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Abstract

We present an upper bound on the number of regions into which affine space or the torus

over a field may be partitioned by the vanishing and non-vanishing of a finite collection of

multivariate polynomials. The bound is related to the number of lattice points in the Newton

polytopes of the polynomials, and is optimal to within a factor depending only on the

dimension (assuming suitable inequalities hold amongst the relevant parameters). This refines

previous work by different authors.
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1. Introduction

We prove a simple upper bound on the number of regions into which affine space
or the torus over an arbitrary field may be partitioned by a finite collection of
algebraic hypersurfaces. This is a polytope-refinement to an existing result, after the
fashion of many other recent improvements to classical bounds.
Let f ¼ ð f1;y; fmÞ be a sequence of polynomials in F ½X1;y;Xn� where F is a field

and X1;y;Xn commuting indeterminates. Given any point u in affine space F n of
dimension n over F the zero-pattern dðf; uÞ is the vector ðd1;y; dmÞ; where each
diAf0; *g with di ¼ 0 if and only if fiðuÞ ¼ 0: Let ZF ðfÞ denote the number of distinct

zero-patterns as u ranges over Fn: Let Fn denote the subset of non-zero elements in

F ; and Zn
F ðfÞ the number of distinct zero patterns as u ranges over the torus ðFnÞn:
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In [9] upper bounds are proved for ZF ðfÞ in terms of the degrees of the
polynomials in the sequence, and a number of combinatorial applications of these
bounds are presented. The essence of these results is that if all the polynomials have
degree bound by d; say, then there exists a polynomial function EdðmÞ of degree n

which bounds the number of zero-patterns. Note that this improves the trivial
exponential bound of 2m: We present some refinements of these bounds, and also

new bounds for Zn
F ðfÞ; which take into account the non-zero terms which actually

occur in the polynomials, rather than just their degrees. More precisely, we replace
EdðmÞ by a more refined polynomial function EDðmÞ related to the Newton
polytopes of the polynomials. Our refinement is of the same spirit as many other
results in which a quantity related to a single polynomial or family of polynomials is
bound in terms of their Newton polytopes, rather than their degrees. The most
famous example is perhaps Bernstein’s theorem, the polytope version of Bezout’s
theorem which gives a bound on the number of common zeros in the torus of n

polynomials in n unknowns (see [4,10]). Similar polytope-bounds also occur in
polynomial factorisation [6]. At a deeper level, Adolphson and Sperber’s [1] total
degree bound on the zeta function of a hypersurface in terms of the volume of the
Newton polytope of the defining polynomial improves earlier work of Bombieri.
Indeed, the Adolphson–Sperber bound is used to refine the complexity estimates in
the author and Wan’s proof of the polynomial-time computability of these zeta
functions in small characteristic [8].
Over the real field, one may also obtain bounds on the number of ‘‘sign-patterns’’,

see [9]. Both zero-patterns and sign-patterns have been considered by a number of
authors, and the bounds obtained have variety of combinatorial applications [2,9].
We would be very interested in learning of any new combinatorial applications of
our bounds.
In [9] explicit constructions are given to show that their bounds are optimal to

within a factor ð7:25Þn; assuming m and the field F are suitably large. An easy
modification of their approach shows that our bounds are optimal within a factor of
2n; for suitably large m and field F :

2. Theorems

We introduce further notation necessary to explain our results. Let Rn denote real
n-dimensional affine space, and D any bounded subset of Rn: A lattice point in Rn is
simply a point whose coordinates lie in Z: We denote by #ðDÞ the number of lattice
points which lie in D: For any fAF ½X1;y;Xn� the support set is the set of all integer

vectors ðe1;y; enÞARn which occur as exponents of non-zero terms aX e1
1 yX en

n in f :

The Newton polytope of f ; written Nnð f Þ; is defined as the convex hull of the support
set. It is a convex polytope in Rn: We also introduce one further polytope associated
to the polynomial. Let Rp0 and RX0 denote the set of non-positive and non-negative
real numbers, respectively. Define Nð f Þ as

Nð f Þ ¼ ðNnð f Þ þ ðRp0ÞnÞ-ðRX0Þn:
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Here the summation is the Minkowski sum, defined for A;BDRn by A þ B :¼
fa þ b j aAA; bABg: Notice that Nnð0Þ;Nð0Þ ¼ |: For this reason it is convenient in
Theorem 1 to assume that none of the polynomials fi in the sequence are zero; of
course, this is no real restriction.

Theorem 1. Let f ¼ ð f1;y; fmÞ be a sequence of non-zero polynomials in F ½X1;y;Xn�
and ZF ðfÞ; Zn

F ðfÞ the number of zero-patterns of f over affine and toric space,

respectively. Write f ¼ f1 f2yfm; so fa0: Then,

ZF ðfÞp#ðNð f ÞÞ;

Zn

F ðfÞp#ðNnð f ÞÞ;

where the right-hand sides are the number of lattice points in certain polytopes

associated to f, as defined above.

