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Abstract

Numerous multivariate visualization techniques and systems have been developed

in the past three decades to visually analyze and explore multivariate data being

produced daily in application areas ranging from stock markets to the earth and

space spaces. However, traditional multivariate visualization techniques typically do

not scale well to large multivariate data sets, with the latter becoming more and

more common nowadays. This paper proposes a general framework for interactive

hierarchical displays (IHDs) to tackle the clutter problem faced by traditional mul-

tivariate visualization techniques when analyzing large data sets. The underlying

principle of this framework is to develop a multi-resolution view of the data via

hierarchical clustering, and to use hierarchical variations of traditional multivariate

visualization techniques to convey aggregation information about the resulting clus-

ters. Users can then explore their desired focus region at di�erent levels of detail,

using our suite of navigation and �ltering tools. We describe this IHD framework

and its full implementation on four traditional multivariate visualization techniques,
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namely, parallel coordinates [9,19], star glyphs [16], scatterplot matrices [4], and di-

mensional stacking [12], as implemented in the XmdvTool system [18,13,6,7]. We

also describe an empirical evaluation that veri�ed the e�ectiveness of the interactive

hierarchical displays.

Key words: Large-scale multivariate data visualization, exploratory data analysis,

hierarchical data exploration

1 Introduction

One important approach to supporting the human in analyzing and exploring

large amounts of data is to graphically present the data and then allow the

human to apply his or her perceptual abilities to make sense of the data. Multi-

variate visualization is an important sub�eld of data visualization that focuses

on data items composed of more than two variables. Many multivariate visu-

alization techniques and systems have emerged during the last three decades,

such as glyph techniques [2,16,3,14], parallel coordinates [9,19], scatterplot

matrices [4], pixel-level visualization [11], and dimensional stacking [12]. Each

method has strengths and weaknesses in terms of the data characteristics and

analysis tasks for which it is best suited.

As large data sets become more and more common, it has become clear

that most existing multivariate visualization techniques lose their e�ectiveness

when more than a few hundred or thousand data points are being displayed.

The reason is that the available screen space is limited. Hence when the size

of a data set reaches a certain size, we are not able to place all data on the

� Author to whom correspondences should be directed
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screen at the same time without completely cluttering the screen. For exam-

ple, if every pixel on a 1024�1024 screen could present one data item, then the

maximum number of data items we can visualize at the same time without

overlap is 1,048,576. Unfortunately, large data sets nowadays easily exceed

this size. Worse yet, most of the existing multivariate visualization techniques

have much lower screen usability than one pixel per data item. As a result,

the clutter problem becomes a serious issue in the visualization of large multi-

variate data sets. Figure 1 shows a data set containing 5 channels of remotely

sensed data (SPOT, magnetics, and 3 radiometrics channels) visualized using

the parallel coordinates visualization technique [9,19]. Though this data set is

only composed of 16,384 data items, the clutter problem is too serious to allow

users to identify useful features of the data, such as clusters or anomalies.

To address the problem of scaling multivariate visualization techniques to large

data sets, we have developed a general framework called Interactive Hierar-

chical Displays (IHDs). This framework is general in that it can be applied to

a wide range of existing data visualization techniques. IHDs work upon hier-

archical cluster trees of the data sets and display the data in variable levels of

detail. Each cluster is visualized using a technique called the meanpoint band,

which conveys several attributes of the cluster. Hierarchical relationships are

depicted using color, so that sibling and parent relations are readily observed.

We call this proximity-based coloring, and it has proved to be powerful not only

for conveying these relationships, but also for linking di�erent visual represen-

tations of each cluster. Several tools to support interactive exploration within

the IHD framework have also been developed, including techniques for intu-

itive navigation of the hierarchy via focus, drill-down, and roll-up operations,

and selective �ltering that reduces clutter while preserving context.
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As a proof of the generality of IHDs, we have applied this framework to four di-

verse multivariate visualization techniques, namely parallel coordinates [9,19],

star glyphs [16], scatterplot matrices [4], and dimensional stacking [12]. We

have assessed these interactive hierarchical displays and found that they are

more e�ective than the non-hierarchical techniques (which we call 
at meth-

ods) in many aspects, such as for detecting outliers and linking individual data

items within and between displays, as well as solving the clutter problem. We

have developed a fully functioned system based on XmdvTool [18,13,6,7], a

public-domain visualization system, that integrates hierarchical versions of the

four supported techniques for displaying and visually exploring multivariate

data. Application of these tools to real data sets has demonstrated the utility

of the resulting technology.

To assess the e�ectiveness of the interactive hierarchical displays, we con-

ducted an empirical evaluation of the hierarchical parallel coordinates and


at parallel coordinates. The results of this evaluation showed that the IHDs

provided users with e�ective help in exploring large data sets as compared to

traditional 
at display techniques, and our interactive exploration tools were

useful and e�ective.

This paper is organized as follows: Section 2 gives an overview of the interac-

tive hierarchical display framework. Section 3 introduces hierarchical versions

of four traditional display techniques. Section 4 describes the full implemen-

tation of this framework in the XmdvTool system. Section 5 introduces the

empirical evaluation. Section 6 surveys related work regarding the display of

large multivariate data sets. We conclude with a summary of our contributions

and open areas for future work in Section 7.

4



2 Interactive Hierarchical Display Framework

Our goal is to overcome the clutter problem faced by the traditional 
at vi-

sualization techniques as illustrated in Section 1. Towards this end, we have

developed novel interactive displays with the following properties:

� scale to large data sets while overcoming the clutter problem,

� give users information ranging from the high level structure of the data sets

in the multidimensional space down to the detail of individual data items,

� follow a set of display-independent principles for all the display techniques

to give users a consistent interpretation of displayed information across mul-

tiple views of the data.

� build o� of existing visualization techniques so that users can readily inter-

pret them,

� use a multiresolution approach that allows users to easily switch between

di�erent levels-of-detail,

� allow users to focus on particular subregions of the overall data sets and

view details while keeping the overall context, and

� preserve most, if not all, of the interactive techniques available for the tra-

ditional displays, such as brushing, zooming, and distortion.

