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Abstract

The optimization of batch processes has attracted attention in recent years because, in the
face of growing competition, it is a natural choice for reducing production costs, improving
product quality, meeting safety requirements and environmental regulations. The main bottle-
neck in using optimization in industry is the presence of uncertainty. The most natural way
to compensate for uncertainty, and thus to improve process operations, is through the use of
measurements. This forms the subject of this series of two papers.

In this first part, the optimal input profiles are expressed in terms of arcs and switching times,
of which some push the system to the constraints of the problem while the others exploit the
intrinsic compromise present in the system for the purpose of optimality. Such a characterization
improves considerably the interpretability of the solution, enhances the numerical efficiency, and
acts as a necessary first step towards a measurement-based optimization framework.

Keywords: Dynamic optimization, Optimal control, Batch processes, Chemical reactors, Biore-
actors.

1 Introduction

Batch and semi-batch processes are of considerable importance to the fine chemicals industry.
A wide variety of specialty chemicals, pharmaceutical products, and certain types of polymers are
manufactured in batch operations. Batch processes are typically used when the production volumes
are low, when isolation is required for reasons of sterility or safety, and when the materials involved
are difficult to handle. With the recent trend in building small flexible plants that are close to the
markets of consumption, there has been a renewed interest in batch processing [45].
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1.1 Characteristics of Batch Processes

In batch operations, all the reactants are charged in a tank initially and processed according to
a predetermined course of action during which no material is added or removed. In semi-batch
operations, a reactant may be continuously added with no product removal, or a product may be
removed continuously with no reactant addition, or a combination of both. From a process systems
point of view, the key feature that differentiates continuous processes from batch and semi-batch
processes is that continuous processes have a steady state whereas batch and semi-batch processes
are inherently time-varying in nature [11]. This paper considers batch and semi-batch processes in
the same manner and, thus, the term ‘batch processes’ includes semi-batch processes as well.

Schematically, batch process operations involve the following main steps [66, 2]:

• Elaboration of Production Recipes: The chemist formulates the chemical synthesis in the
laboratory. The recipes provide the range of concentrations, flowrates or temperatures for
which the desired reaction and/or separation can take place and the batch operation is feasible.
This development step is specific to the product being manufactured [4] and will not be
addressed here.

• Capacity Planning and Scheduling: Once a recipe has been formulated, the next step is to
make its operation profitable in the existing plant by allocating the required operations to a
set of available equipments and by scheduling the individual operations to meet the demand
for a set of products. The reader interested in planning and scheduling operations is referred
to the following articles [67, 27, 36, 64].

• Safe and Efficient Production: This step consists of ensuring the performance of an individual
unit or group of units by adjusting the process variables within the range provided by the
recipes. The optimization of this step is particularly important in order to meet safety
[30, 83, 1] and operational constraints [61, 69]. Due to the time-varying nature of batch
processes, the optimal values of the process variables need to be adjusted with time. Hence,
it involves the rather difficult task of determining time-varying profiles through dynamic
optimization.

1.2 Dynamic Optimization in Industry

From an industrial perspective, the main processing objective is of economic nature and is stated
in terms such as return, profitability or payback time of an investment [37, 3, 24]. In the face
of increased competition, process optimization is a natural choice for reducing production costs,
meeting safety requirements and environmental regulations, improving product quality, reducing
product variability, and ease of scale-up [48, 11].

Though the potential gains of optimization could be significant, there has been only a few attempts
to optimize operations through mathematical modeling and optimization techniques. The recipes
developed in the laboratory are implemented conservatively in production, and the operator uses
heuristics gained from experience to adjust the process periodically, which might lead to slight im-
provements from batch to batch [88]. The implications of the current industrial situation regarding
the choice of an appropriate optimization approach is presented in [12]. The stumbling blocks for
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the use of mathematical modeling and optimization techniques in industrial practice have been the
lack of:
• Reliable Models: Reliable models have been difficult or too costly to obtain in the fast chang-

ing environment of batch processing. Modern software tools such as Aspen Plus, PRO/II, or
gPROMs have found wide application to model continuous chemical processes [46, 55]. The
situation is somewhat different in batch chemistry. Though batch-specific packages such as
Batch Plus, BATCHFRAC, CHEMCAD, BatchCAD, or BaSYS are available, they are not
generally applicable. Especially the two important unit operations, reaction and crystalliza-
tion, represent a considerable challenge to model at the industrial level.

