,  over which each map 

remains active once it is switched on. This coefficient depends on a switching function, Pi"), 

and a duration function, Or'. The first of these is defined as 

1 if (n  mod wk) = 0, 
FLn) IO otherwise. 

This determines whether the kth map is to be activated at the nth iteration. The duration 

. function is defined as 

if Fin) = 1, 

otherwise. 

' This function determines how long a map remains active. It is initialized to 1 when the map 

is activated according to equation ( 5 ) ,  is incremented by 1 each time the map is evaluated 

and is set to 0 if it exceeds d k .  The switching function, FL"', is evaluated at every iteration 

independent of Dp'. Whenever Fl"' is unity D p )  is initialized to 1 and the kth map is 

(re-)activated. This happens irrespective of the current value of Dp'. Based on these 
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function definitions, the coefficient, Sp’, is computed as 

(7 )  
otherwise. 

We comment that the representation (2) is somewhat suggestive of a Fourier, or a wavelet, 

decomposition with the mkS serving as basis functions. Furthermore, it should be noted that 

not only are cyk, wk, dk and bk unknown parameters, but in actuality not even the rnks or 

K are known. All of these must 4 e  determined as part of the data-fitting process, and as 

mentioned earlier our goal is to make this process as systematic and automatic as possible. 

The approach to doing this will be described in the next subsection. 

2.2. Approach to data fitting 

In constructing maps of the form (2) for arbitrary time series we must first establish a means 

by which a good fit can be distinguished from a bad one, and this in turn requires quan- 

tification of various properties associated with the time series. We wish to again emphasize 

that our goal here is not to produce a discrete dynamical system whose time series exactly 

coincides with the data for some period of time, and then ultimately deviates, as is typi- 

cally the case in most studies contained in [lo]. Rather, we will be attempting to construct 

chaotic maps possessing statistics and qualitative “appearanqe” as close as possible to those 

of the experimental data. We comment that in the context of the intended use of these maps 

(construction of subgrid-scale turbulence models) this is the more appropriate approach be- 

cause the experimental data themselves would not be reproducible in detail - only their 

statistics can be expected to be relatively invariant from one realization to the next. We 

are thus faced with the task of statistically quantifying time series of modeled and measured 

dynamical systems, and then changing model details so the statistics coincide with those of 

measured results, but at the same time reproducing the qualitative appearance of the data. 



We begin by noting that there are several easily constructed figures that can aid in 

comparing dynamical behavior of time series. We present examples of these in Figure 2 to 

aid in motivating our analysis approach. These were generated from the modified logistic 

map forced Burgers’ equation to be discussed later. Figure 2 depicts the time series corre- 

sponding to 4096 time steps, while the inset displays a limited portion of this time series. 

Figures 3a and 3b show the power spectrum and two-dimensional delay map (with de l ayd) ,  

respectively. 

The last of these seldom provides any more than a qualitative indication of topology 

of a dynamical system, but it is a simple (though not completely fool-proof) indicator of 

deterministic, as opposed to random, behavior. The power spectrum can provide important 

quantitative information on the frequency distribution in both periodic and aperiodic phe- 

nomena and thus, the physical time scales represented in the data, but in the present case 

there appears to be only limited useful information beyond the general feature of broad-band 

noise and rate of decay of power with increasing frequency, with a hint of “noisy periodicity” 

at low frequencies. 

The time series in this case contains a significant amount of information. One of the 

first things we can estimate directly is the number of terms one might use in the model, 

i.e., the value of IS. In particular, since each term in (2) has an associated amplitude, we 

can estimate the required number of terms by looking for “structure~’~ of various sizes in 

the time series. We have indicated several of these in Figure 2. In addition, the ”size” of 

each such structure (i.e., amplitude of peak-to-peak oscillation) provides an estimate of the 

corresponding ~ k .  Finally, the frequency of occurrence of structures of various sizes allows 

us to specify values of wk for each of these. It must be emphasized, however, that all of 

the analysis to this point has been rather qualitative, and more quantitative measures of 

behavior are needed to provide a good fit. 

All of the properties of the time series to be considered, here are statistical in nature,  
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but some go beyond what are typically considered in usual data analysis. The need for 

more detailed characterizations arises from the chaotic nature of the data and the desire to 

retain "appearance" in modeled results. The most straightforward quantification is the time 

average, which for a discrete dynamical system is simply 

where N is the total number of discrete values of d"). It should be clear from the nature 

of the time series shown in Figure 2 that a does not provide very definitive information. In 

particular, we would not be able to distinguish the complicated behavior shown in the figure 

from even a constant time series with a mean value equal to that constant if only the mean 

value were used. 