As an initial step, we construct a hierarchical cluster tree upon a data set

using a clustering algorithm, such as Birch [23], or via explicit partitioning.

By cutting the hierarchical cluster tree at various depths, we get subsets of

clusters at di�erent levels-of-detail that abstract all data in the data set. Then,

we can visualize the subsets of clusters instead of all data in the data set. This

makes IHDs scalable to large data sets and able to provide multiple levels of
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information. In the remainder of this section we describe the general procedure

for generating visualizations within the IHD framework and provide details

on the interactive tools necessary for exploring data presented in this manner.

Note that because of the generality of the visualization mappings, one set of

interactive tools can be applied to a diverse set of hierarchical visualizations.

2.1 Visualization Within IHD

The following subsections describe the components of hierarchical visualiza-

tion: the clustering process and methods for describing cluster contents, the

visual representation of cluster descriptors, and the coloring scheme used to

represent cluster relationships. We feel that conveying structural relationships

between clusters is as important as providing users with the numeric contents

of the clusters, and we will use this relational information as a mechanism to

support navigation within a visualization as well as linkage between visualiza-

tions.

2.1.1 Hierarchical Cluster Tree

To overcome the problem of clutter on the display, the key strategy we employ

is to put fewer items on the screen. Thus we need to compress the data sets

while preserving their signi�cant features. Moreover, we prefer multiresolution

displays so that users can interactively select their preferred level of detail.

Given the above considerations, the procedure we follow is to construct a

hierarchical cluster tree for a data set and to provide visualization techniques

designed to convey this tree.
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A hierarchical cluster tree is typically formed by grouping objects based on

some measure of proximity between pairs of objects [10]. A number of clus-

tering algorithms have been proposed for building hierarchical cluster trees

of large data sets [1,8,23]. Since our IHDs are independent of the particular

choice of the clustering algorithms as long as it generates a hierarchical clus-

ter tree, we will not discuss further the actual algorithm to construct such a

tree. Rather we focus now on characterizing the properties of such a tree once

constructed.

A hierarchical cluster tree is constructed upon a data set. Each node Ti of the

hierarchical cluster tree presents a cluster. A non-leaf cluster is composed of

all its child clusters, while a leaf cluster contains only a single data item. A

hierarchical cluster tree structures and presents a large data set at di�erent

levels of abstraction. On extreme points, the collection of all leaf clusters

presents exactly every data item of the data set, while the root is a cluster

presenting the whole data set as one single node of the tree.

The following information may be directly obtained from a node Ti of the

cluster tree:

� ni : the number of data points enclosed, also called the population.

� mi : the mean of the data points.

� ei : the minimum and maximum bounds of the cluster for each dimension,

also called the extents.

� vi : a measure of the size of cluster Ti

� li : the tree depth or level at node Ti

Note that vi is a computed measure of the cluster size and satis�es the following
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criteria: If Ti is an ancestor of Tj, then

vi >= vj:

To visualize a data set at a certain level of detail (LOD), we display a subset

of clusters in its hierarchical cluster tree T on the screen, instead of all the

data in the data set (i.e., all leaves of the tree). We use the following approach

to get the subset of clusters. We �rst �nd the range of v within the data set:

vmax=max
Ti2T

fvig

vmin=min
Ti2T

fvig

Then we de�ne the LOD control parameter w 2 [vmin; vmax]. This then leads

to the de�nition of a cut S(w) of a tree at a given level of detail:

S(w)= f Ti j ( vi � w or Ti is a leaf node ) and

vparent(i) � wg

Note that S(vmax) is a single cluster representing the whole data set, namely,

the root, while S(vmin) is composed of all the leaf clusters representing every

data item in the data set. S(w) denotes the subset of clusters that we want to

display on the screen. S(w) changes smoothly with the LOD control parameter

w. S(w) can be intuitively envisioned as a horizontal cut across the hierarchical

cluster tree T that satis�es the following criteria: for each path from the root

to a leaf, S(w) intersects the path at exactly one point. The position of the

cut changes when w changes. The higher w is, the closer the cut is to the root

of the tree; the lower w is, the closer the cut is to the leaves of the tree.

The reason that we choose w as the LOD control parameter is that w is

continuous and thus provides smooth transitions on our hierarchical display.
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An example of a discontinuous LOD control parameter is the tree depth, whose

change can also cause S(w) to change. However, it is a poor choice in some

cases because the number of nodes may increase dramatically with depth. This

would manifest itself as abrupt screen changes as the LOD switches values at

higher depths of the tree.

As we will show later, with proper interactive tools to support drill-down/roll-

up operations, users can switch among di�erent levels of detail easily by chang-

ing the LOD control parameter w directly.

2.1.2 Meanpoint-Band Method

In our interactive hierarchical displays, we visualize subsets of clusters in the

hierarchical cluster tree on the screen instead of all the data in the data set.

Thus an importance issue is how to display the salient feature of clusters.

This ideally should happen in a manner consistent with the traditional display

technique already chosen by the user, so that the behavior of the hierarchical

display is predictable and familiar to the user. For this purpose, we introduce

the meanpoint-band method to draw clusters. This technique conveys several

essential features of the clusters, such as the mean and extents, while preserv-

ing all characteristics of the existing traditional display techniques.

The meanpoint in our context refers to the mean of a cluster. It is assigned

the color of its cluster, using the proximity-based coloring strategy described

in Section 2.1.3, and is displayed like an ordinary data item in traditional

(
at) displays. Surrounding a meanpoint we place a band that indicates the

extent of the respective cluster in each dimension. Bands look di�erent in

di�erent display techniques, but they always extend from the minimum to the
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maximum value in each dimension of the corresponding cluster and represent

all data items in the clusters. A band is also assigned the color of the cluster it

represents. To give the user a sense of the location of data points in a cluster

and to convey the overlap among clusters, unlike a meanpoint, which is solid,

a band is translucent. We assume that there is a linear drop-o� in the density

of cluster data from its center to the edge, and set the maximum opacity

proportional to the population.