• Reliable Measurements: Traditionally, batch processes have been operated with very little
instrumentation. The measurements that could possibly compensate for the uncertainty in
the models have simply not been available. Nevertheless, there is a clear indication that
recent advances in sensor technology are helping remove the first handicap mentioned above.
Developments in chromatographic and spectroscopic sensors enable near on-line (i.e., with
minimum time delay) estimation of chemical composition in reacting mixtures [52, 47]. As
an example of new and promising developments, rugged NIR spectroscopic sensors can be
used to monitor the performance in industrial chemical reactors. The physical measurements
(absorbance or reflectance) extend over several hundred wavelengths and are rather specific
with respect to chemical composition.

Even when it is assumed that reliable models and measurements are available, from the authors’
perspective there exist two reasons for the non-penetration of optimization techniques in the in-
dustrial environment:
• Interpretability of the Optimal Solution: Optimization is typically performed using a process

model and an optimization routine is considered as a black box. Since the resulting optimal
solution may not be easy to interpret, it is difficult to convince industry to use such a profile.

• Measurement-based Optimization Framework: The theory of optimization available in the lit-
erature is model-based, and very little study has been devoted to incorporating uncertainty
and measurements into the optimization framework. So, a framework which uses measure-
ments rather than a model of the process for implementing the optimal solution would be
very welcome.

This series of two papers addresses the last two issues mentioned above. The present paper deals
with the nominal optimal solution for which a characterization is proposed that improves inter-
pretability. The companion paper addresses the issue of optimization under uncertainty. It is shown
therein that a simplified tendency model and a few available measurements can be used effectively
in a so-called measurement-based optimization framework.

1.3 Organization of the Paper

The paper is written in a tutorial style. Various problem formulations for the dynamic optimization
of batch processes are presented in Section 2. Analytical and numerical solution methods are
discussed in Sections 3 and 4 respectively. The characterization of the optimal solution is performed
in Section 5. Section 6 presents a series of examples to illustrate the theory, and conclusions are
drawn in Section 7.
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2 Problem Formulations

In batch process operations, the process variables undergo significant changes during the duration
of the batch. There is no steady state and thus no constant setpoint around which the process can
be regulated. Hence, the major objective in batch operations is not to keep the system at an optimal
constant setpoint but to optimize some objective function that expresses the system performance.
Optimizing an objective function amounts to, for example, achieving a desired product quality at
the most economical cost, or maximizing the product yield for a given batch time.

The optimization is performed in the presence of constraints. In addition to the dynamic system
equations acting as constraints, there may be bounds on the inputs as well as state-dependent
constraints. Input constraints are dictated by actuator limitations. For instance, non-negativity of
flowrates is a common input constraint. State-dependent constraints typically result from safety or
operability considerations, such as limits on temperature and concentrations. Terminal constraints
normally arise from selectivity or performance considerations. For instance, if multiple reactions
occur in a batch reactor, it might be desirable to force the final concentrations of some species
below given limits to facilitate or eliminate further downstream processing. Thus, batch optimiza-
tion problems involve both dynamic and static constraints and fall under the class of dynamic
optimization problems.

The mathematical formulation of the optimization problem will be stated first. The problem will
then be reformulated using Pontryagin’s Minimum Principle and the principle of optimality of
Hamilton-Jacobi-Bellman. The advantages of one formulation over another depend primarily on
the numerical techniques used. Thus, a comparison of the different formulations will be postponed
until the discussion of the numerical solution approaches in Subsection 4.4.