A partial remedy for this is to consider the mean or average variation of the time series; 

that is, define the variation of u to be 
N - 1  

V(u)  3 
n=l  

and the average variation as 

(9) 

This obviously provides some distinctions, and in particular a constant time series has V ( u )  = 

V ( u )  = 0, whereas V ( u )  > 0 for all nonconstant time series. 
- 

This still is not nearly adequate for distinguishing between very complicated time series 

such as shown in Figure 2. A next step is to consider the separate averages of positive values 

of u,  denoted 'il+ and of negative values, ii- given as 

and 
1 N -  

E ( u - ) " .  
-- u =  

n=n, N -  - 1 
(12) 

7 



Associated with these average values are the times T+, T-(or N + ,  N -  the number of discrete 

points) during which u is positive or negative. While matching of these quantities between 

modeled and measured results brings us a step closer to a unique specification of the ak, u k ,  

dk and 6 k  in (2), it still is not sufficient. For example, it would be possible to construct a 

time series taking on only a few values and match all of the quantities discussed so far. We 
- can refine the analysis further by monitoring u;,,, urnin, + u,,, and u l i n  the maximum and 

minimum of positive and negative values, but this still is not sufficient. 

Beyond the average variation. we have as yet done nothing to require a matching of 

oscillation frequencies. There are a number of quantities that can be used in this regard. We 

first mention several properties derived from the power spectrum; these include maximum 

and minimum power, P,,,, and the average decay rate of this power. But it must 

be noted that many different time series can produce the same power spectrum. Because 
I 

of this in the present study we propose to use additional measures taken directly from the 

time series and not employ the power spectrum in the fitting procedure (but see MengiiC et 

al. [9]). These include the following: number of zero crossings (possibly per unit time), No, 

number of positive mean crossings, Nmeant and number of negative mean crossings, N,,,,-. 

In addition, we will employ separate positive and negative variations. To obtain these we 

define the set Nv t to  be the set of indices n such that if dn) > 0, then n E Nv+ if and only 

if u ( ~ - ' )  > 0 and u ( ~ + ' )  > 0. We can then define the positive average variation of u as 

(13) 

, where .Nv+ is the number of indices in the set n/,+. We can define the negative average 

variation in an analogous fashion: 

It should be clear that forniulas ( lo ) ,  (13) and (14) provide measures of the average 

rate of osciIlation of the time series. However, this can also be quantified by the number of 
I 
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changes in sign of the slope between two successive points in the time series. We denote this 

by Nsk.  It is more convenient to express this as a fraction of the total number of points, N :  

fsk .= N s i / N .  (15) 
I 

Just as was done for variation of the time series, we can separately consider this fraction for 

the positive and negative parts of the time series. Thus we define 

and 

The final property of the time series to be considered here that directly involves detailed 

behavior is what we will term the intermittency distribution. Recall that the intermittency 

factor, or simply intermittency, at a point in a turbulent flow is the fraction of time during 

which the flow is turbulent at that point. Here we will define intermittency levels by first 

requiring that the segment of the time series under consideration be oscillatory, and then 

establishing the amplitude range as a fraction of the interval [umin,unar]. The number of 

intermittency levels employed will be specified at the time analysis of a given data set is 

initiated, and can be expected to change somewhat from one time series to the next. The 

means by which this can be done is similar to the qualitative analysis of Figure 2, discussed 

earlier. 

To check whether a given segment of data is oscillatory we carry out the following test. 

At the nth discrete point we calculate the forward and backward differences, 

if either of the following inequalities is satisfied we consider the time series to be oscillatory 
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in a neighborhood of the nth point: 

(A+ t(”))(A_u(”)) < 0 ,  
(19) 

( A + U ( ~ ) ) ( A _ ~ ~ - ~ ) )  < 0.  

Figure 4 dispIays the types of oscillations that can be detected with these tests. We comment 

that the notions underlying equations (18,19) can be easily extended to treat larger num- 

bers of points, but we feel that this would be necessary only for extremely highly resolved 

turbulent data. 

