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AbstractÐAesthetically appealing patterns are produced by the dynamical behavior of arti®cial neural
networks with randomly chosen connection strengths. These feed-forward networks have a single hid-
den layer of neurons and a single output, which is fed back to the input to produce a scalar time series
that is always bounded and often chaotic. Sample attractors are shown and simple computer code is
provided to encourage experimentation. # 1998 Published by Elsevier Science Ltd. All rights reserved

Dynamical systems modeled by nonlinear maps and

¯ows can produce an astonishing variety of aesthe-

tically appealing visual forms [1]. One such non-

linear map is an arti®cial neural network [2].

Neural networks o�er a number of advantages as

generators of interesting visual patterns: 1. Their

outputs are automatically bounded with the proper

choice of a squashing function. 2. Neural networks

are universal approximators [3] and hence are

capable of generating any pattern if they are su�-

ciently complicated. 3. There is a large literature on

the design, training, and behavior of neural net-

works. 4. Neural networks mimic the operation of

the human brain, and hence they are a natural

choice for emulating human-generated art. 5. In

principle, they can be trained to improve the quality

of their art, just as a human can be trained.

There are many possible neural network architec-

tures. The one used here is the feed-forward net-

work shown in Fig. 1. It has an input layer with D

elements (y1, y2, . . . ,yD) a hidden layer of N neurons

(x1, x2, . . .xN), and a single output y0. The network

is characterized by the equations:

xi � tanh
XD
j�1

wijyi

0@ 1A �1�

y0 � s
XN
i�1

bi xi �2�

where wij is a matrix of connection strengths

(weights), bi is a vector of connection strengths, and

s is a scaling factor, which could have been

absorbed into b s. The hyperbolic tangent in

Equation (1) is given by

tanh�u� � 1ÿ 2=�e2u � 1�: �3�
This squashing function is one of several that are

commonly used. It is bounded in the interval (ÿ1,
1) and anti-symmetric about the origin.

Networks of this type have been used extensively

for pattern recognition [4, 5]. For example, the

inputs might be the intensities of the pixels in a rec-

tangular box containing the image of a single nu-

merical digit (0, 1, . . .9), and the output could be

an analog signal close to the value of the digit.

Such a network would have to be trained by opti-
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Fig. 1. A feed-forward neural network with D inputs, N neurons, and a single output that is fed back
to the input.
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Figure 2. Sample neural network attractors.
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mizing wij and bi though back-propagation [6], and

the parameters D and N would have to be chosen

su�ciently large to give the network adequate intel-

ligence but not so large that computation is inordi-

nately slow.

Rather than use the network to recognize a pat-

tern, the goal is to produce a pattern. For this pur-

pose it is necessary to add feedback so the network

becomes a dynamical system, producing an unlim-

ited sequence of values at its output y0. One way to

add such feedback is to let the input values rep-

resent a sequence of previous values of the function

y, with y1 being the most recent, y2 the second most

recent, and so on. With each iteration of the net-

work, y0 replaces y1, y2 replaces y3, etc., and yD is

discarded. Thus y is a scalar dynamical variable

whose value is uniquely determined by its D prede-

cessors, where D is the time-delayed embedding

dimension. However, rather than plotting successive

values of y, x will be used as the dynamical vari-

able. This has the virtue that the variables to be

plotted are always in the range (ÿ1, 1) and one can

independently control the number of variables to be

plotted (N) and the embedding dimension (D).

For the cases shown values of w are random and

uniform over the interval (ÿ1, 1) and the values of

b are random and uniform over the interval (0, 1).

For each image the weights are chosen initially and

held ®xed throughout the calculation. N was chosen

as 4 so that two of the values may be used as the

horizontal and vertical coordinates, one of the

values as the height (displayed as a shadow below

and to the right), and the fourth to map linearly to

a palette of colors. The palette used in the images

here is just a sinusoidal variation of red, green, and

blue, with phases 120 degrees apart to produce a

color rainbow. Initial conditions were chosen with

all y values equal to 0 and all x values equal to 0.5.

The ®rst few thousand iterates were discarded to

help ensure that the orbit has converged to the

attractor. The cases shown have either D= 16 and

s = 0.5, or D= 32 and s= 0.25. If s is too small

the network behaves linearly, resulting in an orbit

that usually settles to a ®xed point. If s is too large

the neurons are driven into saturation and the

dynamics is a cyclic sequence of points.

Intermediate values give the most interesting

dynamics and produce chaotic solutions with a

probability that approaches 100% in the limit of

large D [7], albeit with small values of their largest

Lyapunov exponent. For the values chosen, cyclic

points, limit cycles, tori (quasi-periodic orbits), and
chaotic (strange) attractors occur with roughly

equal frequency. The cyclic points and limit cycles
are discarded by simply imposing a criterion on the
minimum number of screen pixels that must be vis-

ited by the orbit. Typically, the calculation is termi-
nated and restarted with new connection strengths
if more than 90% of the points fall on previously

visited screen pixels.
A fully operational computer program that car-

ries out the steps outlined above is given in the

Appendix.{ The program should run without modi-
®cation under Microsoft QBASIC, QuickBASIC,
and VisualBASIC for MS-DOS. It assumes VGA
(320�200-pixel, 256-color) graphics. The images in

Fig. 2 were produced with an enhancement of this
program that di�ers only in that it uses a screen
resolution of 1024� 768{ and it saves each image to

a graphics (PCX) ®le with a randomly chosen ®le
name. Figure 3 shows a variety of other cases pro-
duced by the program.} These images each have

one million iterations and were selected from sev-
eral thousand cases that were produced in several
overnight runs on a 200 MHz Pentium Pro compu-

ter. Most of these cases are tori or very weakly
chaotic strange attractors.
There are many ways in which this technique

could be extended. The color palette could be

manipulated in more imaginative ways. For
example, with two additional neurons, the red,
blue, and green values could be controlled by separ-

ate neurons. The 8-bit graphics could be extended
to 24-bits or higher. The hyperbolic tangent could
be replaced with a di�erent function such as the

anti-symmetric logistic function,

L�u� � 4u�1ÿ juj�: �4�
Di�erent architectures could be explored such as

vector networks with a matrix of b s and D outputs,
each fed back to its respective input, or networks
with more than one layer of neurons, or networks
with neurons not arranged in layers or connected

asymmetrically.
The networks explored here are completely

untrained. Thus the patterns resemble what might

be produced by a child or perhaps by a monkey
with a paintbrush. An interesting project would be
to quantify the aesthetic quality of the patterns and

train the networks to produce additional images
that would be more appealing than those produced
using random weights. Such a human±computer

collaboration foretells the kind of interactions that
we can expect to become increasingly common as
computers become more powerful and people ®nd
more imaginative uses for them.

AcknowledgementsÐI am grateful to Dee Dechert and
Dave Albers for many useful discussions of neural net
dynamics and to Cli� Pickover for printing the ®gures.

{Also available on the World Wide Web at http://
sprott.physics.wisc.edu/software.htm.

{High-resolution graphics drivers for QuickBASIC and
other languages are available from Zephyr Software, P.O.
Box 7704, Austin, Texas 78713-7704.

}Additional images of this type can be found on the
World Wide Web at http://sprott.physics.wisc.edu/fractals/
neural/
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