2.1 Direct Formulation

Dynamic optimization problems were first posed for aerospace applications in the 1950s to min-
imize a combination of terminal and integral cost functions. These problems can be formulated
mathematically as follows [38, 34, 14]:

min
u(t)

J = φ(x(tf )) (1)

s.t. ẋ = F (x, u), x(0) = x0 (2)
S(x, u) ≤ 0, T (x(tf )) ≤ 0 (3)

where J is the scalar performance index to be minimized, x the n-vector of states with known
initial conditions x0, u the m-vector of inputs, S the ζ-vector of path constraints (which include
state constraints and input bounds), T the τ -vector of terminal constraints, F a smooth vector
function, φ a smooth scalar function representing the terminal cost, and tf the final time.

The problem formulation (1)–(3) is quite general. Even when an integral cost needs to be con-
sidered, e.g., J = φ̄(x(tf )) +

∫ tf
0 L(x, u)dt, where L a smooth function representing the inte-

gral cost, it can be converted into the form (1)–(3) by the introduction of an additional state:
ẋcost = L(x, u), xcost(0) = 0, which results in the terminal cost J = φ̄(x(tf )) + xcost(tf ). Let J∗
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be the optimal cost of (1)–(3). It is interesting to note that the minimum time problem with the
additional constraint φ(x(tf )) ≤ J∗, i.e.,

min
tf ,u(t)

tf (4)

s.t. ẋ = F (x, u), x(0) = x0 (5)
S(x, u) ≤ 0, T (x(tf )) ≤ 0 (6)
φ(x(tf )) ≤ J∗ (7)

will lead to exactly the same optimal inputs as (1)–(3), though the numerical conditioning of the
two problems, (1)–(3) and (4)–(7), may differ considerably. The equivalence of solutions is verified
using the necessary conditions of optimality (see next subsection). So, without loss of generality,
the final time will be assumed fixed in this paper.

2.2 Pontryagin’s Formulation

Using Pontryagin’s Minimum Principle (PMP), the problem of optimizing the scalar cost functional
J in (1)–(3) can be reformulated as that of optimizing the Hamiltonian function H(t) as follows
[58, 14]:

min
u(t), µ(t), ν

H = λTF (x, u) + µTS(x, u) (8)

s.t. ẋ = F (x, u), x(0) = x0 (9)

λ̇T = −∂H
∂x

, λT (tf ) =
∂φ

∂x

∣∣∣∣
tf

+ νT
(
∂T

∂x

)∣∣∣∣
tf

(10)

where λ(t) �= 0 is the n-vector of adjoint states (Lagrange multipliers for the system equations),
µ(t) ≥ 0 the ζ-vector of Lagrange multipliers for the path constraints, and ν ≥ 0 the τ -vector of
Lagrange multipliers for the terminal constraints. The Lagrange multipliers µ and ν are nonzero
when the corresponding constraints are active and zero otherwise so that µTS(x, u) = 0 and
νTT (x(tf )) = 0 always. The necessary condition of optimality is Hu = ∂H

∂u = 0, which implies that
x, u, λ, µ, and ν exist such that the following equalities hold:

ẋ = F (x, u), x(0) = x0 (11)

λ̇T = −∂H
∂x

= −λT ∂F
∂x
− µT

∂S

∂x
, λT (tf ) =

∂φ

∂x

∣∣∣∣
tf

+ νT
(
∂T

∂x

)∣∣∣∣
tf

(12)

µTS = 0, νTT = 0 (13)
∂H

∂u
= λT

∂F

∂u
+ µT

∂S

∂u
= 0 (14)

2.3 Hamilton–Jacobi–Bellman formulation

The Hamilton–Jacobi–Bellman (HJB) formulation transforms the problem of optimizing the scalar
cost functional J in (1)–(3) into the resolution of a partial differential equation by utilizing the
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principle of optimality [34, 14]:

∂V (x, t)
∂t

+ min
u(t),µ(t),ν

(
∂V (x, t)

∂x
F (x, u) + µTS(x, u)

)
= 0 (15)

V (x(tf ), tf ) = φ(x(tf )) + νT T (x(tf ))

where V (x, t) is the return function or, equivalently, the minimum cost if the system has the state
x at time t ≤ tf . The link between the PMP and HJB formulations is that the adjoints are the
sensitivities of the cost (return function) with respect to the states:

λT =
∂V

∂x
(16)

The term to be minimized in (15) is the Hamiltonion H. Thus, the partial differential equation
(15) represents the time evolution of the adjoints (10):

λ̇T =
d

dt

∂V

∂x
=

∂

∂x

∂V

∂t
= −∂Hmin

∂x
(17)

where Hmin is the minimum value of the Hamiltonian.