Once it has been established that a point is part of an oscillation it is then possible to 

assign it to an intermittency level. We denote the intermittency levels by Ii and the end 

points of these levels by 9;. Then for a total of M intermittency levels (11,. . . , I M )  there are 

M + 1 end points (go,. . . , g ~ )  with go = urnin and g M  = urnac. The intermittency levels can 

now be defined in terms of 9;’s as: 
I 

I M  = [ g M - I , g M ]  

We will denote the number of points of the time series in an intermittency level i by NI, .  

We can then define the intermittency factors for each level as 

(21) 

The choice of r\.l and the spacing between the si’s depends on the type of intermittency 

information that is critical to the analysis and has to be matched by the modeled time series. 

I t  will clearly be somewhat difficult to automate this portion of the analysis procedure, and 

this has not been attempted in the present study. 

There are several things to note at this point. The first is that although the preceding 
I 

properties appear to provide a fairly comprehensive quantification of a time series, they do 
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not specifically address periodic (or quasiperiodic) behavior. These cases are best handled via 

power spectral analysis. The second is that even in conjunction with power spectral analysis 

it is not clear that the above quantifications are sufficient (or whether all are necessary) 

to uniquely determine the Qk, b k ,  d k  and wk in equation (2,) - even if K and the form of 

the rap) are specified. In addition, there are several other global properties that may be 

useful, possibly necessary, for production of accurate models. We discuss some of these in 

the following paragraphs. 

A global mathematical quantity that is widely used to characterize the “size” of functions 

is the norm, 11-11. ‘For physical phenomena for which we expect the energy to be finite for finite 

time, the L2 norm is appropriate. For a discrete time series consisting of N (equally-spaced) 

values {u(“)}&~, this can be approximated using 

where T is the length of the “physical” time interval. The time average of this quantity is 

often more useful; this is given by 

From a purely mathematical standpoint, the L’ norm, 

is sometimes more appropriate, and we calculate the time average of this as 

(23) 

There are additional statistical properties that are widely used in studies of turbulence, 

and which may be appropriate quantifiers of the time series we study here. These include 

the autocorrelation function, the probability density function (pdf), the flatness and the 

skewness. Each of these quantities can be constructed for various derived properties of the 
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time series, but we will not go into these details here and instead restrict attention to the 

basic time series, itself. The autocorrelation of u( t )  for any fixed location x is 

For a discrete data set this can be approximated as 

where rj = jAt ;  At is the time difference between discrete data points, and j is a prescribed 

number of points. 

The pdf provides information similar to, but actually less detailed than, the intermittency 

distribution described earlier. It is widely used in experimental studies since it demonstrates 

whether data have a Gaussian distribution. It is also used to construct the various moments 

of the data. Two quantities widely used in turbulence studies that can be obtained in 

this manner are the skewness (third moment) and flatness (fourth moment). For a velocity 

component these can also be directly calculated as 

for skewness, and 

(26) 

for flatness (also known as kurtosis), without using the pdf. 

We close this section on tools employed in the analysis of time series by mentioning 

several more modern techniques developed specifically in the context of dynamical systems. 

These are the Lyapunov exponents, Kolmogorov entropy, correlation dimension and f( c y )  

singularity spectrum. The first of these is considered to be ;he surest test for deterministic 

chaos because it shows the rate of divergence of nearby trajectories, and hence degree of 
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sensivity to initial conditions; but the extant computational algorithms are not completely 

reliable. To some extent this is true also for correlation dimension and entropy, particularly 

if the dimension happens to be fairly high, say approaching 10 or greater. We will not employ 

these approaches here. 
I 

The various measures we have discussed for quantifying data in the form of time series 

will be used in the model construction process. In particular, if we let pi denote the numerical 

result of computing property i, and define 

then we can define a weighted least-squares functional corresponding to Np properties as 

NP 

&(a, b7 W ,  4 = 4 4 s ~ ; ) ~  > (28) 
i= 1 

where Q = ( ~ 1 ,  ~ 2 , .  . . , Q L ) ~ ,  etc., and 4i are the weights associated with different properties. 

We can then determine the unknown amplitudes, bifurcation parameters, frequencies and 

durations of map evaluations by minimizing Q. Conceptually this is straightforward, but in 

practice it is difficult in the present case because the 6p; are generally not differentiable with 

respect to b, w and d. Thus, direct search techniques have been used in the present study. 

