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Abstract

This paper describes research investigating the evolution of coordination strategies in robot soccer teams. Each player

(viewed as an agent) is provided with a common set of skills and is assigned to perform over a delimited area inside a
soccer field. The idea is to optimize the whole team behavior by means of a spatial coadaptation process in which new
players are selected in such a way to comply with the already existing ones. The main results show that, through

coevolution, we progressively create teams whose members act on complementary areas of the playing field, being
capable of prevailing over a standard opponent team with a fixed formation. r 2001 Published by Elsevier Science Ltd.
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1. Introduction

One of the most compelling and challenging tasks
inside the distributed artificial intelligence (DAI) field is

that of suitably devising coordination protocols custo-
mized to the problems in mind. Coordination can be
summarized as a property of a system of agents
performing some activities in a shared environment,

concerning with how to effectively orchestrate the group
(inter-) actions, in time and space, for achieving
coherence [1,2]. It usually incurs complexity, as there

are no predefined general recipes indicating how to
establish, a priori, the rules of group behavior in view of
all possible situations/scenarios. Moreover, there is a

range of aspects, such as the homogeneity/heterogeneity
of the agents’ skills or the environmental characteristics
(static versus dynamic), that should also be regarded

when one chooses the coordination mechanisms to be
employed.

Soccer seems to be a rich testbed domain for the study
of multiagent coordination issues. In such context, a set

of players must work together in order to put the ball

into the opposing goal (augmenting its score) while at

the same time defending its own. This is a typical
domain where cooperation [3] should take part inFthe
individuals have the same global objective. One im-

portant issue for a soccer team to win a game is the
strategy it uses, during a game period, to place each of
its components in a given region of the field (such as
backfield, leftwing, attack etc). That is, how to delimit

the zone at which a certain player can perform better in
order to improve the capabilities of the whole group.
This sort of coordination effort is referred to here as

spatial strategy. Our primary aim is to evolve this
process of team formation through a coevolutionary
approach [4–8], so that a spatial strategy can emerge

without human interference. In this regard, the idea is to
qualitatively analyze how much the arrangement of a
team may influence its overall performance. Further-

more, a secondary purpose underlying this initiative is to
reveal the potentials of applying artificial life (coevolu-
tionary-based) techniques towards complex behavior
modeling in societies of artificial agents. The problem we

are trying to tackle (emergence of team positioning
strategies) is straightly related to the task of automatic
synthesis of multiagent behavior since the organization

policies adopted by a team directly constrain the
possible dynamic comportment it might assume while
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facing (non-predicted) future situations presented to it
by the environment.

In the sequence, we introduce the robot soccer
problem and the artificial coevolutionary approach
applied to multiagent spatial coordination, present our

framework and solution, show the results from our
experiments, and finally identify future plan of work.

2. Background and related work

Many approaches to tackle coordination problems are

currently available in the literature [1,3,7]. Most of them
center around the specification and implementation of
high-level protocols (many times based on human social

interactions) containing the actions to be taken at
particular cases, either by a single agent or by the whole
group. Well-known examples following such idea are

Laird and others’ knowledge-based coordination model
and Jenning’s formalism of commitments and conven-
tions. In the latter, for instance, rules to undertake a

specific course of action are conceived before the actual
deployment of the team in the environment (joint
commitments). In order to monitor whether these rules
have been fulfilled or whether they are still valid in

changing circumstances, there are also additional
emergency instructions towards the dynamic adjustment
of the group activities through time (social conventions).

Such kind of endeavor aiming at the conception of an
explicit scheme of coordination seems to be only suited
for a constrained class of problems, showing both

performance and scalability bottlenecks when applied at
more complex domains. Alternative mechanisms have
been conceived in order to surpass those deficiencies,
such as distributed planning and real-time (re-) planning

[2,7].
A new-fashioned line of research (followed in this

work) involves the pervasive use of evolutionary

techniques as a means to improve both individual as
well as group abilities in a concurrent manner. This
methodology stipulates for group organization in a

seamless and implicit manner; that is, there is no need
for explicit pre-codified protocols. The coordination
activities can now be viewed as an optimization problem

whose solution(s) is (are) searched via a computational
procedure that mimics the steps of the natural evolu-
tionary process. Applying such strategy for the auto-
matic configuration of robot soccer spatial coordination

strategies constitutes the primary contribution of this
work.