Note that Theorem 1.1 in [9] can be recovered by taking the bound

#ðNð f ÞÞpðnþd
n
Þ where dð¼

Pm
i¼1 di; di ¼ deg fiÞ is the degree of f : A similar

refinement to Theorem 4.1 in [9] can also be obtained.
If all of the polynomials fi in the sequence have the same Newton polytope D then

we can get a simple bound in terms of the Erhart polynomial of D [7, p. 780].

Corollary 2. Let f ¼ ð f1;y; fmÞ be a sequence of non-zero polynomials in

F ½X1;y;Xn� and Zn
F ðfÞ be the number of zero-patterns of f in the torus. Suppose

that each fi has Newton polytope D: Then Zn
F ðfÞpEDðmÞ; where ED is the Erhart

polynomial of D:

An alternative bound for ZF ðfÞ in terms of Nnð f Þ can be obtained by using the

bound for Zn
F ðfÞ from Theorem 1 and a torus decomposition of affine space. For

TDf1; 2;y; ng and any gAF ½X1;y;Xn� define gjT to be the polynomial obtained by

setting to zero all Xi for iAT which occur in g: Let

fT :¼
Y

fi jTa0

fijT :

We use the convention fT ¼ 1 when fi j fijTa0g ¼ |:

NT :¼ #ðNnð fT ÞÞ:

(Note that NT ¼ 1 in the case that fi j fijTa0g ¼ |; also, when this is not the case NT

is just the number of lattice points in the intersection of Nnð f Þ with the appropriate
coordinate axes.)

Theorem 3. Let f ¼ ð f1;y; fmÞ be a sequence of polynomials in F ½X1;y;Xn� and

ZF ðfÞ the number of zero-patterns in affine space. Then ZF ðfÞp
P

T NT ; where the

sum is over all sets TDf1; 2;y; ng and NT is as defined above.
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The above result suggests a natural generalisation: suppose each of the polynomials
fi has a common Newton polytope D: As in [3, Sections 2.1 and 3.1] one may associate
a toric variety ‘‘TD’’ with the integral polytope D; and a hypersurface ‘‘Zfi ;D’’ with each

of the polynomials fi: The number of distinct zero-patterns over all points ‘‘uATD’’ for
the sequence of hypersurfaces may then be defined, and a bound on this proved in
terms of the lattice points in D; however, we do not pursue this.
We finish with two examples to illustrate Theorems 1 and 3.

Example 4. Take the case n ¼ 2 with polynomials in F ½X ;Y �: Consider the sequence
f ¼ ðX ;Y ;X þ YÞ so f ¼ XY ðX þ YÞ: The original bound from Theorem 1.1 in [9]

is 10: We have #ðNð f ÞÞ ¼ 8; #ðNnð f ÞÞ ¼ 2; with ZF ðfÞ ¼ 5 and Zn
F ðfÞ ¼ 2: Hence

only one of the bounds in Theorem 1 is sharp in this case. However, using the bound
from Theorem 2, we find that N| ¼ 2; Nf1g ¼ 1; Nf2g ¼ 1 and Nf1;2g ¼ 1: Thus the

bound from Theorem 3 is tight in this example.

Example 5 (this example is based upon [9, Sections 6 and 7]). Assume that r :¼ m=n is
an integer, and let d1;y; dn be positive integers each at most m: Assume #ðFÞ41þ
Irðmaxifdig þ 1Þ=2m: Let d be one of the integers d1;y; dn: Let Aðr; dÞ be a collection
of subsets fS1;y;SMðr;dÞg of f1;y; rg such that each element occurs in at most d

subsets. By the comment following [9, Proposition 6.2], we may take Mðr; dÞ ¼
1þ Irðd þ 1Þ=2m: Construct a sequence of polynomials f1;y; frAF ½X � each of degree
bounded by d as follows: Choose a set of Mðr; dÞ distinct elements u1;y; uMðr;dÞAFn;

and define fj :¼
Q

k; jASk
ðX 
 ukÞ: By construction fu1;y; uMðr;dÞg is a complete set of

witnesses to the zero patterns of ð f1;y; frÞ: Hence Zn
F ð f1;y; frÞ ¼ Mðr; dÞ ¼ 1þ

Irðd þ 1Þ=2m: Repeating this construction n times, we can find a sequence f of nr ¼ m

polynomials, the first r univariate in X1 of degree at most d1; and so on, such that

Zn
F ðfÞ ¼

Qn
i¼1 ð1þ Irðdi þ 1Þ=2mÞ: The upper bound from Theorem 1 in this case isQn

i¼1 ðrdi þ 1Þ: Hence we are within a factor of 2n: (Also here ZF ðfÞ ¼ Zn
F ðfÞ and the

bounds from Theorem 1 for affine space are the same as for the torus.) In [9] the upper

bound is within a factor of ð7:25Þn; and so we have a slight improvement.