We comment that the use of neural networks or simulated annealing techniques could be 

very effective in these searches, and these will be investigated in future studies. 

2.3. Burgers’ equation model problem 

In this section we introduce a model problem employed to generate chaotic time series with 

which to test the chaotic map construction process outlined above. The advantages of using 

results from a model problem are that they are completely controllable with respect to degree 

of complexity, and there are no measurement errors to raise issues regarding interpretation 

of results. Moreover, if effects of “experimental error” are to be considered, such errors can 

easily be introduced at known prescribed levels via random perturbations. 
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The model problem consists of the widely-studied Burgers’ equation with a forcing term 

in the form of a nonlinear algebraic map. Complete details of the problem and solution 

algorithm can be found in Peng [12]; here we merely present the main equations and sketch 

the highlights of the numerical methods used in their solution. 

The form of Burgers’ equation to be employed here is 

1 
U t  + 2(U2), = - p x  + vu,, , z E (0, l), t E (0, T ]  

with initial condition 

u(z, 0) = 1 + z, z E (0 , l )  , (30) 

and consistent boundary conditions I 

u(0, t )  = 1, u(1, t )  = 2 v t E (0, TI . (31) 

In equation (29) subscripts denote partial differentiation, u is analogous to kinematic viscos- 

ity, and p ,  is a prescribed forcing function of the form 

Here, 7 is a given constant, and m is the modified logistic map, equation (4). The discrete 

form of (32) is 

p&;,tn) = -(1 +Xi) +ymin) .  (3:3) 

In the present study (29) has been discretized on a grid of 256 points using standard 

second-order centered differencing. Time integration is via the trapezoidal method for linear 

terms, and midpoint method for the nonlinear term. Care has been taken to use values of v 

sufficiently large that the solution contains no spurious cell-Re oscillations, since these would 

be difficult to distinguish from the chaotic map oscillations. !Details of all parameter values 

employed to obtain the results of this study will be given in the next section. 
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3. Rm sults and Discussion 

In this section we present results from applying the analysis techniques discussed in the 

preceding section to a numerical time series obtained as the,approximate solution to equa- 

tions (29-32). All results to be presented have been computed in double precision (64-bit) 

FORTRAN on the HP-Convex Exemplar SPP 1200 at the Universityof Kentucky Computing 

Center. 

The time series we consider is displayed in Figure 5. This corresponds to the portion 

of the solution to (29) at 3 =” 0.502. The calculations were performed with kinematic 

viscosity v=O.Ol, y=10 in equation (33), b=4.25 in equation (4), with 256 equally spaced 

grid points in the unit z-interval, and At=0.01 for the time integration. A total of 4096 

time steps were computed to guarantee a sufficiently long stationary state to permit reliable 

analyses of the sort being performed here. The previously discussed measures for quantifying 

time series data, were computed for this time series and are shown in the third column of 

Table 2. These measures include 10 different autocorrelations computed via equation (24) 

with j = 1 through j = 10, and also intermittencies from equation (21) in 10 equally spaced 

intervals, i.e. M = 10 in equation (20). The corresponding power spectrum and delay map 

(delay=4) are presented in Figure 8. The histograms of the intermittency distributions and 

autocorrelations are shown in Figure 10. Quite similar resilts are obtained at all other z 

locations in (O,l), and only those shown in Figure 5 will be analyzed. 

As was the case for a similar time series displayed in Figure 2, the present one s h o w  

evidence of at least three different scales of structure in both space and time, suggesting that 

initially we should attempt a fit with three terms ( K = 3 )  in the linear combination (2). iVe 

have also chosen to initially take all bk=4.25, k=1,2,:3. It is then necessary to determine the 

amplitudes a k ,  evaluation frequencies W k ,  duration intervals d k  and the implicitness factor 6. 

Figure 6 displays a first attempt at this with al=l.O, az=l.O, as=l.O, q = l ,  w?=l ,  &3=1, 
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dl = 1, d2 = 1, d3 = 1 and 8 = 1.0. To show the details of the oscillations. the time scale 

in Figure 6 is only a tenth of that of the computed result shown in Figure 5. It is obvious 

that the frequency of oscillations in the present case is very high, and these results are not 

accurate even in a qualitative sense; it is clear that more detailed analyses are needed. 