The CMUnited [9,10], developed at Carnegie Mellon

University, has been one of the most successful physical
robot soccer teams in the contests of the RoboCup
world championship [11]. It encompasses a layered

learning technique to first train the players basic skills
(dribbling, shooting) for then building more complex

capabilities (passing, positioning) upon the basic ones.
The formation of the team can change in the course of

the game, but the set of possible formations is
determined empirically and one of them is chosen in
accordance with the current situation of the match [9].

By other means, Balch [12] has used his robot soccer
simulator [13] to investigate behavioral specialization in
learning robot teams. In his work, all agents have a
common set of skills from which they build a task

achieving strategy using a Q-learning (reinforcement
learning) algorithm. After playing for some time against
a fixed strategy control team, the learning agents

specialize into complementary roles because their
reward depends on the score of the game, not on
individual actions.

Some papers already report on work concerning the
application of artificial learning and evolution to some
soccer-related problems. For instance, the approach

proposed by Agah et al. deals with the production of
evolutionary cooperative strategies by means of a
devised cognitive architecture based on Tropism [14],
whereas Matsubara and colleagues employed a neural

network approach towards players’ on-line learning in
how to take correct decisions (pass a ball to a peer or
shoot towards the opposite goal) according to some pre-

established field positioning situations [15]. Andou has
already assessed the employment of reinforcement
learning schemes to update players positions

on the field based on where the ball has previously been
located [16]. By other means, Luke et al. set out to create
a completely learned team of agents using genetic
programming [17]. Their approach already employed

an artificial coevolutionary methodology which was
conceived primarily towards behavior-based team co-
ordination, not coping with spatial organization pro-

blems.
The approach underlying this work differs from

others in several aspects. First, we do not have any

predefined formation for the players, but want that the
formation emerges by means of an evolutionary scheme.
We do not use reinforcement learning, but also apply the

result of the game as a reward function for the employed
evolutionary technique (in order to calculate the level of
group adaptability), so that the performance of a single
player depends on the performance of the whole team.

Finally, as a more adequate strategy for the soccer
players progressive spatial co-adaptation, a novel
memory-based, cooperative coevolutionary architecture

[6,18] towards the dynamic popup (emergence) of
instances of evolutionary algorithms has been designed.

3. Simulated robot soccer

Research on robot soccer has received an increasing
attention through the last years. Soccer is an attractive
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domain for multiagent study as the success of a team
depends very much on some form of coordination [19,

14]. It is also very appealing because the game is played
in a dynamic, real-time, competitive and cooperative
environment, from which the agents (players) percept

only a small part (limited visual perspective), what
typically incurs the need of world modeling, distributed
learning and planning. The control of the agents is
decentralized and the changes in the environment

neither are fully predictable nor happen in discrete time
steps. For our purposes, the game is simplified and is
ruled according to the following aspects:

* Teams are composed of five players.
* The sidelines are wallsFthe ball bounces back

instead of going out-of-bounds.
* After a scoring event, the ball is immediately placed

back in the center of the field.
* Each player has accurate information about the

position of the other peers and adversaries as well as
of the ball.

According to Huhns and Stephens [2], there are two

commonly used methods for apportioning tasks among
cooperative agents. One is the functional distribution, in
which cooperation comes as the union of the individual
capacities of the players (one player is a good shooter,

other is a passer, and so on). The second method, called
spatial distribution, is a form of cooperation where the
agents divide the search or performing space (in soccer,

this is the field) into well-defined areas, in such a way to
quicken the team performance through the sharing of
goal responsibilities. In this work, the latter method was

chosen for experimenting with the coevolutionary
coordination of robot soccer agents.

The Java-based soccer simulator employed in our
experiments [13] (Fig. 1) implements each player on a

separate OS thread and runs the simulation in discrete
steps. At each step, the robots process their sensor data
before ascertaining their appropriate effector com-

mands.

4. Coordination via coevolution

Evolutionary Computation (EC) has come out as the
branch of computational intelligence research employ-
ing metaphors from natural evolutionary phenomena as

a means to achieve efficient problem solving (search)
techniques [3]. Its applicability has constantly increased
in recent years, and many are the engineering fields that

have some of their processes improved through the
appliance of evolutionary-based approaches. The ma-
jority of the implementations of such approaches

descend from four independent lines of research, namely
genetic algorithms (GA), genetic programming (GP),

evolutionary programming (EP), and evolution strategies
(ES).