3 Analytical Solution Methods

A complete analytical solution for the optimization problem (1)-(3) is not feasible except for very
simple cases. However, analytical expressions can be computed for pieces of the optimal solution,
which in turn can be used to: i) understand the types of arcs that can constitute the solution, and
ii) enhance the efficiency of the numerical optimization algorithm.

In dynamic optimization problems, the optimal values of the manipulated variables are either
determined by the constraints of the problem or by the compromises present in the system. So,
there are certain intervals in time during which the inputs are determined by path constraints
and other intervals where they are in the interior of the feasible region to take advantage of the
compromise. The time at which the inputs switch from one interval to another is called a switching
time. Thus, the optimal solution is seen to possess the following properties:

• The inputs may be discontinuous; yet in between discontinuities the inputs are analytic [14].

• Two types of intervals are possible between switching instants depending on whether or not
the solution is determined by active path constraints; analytical expressions for the inputs
can be obtained for each type of intervals.

3.1 Piecewise Analytical Expressions for the Optimal Inputs

Analytical expressions for the inputs can be obtained from the necessary condition of optimality
based on PMP. The results presented here extend those provided in [53, 54, 59] for single-input
control-affine systems.
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Consider the necessary condition of optimality for input ui:

Hui =
∂H

∂ui
= λT

∂F

∂ui
+ µT

∂S

∂ui
= λT Fui + µT Sui = 0 (18)

Hui has two parts, the system dependent part λTFui and the constraints dependent part µTSui .
When λTFui �= 0 in a certain interval, then equation (18) requires µ �= 0 in that interval. So, one
of the path constraints is active, and the input ui can be inferred from the active constraint.

For example, when only bounds on the input ui are considered, i.e., ui−ui,max ≤ 0 and ui,min−ui ≤
0, then since µ ≥ 0:

ui =




ui,max for λTFui < 0
? for λTFui = 0
ui,min for λTFui > 0

(19)

For the case λTFui = 0, it might be possible to obtain ui as a function of x and λ from this condition.
However, it may also happen that λTFui is independent of ui as is the case in control-affine systems,
i.e, F (x, u) = f(x) +G(x)u, for which Fui = Gi(x) is independent of u.

3.1.1 Differentiation of Hui

When λTFui = 0 and ui cannot be obtained directly from this condition, the following idea is used.
Since Hui = 0 for all t, its time derivatives d j

dt j
Hui = 0, ∀j ≥ 0. Differentiating (18) once with

respect to time leads to:

dHui

dt
= λ̇TFui + λT

(
∂Fui
∂x

ẋ+
∂Fui
∂u

u̇

)
+

ζ∑
j=1

(
µ̇j
∂Sj
∂ui

+ µj
d

dt

∂Sj
∂ui

)
(20)

The summation term in (20) stems from the path constraints and is equal to zero as shown next.
From (18) and λTFui = 0, µTSui = 0 during the interval which leads to two possibilities: (i) the
constraint Sj(x, u) is not active and µj = 0; also, µ̇j = 0 since µj = 0 over an interval, and so the
two terms of the summation are zero; (ii) Sj(x, u) is active. This implies µj �= 0 but ∂Sj

∂ui
= 0 to

satisfy µTSui = 0. Also, d
dt
∂Sj
∂ui

= 0 since ∂Sj
∂ui

= 0 over an interval, and so the two terms of the
summation are zero. Thus, the summation in (20) can be dropped. Using (11)-(12) for ẋ and λ̇
gives:

dHui

dt
= λT

(
∂Fui
∂x

F − ∂F

∂x
Fui +

∂Fui
∂u

u̇

)
− µT

∂S

∂x
Fui (21)

= λT∆Fui − µT
∂S

∂x
Fui (22)

where the operator ∆ is given by:

∆v =
∂v

∂x
F − ∂F

∂x
v +

∞∑
k=0

∂v

∂u(k)
u(k+1) (23)
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with u(k) representing the kth time differentiation of u. The summation is introduced in (23) since,
in general, v is not only a function of u but also of its time derivatives. The operator ∆ represents
the time differentiation of a vector function v along the trajectories of the dynamic system (2) and
is studied in the systems literature using tools of Lie algebra.