The first step in the detailed analyses is to set up a parameter space by choosing a 

wide range of combinations of values of c r k ,  b k ,  dk  and Ldk, IC = 1,2,3.  Each chaotic map 

combination is characterized by 12 parameters which are selected as unique permutations 

of the values in the parameter space. The time series of the chaotic map combination is 

generated for each of these permutations using equations (2) and (3). The same quantifying 

statistics that were calculated for the Burgers’ equation data are now computed for each 

model time series, and the least-squares functional, equatiop (28), is then constructed for 

each case. The computations for each case are independent of all others and are done in 

parallel. The cases with the smallest value of the functional, Q, are considered to be the ‘best’ 

cases and ten of these cases are stored in each run. These results are used to manipulate 

the parameter space for the subsequent runs. Initially, coarsegrained searches are made 

on slightly overlapping segments of the parameter space. Once the best segment has been 

identified, fine-grained searches are made on smaller subsets of this segment. This is repeated 

until a minimum value of Q, Qmin, is obtained. 

The direct search was carried out according to the strategy described above. The map 

parameters corresponding to the best case are given in Table 1. The implicitness factor, 6, 

was not a part of the direct search but was manually modified as the search progressed, and its 

optimal value is also shown in Table 1. The search procedure produced Q,in = 3.7’66 x 

To put  this into context, we note that the maximum value was Q,,, = (3(10-’). The time 

series for the best case is shown in Figure 7; the corresponding power spectrum and delay 

map (delay=4) are shown in Figure 9, and the histograms of the intermittency distributions 

and autocorrelations are presented in Figure 11. These resklts have to be compared with 
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those obtained from the Burgers’ equation solution, Figures 5 ,  8 & 10 respectively. 

From the experience gained during this research, it appears that the skewness and flatness 

properties are not important in obtaining a good match between modeled and computed data 

in the present case. Hence these properties were not calculated. Also, it was found that the 

intermittency factors and autocorrelations were critical for a good data fit. The normalized 

weights shown in fifth column of Table 2 reflect this, with heavier weights assigned to these 

properties. 

The time series, (Figures 5,7),.are in excellent qualitative agreement. The three scales of 

“structures” described in Figure 2 are replicated in detail in the modeled time series. The 

distinct amplitudes ak in Table 1 give quantitative information about the relative sizes of 

the different scales. The two power spectra, (Figures 8a,9a), agree well in terms of power 

levels and decay rates, despite the fact that no explicit attempt was made to match them 

between model and the direct solution. The power .levels at higher frequencies appear to 

be lower in the modeled case possibly because of additional dissipation introduced by using 

sums of maps (see [l] for a discussion of this effect). Evidence of this extra dissipation can 

also be detected in the delay maps, (Figures 8b, 9b), where the modeled delay map appears 

to be slightly more tightly wound than the map for the direct solution data. The general 

agreement in the intermittency distribution, (Figures 10a,lla), and the autocorrelations, 

(Figures 10b,llb), is also very good. There is generally good quantitative agreement too. as 

can be seen from Table 2 where the results for the various statistical properties discussed 

earlier are presented for both the modeled and directly computed cases. 

I 

4. Summary and Conclusions 

In this paper we have presented an approach to fitting experimental and/or DNS data to 

a linear combination of chaotic maps. We have emphasized the goal of finding sufficient 
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statistical characterizations of data to essentially guarantee that the model exhibits quali- 

tative features in good agreement with the data and at the same time provides satisfactory 

matches (in a quantitative sense) of important statistical properties. We conjecture that this 

will allow phase space trajectories of the model time series to be associated with an attractor 

similar to that of the data, at least in a spatially local sense. To provide tight control of the 

overall exercise we have employed a DNS time series obtained by solving a chaotically-forced 

Burgers’ equation in lieu of actual experimental data. Application to experimental data is 

reported elsewhere (see MengiiC et al. [9]). 

We have described a long list of data characterizations and demonstrated specific effects 

on the modeling process of the more important of these. Results obtained for the specific case 

considered in this work are generally quite satisfactory as is evident from the data presented 

in Sec. 3., thus indicating the feasibility of employing linear combinations of a single discrete 

dynamical system to match the long time stationary features of the evolution of an infinite- 

I 

dimensional dynamical system (albeit , one probably possessing a finite-dimensional global 

attractor, or at least inertial manifold; cf. Temam [13] and Constantin et al. [14]). The 

intrinsic importance of this type of result is that, in fact, it is believed that the situation is 

quite analogous to the Navier-Stokes equations, so our results should indeed be valuable in 

utilizing both experimental and DNS data for chaotic map construction in the context of the 

Hylin and McDonough [ 11 additive turbulent decomposition subgrid-scale model formalism 

represented in equation (1). 