In the conventional GA model, a population of
strings (chromosomes) codifying the possible solutions
for the problem in hand passes through a cyclic

(generation-based) process in which new candidates are
constantly created and evaluated in accordance with
some measure of environment adequacy known as
fitness. Ancestors are charged by computational opera-

tors very much resembling natural evolutionary phe-
nomena, such as reproduction, selection and mutation,
being progressively replaced by more adapted new-

comers. The population fitness tends to converge in the
course of the process and (sub-) optimal solutions are
obtained at final stages.

Some problems with this model have already been
reported. First, it is very prone to the ‘‘local minima/
maxima problem’’, as it depends very much on the

configuration (search space distribution) of the initial
population. Likewise, some fast convergence problems
may occur if the population size is not properly set. This
model has, as well, scalability problems, like how to

incorporate all the knowledge about the problem and to
discriminate and prioritize (possibly several) distinct
factors in a unique evaluation function. In the same

manner, the representation of some heterogeneity issues
behind the problem may be constrained, as the
phenotypic interpretation of parameters is the same for

all the individuals (single species). Moreover, the model
is also not adequate for the evolution of sets of
interacting rules with variable sizes whose individual
fitness are determined by their interactions via a

simulated micro-economy. (Classifier systems and other
related works, such as SAMUEL [20], have been devised
to surpass such drawback.) Finally, it is not very suited

for the representation/generation of complex structures
such as those composed by many sub-entities (as it is the
case of multi-agent coordination systems).

In order to tackle such deficiencies, distributed genetic
algorithms [4] have been introduced. The idea is to bring
about a set of genetic algorithm instances working

together in a parallel/distributed environment in order
to find out the best solution for a common problem.
Each GA runs independently from the others. Other,
more recently investigated, concepts are those of niches

and speciation [21]. The first brings the idea of
dynamically mounting small groups of correlated
individuals that act upon a close region of a large

search space. Individual niches compete for the alloca-
tion of trials. The second refers to new forms of ‘‘on-the-
fly’’ species generation.

Extending the boundaries, there is now such a trend to
apply artificial coevolution [5] as a more suitable
technique towards complexity overcoming. Artificial

coevolution has its roots in its biological counterpart.
Simply put, coevolution means ‘‘any reciprocal
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evolutionary change in interacting species [22].’’
Although vague, such definition is powerful enough to

comprehend any natural process in which two or more
species, typically coexisting in a same environment, have
their evolutionary trajectories somehow affected by the

stable ecological interactions and interrelationships their
members jointly promote and take part in. In the
artificial realm, two or more populations of different

species are optimized together, one influencing the other
by some means.

Artificial coevolution seems very suited for simulating

cooperation and/or competition behavior among mul-
tiagent entities. Following such premise, Puppala et al.
have devised a share-memory based approach [18] to
evolve cooperating individuals of two different species–

painters and whitewashersFfor solving a room painting
problem (see Fig. 2). In this case, each of the agents has
unique skills necessary to complete a job; that is, they

are interdependent and the group behavior depends on
the joint behavior of both components. The idea is to
find pairs whose members are best adapted to each

other, so the overall performance can be improved. This
should be regarded as a kind of functional decomposa-
bility of a huge, high-level problem. In their scheme, an

individual from the first population (codified by a rule of
behavior) is assessed by mating it with other individuals
of the second population (the reverse is also true). Its
highest performance evaluation on all pairs that it

participates is assigned as its fitness. Instead of
randomly picking the individuals, the authors conceived
a buffer for grabbing and remembering the most

successful pairs achieved so far: In this case, the mating

is done by selecting the N best partners from the other
population which prevailed at the last generation. The
memory is updated if a fitness value of a new assembled

pair is higher than any of those currently stored,
promoting the replacement of the stored pair with the
minimum value (tail of the list) by the new one.

5. Soccer team spatial coordination

In this section, the features underlying our proposal

for soccer team spatial coordination are gradually
presented.
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Fig. 1. Game start position on the Java-based robot soccer simulator.

Fig. 2. Shared-memory based approach for multiagent coordi-

nation.
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5.1. Players and regions

Since our main interest was on the formation of the
team and on its influence on the result of the game, all
players, from both opposing teams, were modeled with

the same basic skills and control algorithm (see
Appendix A). Each player was allowed to perform only
inside a particular actuation area, which was character-
ized by three mark points: defense (D), middle (M), and

attack (A) (Fig. 3a). In order to avoid a player choosing
a too small area to play, the field was separated into 18
squares, as shown in Fig. 3b. For classification purposes,

we considered nine delimited regions covering the whole
field (Fig. 3b). Each player of an experimental team was
bestowed with a label indicating the region to which it

belongs to, in accordance with the minimum Euclidean
distance between the center of its actuation area and the
center of all nine regions. Table 1 shows the coordinates

of these regions.