Figure 2 is an example of a two-dimensional cluster showed by the meanpoint-

band method in a plot. The mean of this cluster is (x0; y0), the cluster range

in the X dimension is [x2; x1] and the cluster range in the Y dimension is

[y2; y1]. The distance from the meanpoint to the maximum value in the X

dimension equals to x1� x0, in Y dimension equals to y1� y0. The distance

from the meanpoint to the minimum value in X dimension equals to x0� x2,

in the Y dimension equals to y0�y2. When we mention the extent of a cluster,

we mean these distances.

The meanpoint-band method for data display has driven the development

of many of our interactive tools, such as extent scaling (Section 2.2.3) and

dynamic masking (Section 2.2.4). A key property of this solution is that it not

only helps establish coherence between a traditional display technique and its

hierarchical version, but also provides linkage between di�erent hierarchical

displays.

2.1.3 Proximity-Based Coloring

Cohesion (associating the components of a single data item) and linkage (as-

sociating multiple views of the same data item within a single visualization or
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between multiple visualizations) are common problems when analyzing mul-

tivariate data. Users may misinterpret data when examining a parallel coor-

dinates display, as the polylines representing them intersect each other at one

or more axes. It can also be diÆcult to track a data point across multiple

plots within a scatterplot matrix. Finally, a growing number of visualization

tools provide multiple displays of the same data, thus increasing the need to

provide e�ective linkage between views. One reason for the above problems

is that typically all data are displayed using the same color. Our solution

to these problems is to use color to distinguish di�erent data items and link

the same data item in di�erent views. Indeed, it is common to allow users

to map one or more data dimensions to the color attribute. In the context

of our interactive hierarchical displays, we have chosen color to convey rela-

tional information, namely those represented by the hierarchy. This gives us

the bene�ts of establishing cohesion and linkage as mentioned above, while at

the same time emphasizing the structural relationships between clusters and

establishing correspondences between the hierarchical cluster trees and the

interactive hierarchical displays.

We introduce a coloring strategy, called proximity-based coloring, to assign

colors to clusters in the hierarchical cluster tree. It maps colors by cluster

proximity based on the structure of the hierarchical cluster tree. It has the

following properties:

� sibling clusters have similar colors ( thus the name proximity-based coloring)

to depict the high proximity among the sibling clusters,

� a parent cluster has a color within the range of its children's colors to convey

that the parent cluster is composed of its children clusters,

� the color space is e�ectively utilized, i.e., there are no signi�cant parts of
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the color space to which no cluster is assigned, and

� di�erence in color between non-sibling clusters are readily discernible com-

pared to the di�erence between siblings.

The process of proximity-based coloring is to impose a linear order on all

the clusters in the hierarchical cluster tree and assign colors to each cluster

by indexing into a linear colormap table. The following algorithm [5] is an

example of the proximity-based coloring for a binary hierarchical cluster tree,

which is the simplest case.

� C() : the hue component of an HSV colormap. Alternate color maps are

possible as well.

� Ti : the node i of the hierarchical cluster tree.

� C(Ti) 2 [0; 1] : the color assigned to the node i of the hierarchical cluster

tree.

� T0 : the root of the tree.

� C(T0) : the color of the root.

For a binary hierarchical cluster tree, we can assign colors to its nodes based

on the following recursive formula:

C(T0)= 0:5

C(Ti)=C(parent(Ti)) +
�(i)

K li+1
(1)

where K is the branching factor of the cluster tree, li is the tree depth at node

Ti, and �(i) is the sign function de�ned as:

�(i)=

8<
:
+1 if i is odd

�1 if i is even
(2)
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This equation does not di�erentiate between adjacent elements (with respect

to the linear order) belonging to di�erent subtrees. It is important to dis-

tinguish between such elements because these adjacent elements are deemed

\signi�cantly separated" according to our proximity measure. For this, we re-

vise Equation (1) by introducing a \bu�er" between subtrees. The bu�er acts

as an unused color interval between subtrees so that elements at the proximal

ends of subtrees are not assigned colors that are indistinguishable. Clearly the

bu�er should be larger between large clusters and smaller otherwise.

Let b, where b < 1, be the desired bu�er interval. Let the revised de�nition

be:

C(Ti)=C(parent(Ti)) + �(i)
�
bli +

1

K li+1

�
(3)

Equation (3) achieves our desired purpose. We typically choose b to be small

with values around 10�1.

Discussion of more complex approaches to color assignment for non-binary

trees can be found in [5].

2.2 Interaction Within IHD

Having introduced the notion of the hierarchical cluster tree, proximity-based

coloring and the meanpoint-band display method, we now need to tackle the

problem of how to give the users the power to interactively perform their de-

sired tasks. We have developed several interactive tools, such as the structure-

based brush, drill-down/roll-up operations, extent scaling, and dynamic mask-

ing, to interactively explore the hierarchical displays. These are described be-
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low.

2.2.1 Structure-based Brush

Users often need to explore a particular subspace of interest after obtain-

ing an overview of the hierarchical structure. One way of achieving this is

though brushing. Brushing is a direct and data-driven metaphor. It is an in-

teractive process for selecting subsets of data or localizing a subspace within

an N-dimensional space [13,22,18]. Many useful operations, such as highlight-

ing, deleting, masking or aggregation, may be performed on elements that

lie within the selected hierarchical subspace. Brushing has traditionally been

performed in either screen space or data space. One example of brushing in

screen space is the use of rubber-banding rectangles; an example of brushing

in data space is interactively creating hyperboxes by painting over data points

of interest [13].

Since brushing has been shown to be useful, we want to develop ways to use

it in interactive hierarchical displays. However, brushing in screen space or

data space cannot perform necessary selection operations in our hierarchical

displays. Because the hierarchical cluster tree is highly structured, we have

developed the concept of a structure-based brush. A structure-based brush

allows users to select subsets of a data structure by specifying focal regions as

well as a levels-of-detail on a visual representation of the structure. Details of

the structure-based brush can be found in [7,5].