Despite the success of our fitting process, it must be emphasized that only a single data 

set has been employed here, and several issues have not been addressed. With regard to the 

intended use of these data fits in subgrid-scale models such as equation ( l ) ,  the key one of 

these is replication of bifurcation sequences. Clearly this is a crucial aspect of models of the 

form of ( l ) ,  but we have not considered it here. (We remark, however, that  this has been 

studied in a limited way in Mengiiq et al. 191, and in a related work by M C D O I ~ O L I ~ ~ ~  et al. 



[Is].) A second issue is that of establishing necessary and sufficient conditions (i.e.. set of 

statistical properties) to guarantee a reliable fit of data. This was one of our stated goals 

of the present work, and we must conclude that it has been only partially accomplished. In 

particular, our results imply sufficiency of the set of statisticd parameters employed? but we 

have not unequivocally demonstrated their necessity. In fact, we did find that two properties, 

skewness and flatness, were not necessary; we conjecture that they possibly represent a degree 

of redundancy in light of the fact that our intermittency distribution is closely related to 

a pdf from which skewness and flatness can be extracted. Moreover, while autocorrelation 

proved to be quite important in fitting the data herein, it was insignificant in the context of 

a particular laboratory data set considered by MengiiC et al. [9] and McDonough et al. [15]. 

We must evidently conclude that the specific properties needed to adequately fit a given 

data set may be data dependent, and thus probably must be determined as part of the data 

fitting process. 

Finally, we wish to comment on a few general related issues. First, we have restricted 

attention to linear combinations of a single chaotic map. While our approach appears to 

have been fairly successful, clearly linear combinations of different maps might be consid- 

ered, and in fact this may be necessary to induce quasiperiodic behavior (which does not 

occur in our present model). Second, the next step up in complexity would be to consider 

nonlinear compositions of different maps, and then linear or even nonlinear combinations 

of these. Third, all of the chaotic maps considered to date have been one-dimensional. An 

open question is whether multi-dimensional versions of equation ( l) ,  and, correspondingly. 

the maps k I  might be more appropriate. Finally, as we hinted earlier, the fitting process 

itself could probably be made significantly more efficient by use of neural networks and/or 

simulated annealing. One of our ultimate goals for the use of chaotic maps is in real-time 

control of physical systems, and neural networks are already seeing applications in this area. 

It is clear that many interesting problems and applications -associated with the analysis 



technique reported here remain, and we hope these initial results will provide a first step in 

fitting chaotic data in a global sense, i.e., in terms of the underlying attractor, instead of 

individual trajectories as has been considered in numerous earlier investigations (cf. [lo]), 

and stimulate further studies. 
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Table 1. Map parameters for the best case. 



Property 
No. 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 . 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

Description 

Average (G) 
Positive average (E+)  
Negative average (Ti-) 
Average variation (v(u)) 
Positive average variation (V+(u ) )  
Negative average variation (v-(u)) 
Slope sign changes, total (f,&) 
Slope sign changes, u positive (f:*) 
Slope sign changes, u negative (&) 
Time average L' norm 
Time average L2 norm 
Overall minimum (urnin) 
Overall maximum (urnaz) 
Positive minimum ( u i i , )  
Positive maximum (ut,) 
Negative minimum (urngn) 
Negative maximum (urnaz) 
Number of zero crossings/time (NOIN)  
Number of ii crossings/time (NOIN)  
Number of & crossings/time (Nrnean+/N) 
Number of si- crossings/time (N,,,,- / N )  
Autocorrelation (C(u, At)) 
Autocorrelation (C (u ,  2At)) 
Autocorrelation (C(u, 3At)) 
Autocorrelation (C(u, 4At)) 
Autocorrelation (C(u, 5At)) 
Autocorrelation (C(u,  6At)) 
Autocorrelation (C(u, 7At)) 
Autocorrelation (C(u, 8At))  
Autocorrelation (C(u, 9At)) 
4utocomelation (C(u, lOAt)) 
[ntermittency factor (11,) 
[ntermittency factor (fr,) 
[ntermittency factor (fr,) 
[ntermittency factor (fr,) 
Intermittency factor (fr,) 
ntermittency factor (fr,) 
ntermittency factor (fr,) 
ntermittency factor (fr,) 
ntermittency factor (fr,) 
ntermittency factor (fr,,,) 