5.2. Teams

The investigation was conducted by engaging experi-
mental teams against a fixed opponent control team that

uses a 1:3:1 formation (Fig. 7a). The purpose was to
evolve (or create) new teams that were able to defeat the

control team in soccer contests, owing only to a different
spatial distribution of the players. The motivation is to
certify whether the task of choosing one from a range of

different formation strategies has direct influence on the
relative performance of an evolved team versus the
control team.

5.3. Architecture

Based on the concepts of niches, speciation and
cooperative coevolution, we have designed a new

architecture for multiagent spatial coordination. The
most innovative idea is that of progressively assembling
the evolving teams (niches) by allocating for each of the
five possible players (positions) a promising acting

region to be represented by a dynamically created
species. In the beginning, all players are randomly
selected from the same GA instance (named GA-0)Fwe

could employ any other evolutionary algorithm as well.
Then, in the course of generations, some players,
competing against all, will prevail, spawning new

offspring very akin to them. Those most adapted players
and their offspring certainly will perform over similar
field regions, characterizing a promising searching area

for another GA instance, giving birth to a speciation
process. (This is why we partitioned the field into nine
logical regions.) As times passes by, new GAs are
popped up and the GA-0 is restarted with another initial

population if the number of players of new species (may
be more than one at the same time) fires up a certain
threshold. Each new spawned GA is assigned to a place

(player) in all future teams formation. That is, one of its
members will be selected to take place in each
experimental team thereafter. The coadaptation process
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Fig. 3. (a) Actuation area of a player with its defense (D), middle (M) and attack (A) position. (b) Discrete field coordinates (6� 3

rectangles). Each player is associated to the closest region, from nine defined on the field, according to the distance measured between

the center of the actuation area to the center of the region.

Table 1

Coordinates of the region points used to classify the players

according to their acting area

Region Coordinates Region Coordinates

r1 (1.5, 0.75) r6 (5.0, 1.5)

r2 (3.0, 0.75) r7 (1.5, 2.25)

r3 (4.5, 0.75) r8 (3.0, 2.25)

r4 (1.0, 1.5) r9 (4.5, 2.25)

r5 (3.0, 1.5)
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is granted as the new GAs (species) are formed by in
accordance with the already existing ones. At a final
step, the spawned GAs have their populations evolved

synchronously during some other few cycles for fine-
tuning purposes. Fig. 4 shows the details of such
coevolutionary framework.

Some other considerations are worth to be mentioned:

* This approach also guides the spring of new
individuals in the GA-0 population that have
complementary roles from those of the already

selected species, promoting for an automatic means
of problem decomposition.

* The new created GA instances will not allow its
individuals to evolve until each of the five field

positions has an associated species. This avoids the
possibility of badly influencing the formation of the
new GAs with corrupted (vitiated) initial populations

of the GA-0. If a GA-0 instance does not produce
any novel species for a delimited number of genera-
tions it must be replaced by other instance in such a

way to accelerate the search process.
* In order to give to its individuals a better chance to

survive and to be selected for a new team, each new

created GA instance can not have more than the half
of the number of individuals in the GA-0. Only the
most adapted are picked.

* The GA-0 population decreases as the number of

species increases. This is because there will be less
slots in a team the GA-0 individuals will struggle for.

* The architecture is also memory-based. However, in

order to avoid combinatorial explosion problems (as
we should have populations in the range of hundreds
of elements), we did not adopt Puppala’s individual

fitness evaluation based on cross-mating. Instead, we
opted to apply random teams assemblage (limiting

the number of possible teams) for those positions
that do not already have an associated species.

For implementation purposes, six classes codified in
Java mainly compose this architecture; they are Player,

Team, Team pool, Memory, Simulator, and GA, whose
interrelationship model is presented in Fig. 5. Fig. 6
brings a high-level execution flowchart for our coevolu-

tionary approach.