Figure 3 depicts a structure-based brush for hierarchically structured data.

The triangular frame represents the hierarchical cluster tree. The white poly-

line near the bottom of the display depicts the silhouette of the tree. It delin-
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eates the approximate shape formed by chaining the leaf nodes. The colored

bold contour across the middle of the tree delineates the tree cut S(w) that

represents the cluster partition corresponding to a level-of-detail w (Section

2.1.1). The colors on the contour correspond to the colors used for drawing

the nodes on the data display (Section 2.1.3). The two movable handles on

the base of the triangle, together with the apex of the triangle, form a wedge

in the hierarchical space.

Interaction with this brush entails localizing a subspace within the hierarchical

space by positioning the two handles at the base of the triangle. The embedded

wedge forms a brushed subspace within the hierarchical space. Elements within

the brushed subsets may be examined at di�erent levels-of-detail (Section

2.2.2), magni�ed and examined in full view, or masked or emphasized using

fading in/out operations (Section 2.2.4).

2.2.2 Drill-down/Roll-up Operations

Drill-down/roll-up operations allow users to change the level of detail of in-

teractive hierarchical displays intuitively and directly. Drill-down refers to the

process of viewing data at an increased level of detail, while roll-up refers to

the process of viewing data with decreasing detail [6]. When users perform

drill-down, the number of clusters in the display increases because accordant

clusters split into smaller clusters. Conversely, when users perform roll-up, the

number of clusters in the display decreases because the corresponding clusters

merge together and form larger clusters.

As mentioned in Section 2.1.1, the drill-down/roll-up operations work directly

by changing the LOD control parameter w, which causes S(w), the subset of
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the clusters displayed on the screen, to change in a smooth and continuous

manner (Section 2.1.1). We couple our drilling operations with brushing. Our

system permits selective drill-down/roll-up of the brushed and non-brushed

region independently. This 
exibility is important as it allows the viewing of

a subset of elements in varying levels of detail while maintaining the overall

context.

2.2.3 Extent Scaling

Though the bands of the clusters on the interactive hierarchical displays are

translucent, it is often diÆcult to isolate or to tell them apart when they

are overlapping. Moreover, it is possible that the users may want to see the

bands indicating the relative scale of the clusters but do not want to see them

covering a large portion of the screen.

One way to solve this problem is to decrease the extents of all the bands in

each dimension by scaling them uniformly via a dynamically controlled extent

scaling parameter E 2 [0; 1]. E a�ects the extents of the bands in this way:

bandExtenti =E � clusterExtenti (4)

where i refers to the identity of a cluster Ti, clusterExtenti refers to the

distances from the mean to the maximum and minimum value of cluster Ti in

each dimension, and bandExtenti refers to the distances from the meanpoint

to the maximum and minimum value of the band of cluster i in each dimension.

Extent scaling can be illustrated using the example in Figure 4, which shows

three two-dimensional clusters displayed using a scatterplot. The small circles

are meanpoints of the clusters while the blocks are the bands of the clusters.
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In the left plot, the bands of the clusters overlap. In the right plot, the overlaps

are eliminated by extent scaling. Compared to the left plot, the meanpoints

are not a�ected by the extent scaling, while the distance from the meanpoints

to the maximum and minimum value of the bands have been proportionally

reduced by E of 0.5.

By reducing E, the overlaps of the bands are reduced and the screen space

occupied by the bands shrunk. Though the extents of the bands no longer

re
ect the extents of the clusters when E is less than 1, they preserve the

relative proportions among the di�erent clusters. Thus the users can still dif-

ferentiate between clusters with large and small extents after the bands have

been scaled.

2.2.4 Dynamic Masking

Dynamic masking refers to the capability of controlling the relative opacity

between brushed and unbrushed clusters (Section 2.2.1). It allows users to

deemphasize or even eliminate brushed or unbrushed clusters. With dynamic

masking, the viewer can interactively fade out the visual presentation of the

unbrushed clusters, thereby obtaining a clearer view of the brushed clusters

while maintaining context regarding unbrushed areas. Conversely, the bands

of the brushed clusters can be faded out, thus obtaining a clearer view of

the unbrushed region. Used together with the structure-based brush, dynamic

masking reduces the overlapping and density of the clusters on the screen by

fading out uninteresting clusters so that users can concentrate on the clusters

of interest.

Figure 5 is an example of dynamic masking. It shows three two-dimensional
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clusters displayed using scatter plots. The small circles are meanpoints of the

clusters while the blocks are the bands of the clusters. In the left plot, the

bands of the clusters overlap signi�cantly. In the right plot, the yellow cluster

is masked since the user does not want to study it at the present time. Notice

that the band associated with the yellow cluster has been totally eliminated.

3 Four Hierarchical Display Techniques

We have extended four traditional multivariate visualization techniques, namely

parallel coordinates, star glyphs, scatterplot matrices, and dimensional stack-

ing, using the IHD framework. Below we outline how each of the four 
at

techniques can be generalized into a corresponding hierarchical display; the

key contribution is to convey the generality of our IHD concepts by showing

that they are readily applicable to a large variety of visualization techniques.

3.1 Hierarchical Parallel Coordinates

In the basic form (
at) of parallel coordinates [9,19](Figure 6), each dimen-

sion is represented as a uniformly spaced vertical axis. A data item in this

multidimensional space is mapped to a polyline that traverses across all the

axes.

We generate hierarchical parallel coordinates from basic parallel coordinates

using the meanpoint-band method. In the hierarchical parallel coordinates

(Figure 7), the clusters replace the data items. The mean of a cluster is mapped

to a polyline traversing across all the axes, with a band around it depicting the

extents of the cluster in each dimension. The lower edge of the band intersects
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each axis at the minimum value of its respective cluster in that dimension.