Experimental 
Value 
P Y S  

-2.841 [-41 

-7.998 [-21 
7.510 [-21 

7.076 [-31 
6.916 [-31 

3.556 [-11 
3.660 [-11 

7.174 [-31 

3.447 1-11 
7.745 [-21 
1.500 [-21 

-2.909 [-11 
2.334 [-11 
4.067 [-51 
2.334 [-I] 
-2.909 [-11 
0.000 [O] 
2.833 [-21 
2.833 [-21 
2.247 [-21 
2.394 [-21 
2.434 [-21 
2.419 [-21 

2.369 [-21 

2.315 [-21 

2.262 [-21 

2.393 [-21 

2.340 [-21 

2.287 [-21 

2.234 [-21 
2.207 [-21 
6.595 [-31 

2.540 [-21 
1.319 [-21 

5.813 [-21 
8.256 [-21 
1.050 [-I] 
9.355 [-21 
6.815 [-21 
4.006 [-21 
9.038 [-31 

Modeled 
Value 

p Y e '  
-8.553 [-31 

-7.888 [-21 
7.099 [-21 

6.680 [-31 

6.666 [-31 
3.527 [-11 
3.571 [-11 

7.607 [-31 

3.488 [-13 
7.516 [-21 

-2.908 [-11 
2.337 [-11 

1.474 [-21 

5.451 [-51 
2.337 [-11 
-2.908 [-11 

2.809 [-21 
0.000 [O] 

2.809 [-21 
2.149 1-21 
1.954 [-21 

2.420 [-21 
2.400 [-21 
2.383 [-21 
2.362 [-21 
2.343 [-21 
2.318 [-21 
2.296 [-21 
2.270 [-21 
2.248 [-21 
7.816 [-31 

2.858 [-'I 
5.887 [-21 
1.038 [-13 
1.265 [-I] 

6.913 [-21 
3.053 [-?I 

2.433 [-21 

1.417 [-a] 

9.4'8 [-'I 

9.038 [-31 

Weights 

1.547 [-31 
1.547 [-31 
1.547 [-31 
1.547 [-31 
1.547 [-31 
1.547 [-31 
1.547 [-31 
1.547 1-33 
1.547 1-31 
1.547 [-31 
1.547 [-31 
1.547 [-31 
1.547 [-31 

1.547 [-31 

9i 

1.547 [-31 

1.547 [-31 
1.547 [-31 
1.547 1-33 
1.547 1-33 
1.547 [-31 
1.547 [-31 

2.642 [-21 
2.612 [-21 

2.700 [-21 
2.757 [-23 
8.824 [-21 
8.887 [-21 

1.023 [-21 

1.176 [-21 
1.556 [-11 
i.889 [-?I 

L.5i6 [-31 
!.%9 [-31 

..767 [-31 
1.330 [-31 

. .893 [- 11 

t.956 [-21 

1.100 [-21 

!.397 [-'I 

..402 [-31 

1.638 [-31 

Contribution 
To Q 

Qt(6pi I2  
1.058 [-71 
2.602 [-SI 
1.901 [-91 

2.430 [-lo] 
1.482 [-lo] 
3.991 [-lo] 
1.329 [-SI 
1.215 [-71 
2.603 [-81 
8.137 [-91 
9.752 [-111 
3.078 [-111 
1.533 [-lo] 
2.961 [-131 
1.533 [-lo] 
3.078 1-11] 
0.000 [O] 

9.227 [-111 
9.227 [-111 
1.476 [-91 
2.990 [-SI 

3.025 [-131 

1.185 [-lo] 
5.938 [-lo] 
1.405 [-91 
2.302 [-91 
2.810 [-91 
3.455 [-91 

2.202 [-121 

4.072 [-91 
5.415 [-91 
5.304 [-71 

2.416 [-71 
2.457 [-91 
1.025 E-61 
6.477 [-71 

3.179 [-91 
8.746 [-71 

8.486 [-SI 

9.489 [-lo] 

0.000 [O] 

Least-squares functional, Q = 3.766 [-61. 
Maximum contribution to Q is from property 36. 

Table 2 .  Statistical properties of data from Burgers' equation and chaotic map model. 
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