5.4. Genetic algorithm

The creation and evolution of the players are
controlled by a genetic algorithm that uses elitist

selection, one-point crossover and mutation [23] to
generate new players from a previous population. The
initial population is randomly generated, in a uniform

distribution. The fitness function used to reward the
players is not based on their single performance, but on
the score of the team where the player actuates. Eq. (1)

brings such evaluation function. ‘‘Steam’’ and ‘‘Scontrol’’
are the scores of an evolved team and from the control
group, respectively:

f ðplayerÞ ¼

3 þ ðSteam2ScontrolÞ=10; for Steam > Scontrol ;

21 þ ðSteam2ScontrolÞ=10; for SteamoScontrol ;

1 þ ðSteam=10Þ; for Steam ¼ Scontrol

8><
>:

ð1Þ

It may happen that a player is chosen to play in more
than one team. In this case it will keep the highest fitness
of all teams it participated. In the case that a player does

not play any match, it will receive the reward as being
the average reward of all players on its region.
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Fig. 4. Creation of the teams: on the beginning, all players are taken from the GA-0. As soon as a region of the field has enough

players to form a new population, this population is copied into a new GA-1. After that, each team will have one player coming from

that GA. The GA-0 is restarted and the procedure is repeated until we have one GA for each position of the team. Then the GA-0 is

destroyed and the others are activated to co-evolve.
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6. Simulation results

Experiments were conducted by running the algo-

rithm described in Appendix B and employing Balch’s
Java-based soccer simulator for 50 players and 25 teams.
The most important parameter settings can be found in

Table 3. For each GA-0 generation, all created teams
played an 8 min long match against the control team.
Each simulation of a soccer match was performed on a

separate Java thread and those simulations were the
most time-consuming tasks, taking about 1 h1 to
simulate the 25 matches of an evolutionary cycle. The

evaluation of the results was focused on three criteria:

spring of new formations, cooperative coevolution of
the agents and convergence of the genetic algorithm.

6.1. Formations

Since the only difference between the emerged teams

and the control team is the formation, we could verify
that it played a prominent role in robotic soccer. The 10-
best evolved teams achieved for the best experimental

running were able to win the control team with an
average of four goals of difference. It is worth to remind
that our approach created formations automatically,
without human soccer expertise, and could be used to

train different team formations according to its adver-
sary. The formations of the control team and of three
winning evolved teams can be seen in Fig. 7.

6.2. Coevolution

Looking at Figs. 7b–7d, we can notice that the players
actuation areas that emerged were complementary.
Since each of the players came from a different GA

instance, and since those GAs were created in different
time steps, we can conclude that the constructive
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Fig. 5. Object model showing the relationships among the main Java classes. N, T, and M are parameters indicating the maximum

number of GA instances (5), the number of experimental teams per generation (25) and the number of buffered teams (10).

Fig. 6. Execution flow in a typical run of the proposed

coevolutionary approach.

Table 2

Order in which the new GAs were created and the regions to

which their initial population belonged

GA-1 GA-2 GA-3 GA-4 GA-5

r1

r2 d d
r3

r4

r5 d
r6

r7 d
r8 d
r9

1 The experiments were performed using an Enterprise 450

Machine with two 300 -MHz Ultra Sparc-2 processors, 512MB

RAM, running SunOS 5.7, and using JDK 1.2 for code

implementation.
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coadaptation approach was pivotal for the arrangement
of teams whose players actuate cooperatively for the
field covering. To assist the reader in this assessment,
Table 2 brings the order in which the new GA instances

were progressively created for the best benchmark
running performed so far, displaying the respective
regions to which their initial populations (emerged

niches of the GA-0) belong.

6.3. Convergence of the GAs

Using the 50-players/25-teams configuration, we
observed, through some experiments, that the GA-0

was very susceptible to quick convergence. Almost
always, the new GA instances tended to emerge within

the minimum necessary number of generations (Table
3), and their initial populations were formed by only one
or two different classes of players (breeds or subspecies).
This was typically a non-diversity problem. To

avoid this misbehavior, we increased the number of
players and teams to 500/250 and observed that the
population was indeed more diverse and, thus, did not

converge so fast. However, such decision incurred, as a
negative side effect, unaffordable simulation cost in-
creases in such a manner to hamper the performance

assessment process. This ‘‘diversity X computational
cost’’ tradeoff is typical in any evolutionary-based
technique, being generally dealt with via the employ-
ment of empirical fine-tuning calibrations of the config-

uration parameters.
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Fig. 7. Team formations. (a) Formation of the control team. (b), (c) and (d) are evolved formations that were able to defeat. the

control team with a goal difference of 6, 5 and 4, respectively. We verify that the players occupy complementary and overlapping parts

of the field, in a way that almost all the field is covered by the team.
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Applying coevolutionary techniques in complex pro-
blem domains has been proved to be a promising

alternative strategy for achieving both performance and
quality improvements. Recent research works have
addressed the employment of such approach in a variety

of problems, including single/multicriteria function
optimization [24,4,6] and multiagent scenarios
[20,18,17]. In this work, a new coevolutionary-based