The upper edge of the band intersects each axis at the maximum value of

its respective cluster in that dimension. Obviously, if we draw each data item

included in that cluster, they will all be inside the band. Notice that even

if two polylines intersect each other at some axis, we can easily di�erentiate

them because they have di�erent colors. Figure 8 improves upon Figure 7 by

scaling the bands to reduce the overlaps among the clusters. Also, In Figure 8

we mask the brushed clusters so that users can concentrate on the unbrushed

clusters. In Figure 9, the brushed region and unbrushed region are of di�erent

levels of detail. The brushed region is at such a low level of detail that it forms

only two clusters with wide bands, while the unbrushed region is at a high

level of detail, enabling all the individual data items to be seen.

3.2 Hierarchical Glyphs

To visualize multivariate data with glyphs, each data point is represented by

an individual shape [2,3,14]. In a star glyph, the data values are mapped to

the length of rays emanating from a central point, and the ends of the rays

are linked to form a polygon(Figure 10). We can view these rays as axes, with

each axis representing a dimension. The directions of these axes are from the

center point to the outside.

Once again, we generated hierarchical star glyphs from the basic glyphs using

the meanpoint-band method. In hierarchical glyphs (Figure 11), each star

glyph represents a cluster. The mean values are used to generate the basic

star shape. The band around the mean polygon has two edges. One is outside

the mean polygon and another one is inside the mean polygon. The inside
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edge intersects each axis at the minimum value of its respective cluster in that

dimension, while the outside edge intersects each axis at the maximum value

of its respective cluster in that dimension. Obviously, if we draw a star glyph

starting from the same center point to present a data item included in that

cluster, this star glyph would be inside the band of that cluster. Thus the

band successfully depicts the extent of the cluster.

3.3 Hierarchical Scatterplot Matrix

In a scatterplot matrix (Figure 12), each data item is projected to N �N plots,

with N being the number of dimensions of the data set. The position of the

projected point in a plot is decided by the values of the data item in the two

dimensions that compose this plot.

We apply the meanpoint-band method to generate a hierarchical scatterplot

matrix (Figure 13), by displaying the clusters in the N �N plots. The mean of

a cluster is drawn as an ordinary data item in the 
at scatterplot matrix. The

extents of each cluster forms rectangles around the projected mean in each

plot. The projections of a cluster on di�erent plots are drawn in the same

color, which gives users the convenience of linking a cluster from one plot to

another. In the 
at form scatterplot matrix, all the data items have the same

color. Hence users can have diÆculty linking a data item when they move

from one plot to another. Figure 14 improves upon Figure 13 by scaling the

bands to reduce the overlaps. Also, the brushed clusters are masked. In Figure

15, the brushed region and unbrushed region are at di�erent levels of detail,

showing the terminal nodes of the unbrushed subtrees.
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3.4 Hierarchical Dimensional Stacking

Dimensional stacking [12] (Figure 16) displays an N dimensional data set by

recursively embedding pairs of dimensions within one another. Each dimen-

sion is descretized into a small number of subranges, and two dimensions are

initially selected to subdivide the display space into subimages whose size and

count depend on the number of subranges or bins used for those dimensions.

These subimages are subdivided based on the next two dimensions, and the

process repeats until all dimensions have been mapped. Thus the multivariate

space is split into a number of small cells that each map to a segment of the

screen. Each data item will fall into one of these small cells, and thus have an

assigned screen position.

In hierarchical dimensional stacking (Figure 17), the clusters replace the data

items. The mean of a cluster will fall into a single small block in the same way

as an ordinary data item in the 
at form dimensional stacking. The band of

this cluster depicting the cluster extents may potentially map to several bins.

This time it is possible that some parts of the band are disjoint from others due

to the embedding process, even though they are adjacent in N -dimensional

space. Proximity-based coloring helps users to fuse the disjoint components of

a particular cluster.

3.5 Towards More Hierarchical Display Techniques

The successful application of IHD principles to four rather diverse display tech-

niques illustrates very clearly how other hierarchical display techniques can be

generated from 
at display techniques. It should be relatively straightforward
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to repeat the same procedure on other multivariate visualization techniques.

Only the following steps are needed:

(1) Replace the data items in the 
at form display technique by the clusters,

(2) Draw the means of the clusters using a similar method as drawing data

items in the 
at technique, with the addition of proximity-based coloring,

and

(3) Draw opacity bands around the means to indicate the extents of the

clusters.

4 Implementation

As a proof of concept, we have developed a full implementation of the IHDs

as described in Section 2. In particular, we chose to build this prototype as

an extension to the XmdvTool system (http://davis.wpi.edu/~xmdv), a

freeware tool developed at WPI that incorporates four 
at display techniques

for visualizing and exploring multivariate data. Below we describe the basic

architecture of the IHDs as implemented in XmdvTool4.1.

4.1 IHDs in XmdVTool4.1

Figure 18 illustrates how IHDs are implemented in XmdvTool4.1. It is com-

posed of three modules, namely the hierarchical cluster tree module, the inter-

active navigation module, and the display module. The interactive navigation

module is in charge of all the interactive tools. The display module is respon-

sible for the display of all graphics on the screen. The hierarchical cluster

tree module serves as a data center that connects the interactive navigation
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module and the display module by operating on a shared set of objects.

4.2 Hierarchical Cluster Tree Module

The hierarchical cluster tree module can be viewed as the data management

center of the IHD framework. It is responsible for reading in the hierarchical

cluster �le, for constructing and managing the hierarchical cluster tree, for

providing all information the display module needs to display graphics, and

for maintaining the intermediate results of the interactive navigation module

for further navigation.

The hierarchical cluster tree module constructs a hierarchical cluster tree by

reading in a hierarchical cluster �le. For very large data sets that can no

longer be placed in main memory, the hierarchical cluster trees are kept in an

Oracle database for persistent storage. A discussion of this database back-end

is beyond the scope of this paper; interested readers are directed to [17].

Some display-oriented information comes directly from the cluster �le, such as

the index of a node's parent, the size, the extents of the cluster in all dimen-

sions, and the mean of all data items included in each cluster in the hierarchical

cluster tree. The hierarchical cluster tree module also stores additional infor-

mation, such as the color, the on/o� 
ag and the brushed/unbrushed 
ag for

each node of the hierarchical cluster tree. These are initialized immediately

after opening a new �le and will be changed during interactive navigation.