3. Proofs

Proof of Theorem 1. We follow the proof of Theorem 1.1 in [9], making appropriate
modifications. Assume M ¼ ZF ðfÞ and let u1;y; uM be witnesses to the distinct
zero-patterns. (That is, the set of zero-patterns is precisely fdðf; uiÞg1pipM :) The

support set of a zero-pattern dðf; uiÞ is just the set of indices SiDf1; 2;y;mg which
mark *’s in the zero-pattern. Define

gi ¼
Y

kASi

fk

and so

giðujÞa0 if and only if SiDSj: ð1Þ
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Now the polynomials g1;y; gM are linearly independent over F ; exactly as proved in
[9, p. 721]. Moreover, each is a factor of f ¼ f1 f2yfm; a non-zero polynomial. It

follows from Lemma 6 below that each NnðgiÞ lies in the polytope Nð f Þ: The
dimension over F of the space of all polynomials whose Newton polytopes lie in
Nð f Þ is exactly #ðNð f ÞÞ; and the first inequality follows.

For the second inequality, now let M ¼ Zn
F ðfÞ and u1;y; uM be witnesses for the

distinct zero-patterns in the torus ðFnÞn: Define the gi exactly as before. Each gi is a
factor of f ða0Þ: Thus by Lemma 6 we can find a monomial ri such that

NnðrigiÞDNnð f Þ: We claim that r1g1;y; rMgM are linearly independent as
polynomials over F : To prove this, assume that a non-trivial linear relationPM

i¼1 liðrigiÞ ¼ 0 exists (liAF ). Let j be a subscript such that jSjj is minimal among
the Si with lia0: Substitute ujðAðFnÞnÞ in the relation. Now ljrjðujÞgjðujÞa0; since

gjðujÞa0 from (1) and rj is a monomial with uj having no zero coordinates. However,

liriðujÞgiðujÞ ¼ 0 for all iaj since giðujÞ ¼ 0; from (1) and the minimality of Sj: This

is a contradiction, establishing the linear independence of r1g1;y; rMgM : Now each
polynomial in this sequence lies in the space of all polynomials over F spanned by

the monomials whose exponents are lattice points in Nnð f Þ: Hence Mp#ðNnð f ÞÞ;
as required. &

In the proof we used the following lemma.

Lemma 6. Let f ; gAF ½X1;y;Xn� with fa0 and g a factor of f. Then NnðgÞDNð f Þ:
Moreover, there exists a monomial r such that NnðrgÞDNnð f Þ:

Proof. Let f ¼ gh and so Nnð f Þ ¼ NnðgÞ þ NnðhÞ (see, for example, [5, Lemma

2.1]). We first show NnðgÞDNð f Þð¼ ðNnð f Þ þ ðRp0ÞnÞ-ðRX0ÞnÞ: Let wANnðgÞ be
any point. Then there exists some uANnðhÞ with v :¼ w þ uANnð f Þ: Now uAðRX0Þn

and so 
uAðRp0Þn: So w ¼ v 
 uANnð f Þ þ ðRp0Þn and certainly wAðRX0Þn: Hence
wANð f Þ and so NnðgÞDNð f Þ; as required.
For the second part, select a vertex v; say, of Nnð f Þ with supporting hyperplane l;

say. Let w be the vertex of NnðgÞ which is supported by l; with the same inner

normal. Define z ¼ v 
 w; a vertex of NnðhÞ: Then NnðgÞ þ zDNnðgÞ þ NnðhÞ ¼
Nnð f Þ: Write r ¼ X z1

1 yX zn
n where z ¼ ðz1;y; znÞ: It follows that NnðrgÞð¼ NnðgÞ þ

zÞDNnð f Þ; as we wished to show. &

Proof of Corollary 2. In this case Nnð f Þ ¼
Pm

i¼1 Nnð fiÞ ¼ mD: Hence, from the

properties [7, p. 780] of the Erhart polynomial, #ðNnð f ÞÞ ¼ #ðmDÞ ¼ EDðmÞ; and
the corollary now follows from the second estimate in Theorem 1. &

Proof of Theorem 3. For each TDf1; 2;y; ng let

GT :¼ frAF n j xiðrÞ ¼ 0 if and only if iATg;

where xi are coordinate functions on Fn: Then the torus decomposition expresses F n

as the disjoint union of these sets over all T : The number of zero-patterns over F n is
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certainly bounded by the sum
P

T MT of the number of zero-patterns, MT say, over

each GT : Thus it suffices to show that MTpNT :
Now on the torus GT each polynomial in the sequence f1;y; fm takes the same

value as the corresponding polynomial in the sequence f1jT ;y; fmjT : Thus we need
to show that the number of zero-patterns of this latter sequence onGT is bounded by
NT : If this is the zero sequence, then by definition NT ¼ 1; which is exactly the
number of zero-patterns. Otherwise, fTa0 is a polynomial, and the Newton

polytope Nnð fTÞ is defined.
Now let x1;y; xn be coordinate functions for Rn and for each TDf1; 2;y; ng

denote RT ¼ frARn j xiðrÞ ¼ 0 for iATg (note that we do not assume that xiðrÞa0

for rART and ieT). Thus Nnð fT Þ is a polytope in RT :We may then apply the second

bound in Theorem 1 with f ;Nnð f ÞðDRnÞ and ðFnÞn replaced by fT ;Nnð fTÞðDRTÞ
and GT : We deduce that the number of zero-patterns of this sequence in GT is

bounded by #ðNnð fT ÞÞ: But this last quantity is just NT by definition, which
completes the proof. &
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