architecture for robot soccer teams spatial coordination
was depicted and evaluated, confirming: (i) the feasi-
bility of obtaining an automatic method for the
generation of implicit coordination rules; (ii) that the

spatial distribution of homogeneous players across the
field may direct influence the behavior and performance
of the whole team; (iii) that the approach encourages the

formation of stable niches of cooperative sub-compo-
nents (players) whose acting regions tend to be
complementary on the field covering; and (iv) that

artificial life techniques (particularly coevolutionary-
based ones) are a step towards the automatic synthesis
of complex behavior and control rules in societies of

various autonomous entities.
Some problems were detected during the simu-

lations execution of our approach, demanding for
new design or parameter setting corrections.

For instance, the fast convergence in the fitness
of the new created GAs’ populations surely had a
great bad effect on some attained results. Increasing

the size of all GAs, however, would complicate the
players evaluation process and augment the computa-
tional time required at each running cycle. As a

consequence, there is an intrinsic hard trade-off for
configuring parameters of this sort, as well as for those
relating to the GA operators (higher mutation rates shall
also provide a means to overcome such fast conver-

gence).

Another problem that deserves attention relates to the
possibility of loosing the constituents of the best existing
teams (those already in the memory). Although applying
an elitist selection process, it is not assured that these

players will be maintained in their respective GAs’
populations. (What is maintained is just a copy of the
whole team in the pool.) Therefore, we observed that

some possibly successful teams that emerged during the
generation-based process had their evolutionary ‘‘cus-
tomization’’ hindered by the extinction of one or more

of its components in a prior generation.
The formations that emerged during our tests are

suitable only to play against the control team used in the
experiments, performing inefficiently against teams with

different formations. This is a big limitation if the team
is intended to participate in a competition like the
RoboCup. Therefore, an interesting extension to this

work would be to train many different formations
against distinct configurations of control teams, store
the best formations in a run-time memory and then,

during the contests, dynamically adapt the team spatial
distribution in conformance with the current opponent’s
strategy.
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Appendix A. Algorithm that controls the actions of

each player

Compute: (A)attack, (M)middle, (D)defense

if( Player outside it’s area )
Move to area;
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Table 3

System configuration parameters

Parameter Meaning Value

POP_LENGTH Number of players in the initial GA-0 50

MEM_SIZE Number of best teams that are kept on memory 10

TEAMS Number of teams to be formed 25

PLAYERS Number of players per team 5

MAX_NEW_GA_POP_LENGTH Maximum number of players that a new GA may have TEAMS/2

TIME_TO_LIVE Maximum number of generations 120

THRESHOLD Percentage of players a region must have to form a new GA 40%

MIN_TIME_TO_POPUP Minimum number of generations for a new GA to be formed 5

MAX_TIME_TO_POPUP Maximum number of generations for a new GA to be formed 20

GENE_CROSSOVER_CHANCE Chance of crossover occurrence 25%

GENE_MUTATION_CHANCE Chance of mutation occurrence 1%

ELITIST Number of best players copied to next generation (elitist selection) 20%
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else if( Ball inside area )
if( Closest player to ball )

Move to ball;
Else

Move close to ball;

Else//ball outside the area
if( Ball on defense side of field )

Move to (D);
else if( Ball on attack field )

Move to (A);
Else

Move to (M);

if(Can kick and Is worth kicking )
Kick the ball;

Appendix B. Algorithm for the creation of teams through

coevolution

1. Create GA-0’s initial population;
2. Classify players in regions;
3. Create N teams;

4. Simulation:

for( each team )
Play against static team;
Compute fitness;

if( Sus>Sthem )

fitness( 3+(Steam�Scontrol)/10;
else if( SteamoScontrol )

fitness(�1+(Steam�Scontrol)/10;
else

fitness( 1+Steam/10;
(where Steam and Scontrol is the score of

each team at the end of the game)
Set fitness of the players;
Save M best teams;

for( each region )

Compute fitness of the regions (Fr);
5. for ( G generations )

for( GA-0 xor GA-i )
Elitist selection;

Crossover;

Mutation;
Classify players in regions;
Create N teams;

Take one player from each GA-i;

Complete team with players from GA-0;
Simulate the games;
if( |GA|o|players per team| and G>min )

if( |region|>Threshold )

Create new GA-i;
Initialize it with population of region;

GA-0(New initial population;
else if( timeout )

New GA-i(Biggest region;
GA0 (New initial population;

6. Print best teams
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