The on/o� 
ag indicates if the cluster belongs to the current subset of clus-

ters to be displayed on the screen. The brushed/unbrushed 
ag indicates if

the cluster is currently selected by the active structure-based brush. The ben-
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e�t of placing these 
ags with the hierarchical cluster tree is that the display

module can read all the information needed for displaying directly from the

hierarchical cluster tree data structure when refreshing the screen. Otherwise

the display module would have to regenerate them every time the screen needs

to be refreshed. For example, if there were no brushed/unbrushed 
ags in the

hierarchical cluster tree, the display module would have to recalculate which

clusters are selected by the structure-based brush every time the screen needs

to be refreshed, no matter if such a refresh was caused by the interactive nav-

igation or other reasons. Since we store these 
ags in the hierarchical cluster

tree, they need to be recalculated only when the brush is changed. The global

parameters such as the dynamic masking parameter and the extent scaling

parameter are also kept in this module. On one hand, they are global param-

eters that a�ect the display. On the other hand, they are intermediate results

of the interactive navigation module to facilitate further navigation.

The hierarchical cluster tree module keeps track of the impact of any actions

taken by the interactive tools. For example, the brushed/unbrushed 
ags of the

nodes typically change after the user manipulates the structure-based brush,

while the on/o� 
ags of the nodes are refreshed every time the drill-down/roll-

up operations cause the levels of detail to change. Similarly, the dynamic

masking parameter and the extent scaling parameter always re
ect the status

of the dynamic masking tool and extent scaling tool respectively.

4.3 Interactive Navigation Module

The interactive navigation module encapsulates all the interactive tools men-

tioned in Section 2.2. After every manipulation of any of the interactive tools,
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the interactive navigation module checks if this action should have any e�ect

on the display. If yes, it will inform the hierarchical cluster tree module. The

hierarchical cluster tree module then modi�es the hierarchical cluster tree ac-

cordingly. After that, the interactive navigation module requests a refreshing

of the display. This request causes the display module to read the updated

information from the hierarchical cluster tree module and output updated

graphics on the screen.

4.4 Display Module

The redraw of the output window will cause the display to be refreshed. In

addition, the interactive navigation module can purposely invoke a refresh of

the display. The task of the display module is to visually depict the currently

selected subset of clusters on the screen using the active display technique

every time the display needs to be refreshed. It gets all the needed information

from the hierarchical cluster tree module. Since the hierarchical cluster tree

module keeps track of any e�ect from the interactive tools, the display module

needs not concern itself with the interactive tools at all.

The display module gets the selected subset of clusters by reading in all the

nodes with "on" 
ags in the hierarchical cluster tree. The nodes with "o�"


ags are omitted since they are not in the selected subset to be displayed.

The nodes with "unbrushed" marks are displayed using their assigned colors.

The bands of the nodes with "brushed" marks are also displayed using their

assigned colors, but their means are displayed using a special highlight color

(red) to di�erentiate them from the unbrushed nodes.
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4.5 Discussion

The advantages of composing the IHDs via these three modules are obvious.

First, the display module does not need to consider the actions of the in-

teractive tools because the display module is separated from the interactive

navigation module by the hierarchical cluster tree module. Second, changing

the display technique will a�ect neither the interactive navigation module nor

the hierarchical cluster tree module because they both have nothing to do

with the display techniques. As a result, our system can be easily and 
exibly

extended to other display techniques besides the ones chosen for our current

implementation.

5 Evaluation

The goal of our evaluation was to assess if our proposed framework of inter-

active hierarchical displays is understandable by users, provides users with

e�ective help in exploring large data sets as compared to traditional 
at dis-

play techniques, and if interactive exploration tools such as the structure-based

brush are useful and e�ective. Since several di�erent multivariate visualization

techniques can be embedded within our IHD framework, we selected one of

them as a representative, namely, parallel coordinates, and then assessed it in

both hierarchical and 
at forms.
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5.1 Experimental Methods and Setup

Our hypothesis was that, in general, subjects using the hierarchical parallel

coordinates (HPC) could perform better in pattern �nding (including clusters

and outliers) of large data sets than subjects using the 
at parallel coordinates

(FPC). We expected a steeper learning curve of HPC than FPC since HPC is

more complex than its 
at counterpart. For one experiment, we simpli�ed our

test system to make available tools to the HPC and FPC subjects as compara-

ble as possible. In HPC, only structure-based brushing and dynamic masking

were provided to the subjects. In FPC, only data-driven brushing (painting

over data to highlight it across all dimensions) and hiding and showing brushed

versus unbrushed regions were available. We conducted two experiments in two

di�erent sessions, one with all subjects using HPC (HPC experiment) and the

other using FPC (FPC experiment). The task of the subjects in both exper-

iments was to �nd as many patterns as they could from the same data set

using the provided tools.

5.1.1 Subjects

All the subjects in this evaluation were graduate students of the Worcester

Polytechnic Institute. Two computer science major graduate students with

data mining background attended our pre-experiments. The other subjects

participated in either the HPC experiment or the FPC experiment (see Figure

19).

27



5.1.2 Materials and Setup

To begin, a presentation was given in both the HPC and FPC experiments

(this can be downloaded from our website at http://davis.wpi.edu/~xmdv).

Besides common aspects such as an introduction to multidimensional visual-

ization, parallel coordinates and the characteristics of patterns such as clus-

ters and outliers, the HPC presentation introduced HPC and structure-based

brushing while the FPC presentation introduced FPC and data-driven brush-

ing. The HPC presentation was 20 minutes longer than the FPC presentation

since it had more concepts to be introduced.

Both experiments used the Iris data set as the sample data set during the

presentation and demonstration, and the AAUP salary data set as the experi-

mental data set to be explored by the subjects. The Iris data set is a relatively

small data set, containing 4 dimensions and 150 data items. The AAUP data

set contains 14 dimensions and 1141 data items. Both are available from our

website at http://davis.wpi.edu/~xmdv.

Both experiments were conducted in the same lab, where each subject used

a Pentium III PC. The patterns found by the subjects were saved into the

local PC as pictures by the subjects themselves during the experiments and

collected together after the experiments.

5.1.3 Procedure

Each experiment was divided into a training session and an experiment session.

At the beginning of the training session, the presentation mentioned above was

given to the subjects. Printed copies of the presentation were handed out to
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the subjects before the presentation starting as a handy reference to be used

throughout the experiment. After giving the presentation, the coordinator

of the experiment presented the visualization system using a computer with

projection screen and demonstrated how to �nd patterns from the sample data

set using the provided tools and how to save images of the patterns. Then the

coordinator explained the meaning of the experimental data set. This session

took about 30 minutes for the FPC experiment and about 50 minutes for the

HPC experiment.

The experimental session was conducted immediately after the training ses-

sion. The subjects were led to a PC with the visualization system already

started. They were told to �nd and save as many patterns as they could in 30

minutes (they were given the option of working longer if they wanted). After

they �nished this step, they were asked to answer an exit questionnaire and

several open questions. Both experiments used the same questionnaire and

open questions.

Before the formal experiments, we conducted two pre-experiments. In the �rst

pre-experiment, a CS major graduate student with data mining background

went through the FPC experiment followed by the HPC experiment. We no-

ticed that he entered the pattern �nding role soon in the FPC experiment,

but kept wondering how to �nd patterns using the provided tools in the HPC

experiment. This led us to conclude that we needed to provide a pattern �nd-

ing strategy to the subjects of the HPC experiment. Then we designed such

a strategy:

(1) Keep the brushed region very small,

(2) Set the brushed region to the maximum level of detail while keeping the
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unbrushed region at a high level of abstraction,

(3) Move the brushed region around to search for patterns,

(4) After a cluster is located, slowly increase the brushed region to �nd more

data items belonging to the cluster until it is maximal,

(5) If the pattern appears to be an outlier, slowly increase the brushed region

to con�rm that no similar data items are around it.

Using another CS major graduate student, we performed a second similar pre-

experiment. The only di�erence from the �rst one was that the subject was

taught the above strategy during the training section of the HPC experiment.

This time the subject quickly entered the pattern �nding role in the HPC

experiment. Thus in the formal hierarchical parallel coordinates experiment,

we taught this strategy to all the subjects. The results of the pre-experiments

were not included in the experimental results.

5.2 Results and Discussion

Figure 20 shows the pattern �nding results of the HPC and FPC experiment.

The X axis of the �gure lists all the patterns found in the experiments sorted

by the average of the percentages of subjects that identi�ed this pattern. The

Y axis of the �gure indicates the percentage of subjects who found the spe-

ci�c pattern in the HPC experiment or the FPC experiment. The solid purple

curve and dashed blue curve represent the result of the HPC and FPC exper-

iment respectively. The fact that the HPC curve lies above the FPC curve for

most of the patterns means that higher percentages of subjects in the HPC

experiment found those patterns than the subjects in the FPC experiment.

This con�rms our hypothesis that in general, subjects using HPC are more
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e�ective in identifying patterns in large data sets than subjects using FPC.

When we checked the patterns in detail, we found that HPC subjects were

often looking for �ner patterns due to the pattern �nding strategy we recom-

mended to them. The FPC subjects only focused on the large clusters and

obvious outliers, since it is very diÆcult for them to �nd �ner clusters and

outliers hidden behind the overwhelming clutter of data. Actually, the FPC

subjects only performed better in six of all 25 patterns, which are all large

clusters or obvious outliers.

Figure 21 shows the average time interval the HPC and FPC subjects used

to �nd a pattern. A point(i, j) in this �gure means that the subjects used an

average time interval j to �nd their respective ith pattern. From the �gure we

can see that the HPC subjects used longer time to �nd their �rst two patterns.

Having grasped the tools, they then found patterns at a higher speed than the

FPC subjects. After the 9th pattern, their average speed of �nding a pattern

stayed below 3 seconds steadily. This indicates that HPC may help the subjects

�nd patterns better than 
at parallel coordinates once the subjects become

familiar with the tools.

Figure 22 shows the individual subjects' process of pattern �nding over time.

The Y axis of the �gures are the local times in the computers the subjects used.

The X axis of the �gures denotes the number of patterns saved by the sub-

jects. In the left chart each line represents a subject in the FPC experiment,

while in the right chart each line represents a subject in the HPC experi-

ment. It is obvious that there is a big variance of the subjects' performance

in the FPC experiment; the subjects with CS major and visualization or data

mining background performed much better than other subjects. But in the

HPC experiment, the variance is much smaller. Even more interesting, many

31



non-CS major students with no relevant background performed better than

some computer science major students with relevant background. A possible

explanation for this phenomenon is that with the help of HPC, the diÆculty

of exploring a data set is reduced so that the background of the users becomes

less important.

5.3 Open questions and Suggestions

The most interesting question among the open questions was \If you had

more time, do you think that you could �nd more patterns?" Two of the

eleven FPC subjects answered de�nitely no, and two others answered yes with

hesitation. The numbers of patterns they found were 6, 9, 7 and 7 respectively.

On the contrary, only one HPC subject answered no after he found 14 patterns.

Many HPC subjects said that they searched the hierarchical tree in a certain

direction and did not �nish the searching yet when the time for the experiment

had expired. They felt that they certainly could �nd more patterns if they

spent more time.

The patterns found by the HPC subjects showed that the pattern �nding

strategy we recommended to them encouraged them to �nd �ner clusters.

But some obvious large clusters of the data set were often omitted using this

strategy. We need to develop other HPC pattern �nding strategies to help

users grasp the overall trends of the data set, such as a top down strategy,

which starts from brushing large clusters at high levels of abstraction, then

gradually increases the level of detail and decreases the range of the brushed

region.
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The HPC subjects suggested that we make the structure-based brushing more


exible by allowing direct selection from the data display area. Also, they

wanted to control the range of the brushed region through textual input to

control it more exactly.

6 Related Work

In recent years, many research e�orts have focused on the problem of clutter

when visualizing large multivariate data sets.

Wong and Bergeron [22] constructed a multiresolution display using wavelet

approximations, where the data size is reduced by repeatedly merging neigh-

boring points. Their approach was to construct hierarchical structures using

the wavelet transform and view di�erent levels of detail interactively upon the

hierarchical structures. However, the wavelet transform requires the data to

be ordered, making it useful only for data sets with a natural ordering, such

as time-series data.

Another approach is to let the characteristics of the data set reveal them-

selves. For example, Wegman and Luo [20] suggest over-plotting translucent

data points or lines so that sparse areas fade away while dense areas appear

emphasized. The disadvantage of this method is that it relies on overlapping

points or lines to identify clusters. Clusters without overlapping elements will

not be visually emphasized.

Keim et al. [11] studied pixel-level visualization schemes which permit the

display of a large number of records on a typical workstation screen based on

recursive layout patterns. However, the number of displayable records is de-
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pendent on the size of the display area. This limitation restricts the scalability

of their method. Moreover, since each pixel only represents one variable, it is

diÆcult to convey the interactions among variables. We instead take a di�erent

approach of preserving the features of existing traditional display techniques

as much as possible, and addressing the clutter problem by abstracting the

data itself into several levels of detail.

Wills [21] describes a visualization technique for hierarchical clusters. His ap-

proach expands upon the tree-map idea [15] by recursively subdividing the

tree based on a dissimilarity measure. However, the main purpose is to dis-

play the clustering results, and in particular, the data partitions at a given

dissimilarity value.

Many ideas in our work come from these and other research e�orts. For exam-

ple, we use the idea of the multiresolution display [22] in the IHD framework,

while we uses hierarchical clustering [21] instead of the wavelet transform [22].

Inspired by Wegman and Luo [20], we use translucent-varying bands to indi-

cate the extent of the clusters in our work.

Our starting point for the IHDs is, of course, the hierarchical parallel coordi-

nates our team developed in 1999 [6,7]. The hierarchical parallel coordinates

extend the parallel coordinates display technique by using a multi-resolution

view of the data via hierarchical clustering. In this paper we generalized the

principles underlying the hierarchical parallel coordinates by developing the

general framework of IHDs from it. We then validated this framework by ap-

plying it successfully to the three other traditional 
at display techniques in

XmdvTool.
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7 Conclusions and Future Work

In this paper, we presented a framework (Interactive Hierarchical Displays) for

addressing the problem faced when attempting to visualize very large multi-

variate data sets. We described the full implementation of this framework and

its successful application to four traditional multivariate visualization tech-

niques. Our modular design allowed us to integrate new display techniques

without having to vary either the data structure or the interactive exploration

tools. This, we feel, validates the generality of the IHD framework. We also

conducted an empirical evaluation that veri�ed the e�ectiveness of the inter-

active hierarchical displays.

This work is part of an ongoing research project at WPI focusing on multivari-

ate visualization of large data sets. In the future, we want to further improve

the interactive exploration tools to make them more user-friendly and 
exi-

ble. We also want to improve the individual hierarchical display techniques to

make them more powerful. For example, we hope to research di�erent glyph

placement strategies to get a suitable placement algorithm for hierarchically

related glyphs. Finally, we are developing a suite of distortion techniques to al-

low users to selectively allocate more screen space to regions of interest, while

deemphasizing the remaining data without loss of context. We feel this will

be a powerful supplement to the IHD framework in facilitating exploratory

analysis of large data sets.
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CAPTIONS

Fig. 1. The clutter problem. A remotely sensed data set, obtained from Peter Kete-

laar, CSIRO Division of Exploration and Mining (size: 16384 data items, 5 dimen-

sions) visualized with parallel coordinates.

Fig. 2. A cluster shown by the meanpoint-band method in a 2-D plot. (a) The

meanpoint of the cluster; (b) The band of the cluster.

Fig. 3. Structure-based brushing tool. (a) Hierarchical cluster tree frame; (b) Con-

tour corresponding to current level-of-detail; (c) Leaf contour approximates shape

of hierarchical cluster tree; (d) Structure-based brush; (e) Interactive brush handles;

(f) Colormap legend for level-of-detail contour.

Fig. 4. Extent scaling. The left plot shows three two-dimensional clusters. The right

plot shows the same clusters after extent scaling.

Fig. 5. Dynamic masking. The left plot shows three two-dimensional clusters. The

right plot shows the same clusters after the yellow cluster is masked.

Fig. 6. Basic parallel coordinates. Fig. 7. Hierarchical parallel coordi-

nates. The brushed region is high-

lighted.
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Fig. 8. Hierarchical parallel coordi-

nates. The bands have been scaled

to reduce overlapping. The brushed

region has been masked.

Fig. 9. Hierarchical parallel coor-

dinates. The brushed region has a

lower level of detail while the un-

brushed region has a higher level of

detail.

Fig. 10. Basic star glyphs. Fig. 11. Hierarchical star glyphs.

Fig. 12. Basic scatterplot matrix. Fig. 13. Hierarchical scatterplot ma-

trix.

Fig. 14. Hierarchical scatterplot ma-

trix. The bands have been scaled to

reduce the overlapping. The brushed

clusters have been masked.

Fig. 15. Hierarchical scatterplot ma-

trix. The brushed region has a lower

level of detail while the unbrushed

has a higher level of detail.

Fig. 16. Basic dimensional stacking. Fig. 17. Hierarchical dimensional

stacking.

Fig. 18. The architecture of the IHDs in XmdvTool4.1

Fig. 19. Information about subjects in evaluation experiments. Prior background

indicates how many had prior exposure to visualization or data mining.

Fig. 20. Pattern Finding Results of the HPC and FPC Experiments
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Fig. 21. Average Time Interval in Pattern Finding

Fig. 22. Subjects' Process of Pattern Finding. **: CS student with relevant back-

ground; *: CS student; No Mark: non-CS student without relevant background
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Experiment No. Subjects CS-Majors Prior Background

HPC 9 5 2

FPC 11 9 5
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