Continuing in a similar manner, it can be shown that the successive time derivatives of Hui are
given by:

d jHui

dt j
= λT∆jFui − µT

∂S

∂x
∆j−1Fui = 0 (24)

Note that ∆2 v = ∆(∆ v), etc. The time derivatives inherit the structure of Hui and have two
parts as well, the system dependent part and the constraints dependent part. Time differentiation
is repeated until either λT∆jFui �= 0 or ui appears explicitly in ∆jFui . This gives rise to two
intrinsically different solutions that are discussed below:

1. Active path constraints: If λT∆ςiFui �= 0 after the ςi
th time differentiation of Hui , a

nonzero µ is required to satisfy (24). This implies that at least one of the path constraints is
active. Though different choices of µ are possible to satisfy d ςi

dt ςiHui = 0, the non-negativity of
µ restricts this choice. Furthermore, since only one of the constraints will be active, i.e., the
most restrictive of the possible constraints, µ will indicate the constraint from which the input
ui can be determined. To compute the optimal input ui, the active constraint needs to be
differentiated ςi times. This means that only those constraints which have relative degree ςi
can be active. Recall that the relative degree of S(x, u) is the number of time differentiations
of S(x, u) that are necessary for the input ui to appear explicitly [53, 14].

2. Solution in the interior of the feasible region: If λT∆σiFui = 0 but ui appears explicitly
in ∆σiFui , the input ui can be determined as a function of the states and adjoints from the
conditions λT∆jFui = 0, for j = 0, 1, · · · , σi 1.

Let ρi be the dimension of state space that can be reached by manipulating ui. This means
that (n − ρi) directions in x are not affected by the input ui and, conversely, there exist
(n − ρi) directions in λ that do not affect ui. Also, since the adjoints enter linearly in
λT∆jFui = 0, as many adjoint variables as there are conditions (i.e., σi+1) can be eliminated.
Thus, among the n adjoint variables, (n− ρi) can be eliminated due to the above mentioned
independence and (σi + 1) from the optimality conditions. So, the optimal input ui will
depend on n− (n− ρi)− (σi + 1) = (ρi − σi − 1) adjoint variables.

The following classification can be made depending on the relative values of σi and ρi:

• σi < ρi − 1: The optimal input ui depends on (ρi − σi − 1) adjoint variables, for
the computation of which differential equations need to be solved. So, the feedback is
dynamic in nature.

• σi = ρi − 1: The optimal input is independent of the adjoint variables. This leads to a
feedback which is static in nature.

• ρi − 1 < σi <∞: This corresponds to the system being on a surface, where the relative
degree of the surface with respect to ui is (σi + 1− ρi).

1Some authors use the order of singularity, σi, which is the number of time differentiations of Hui required for the
input ui to appear explicitly [35, 53] while others use the degree of singularity, si, which is the highest time derivative
which is still independent of the input. Thus, si = σi − 1 [53, 54]
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• σi = ∞: If ρi = n, the input ui is determined by active path constraints [8]. If ρi < n,
then, depending on the cost function, the optimal input ui is either on the active path
constraints or is non-unique [5].

Though an analytical expression is provided for the optimal input ui, the expression may depend
on uj , j �= i. Thus, a set of coupled dynamic equations may have to be solved in order to determine
the input vector u.

3.1.2 Adjoint-free Input Computation

When the input ui is computed from an active constraint or when it is in the interior of the feasible
region with σi ≥ (ρi − 1)), the optimal solution does not depend on the adjoint variables. To
obtain the optimal input independently of λ even when σi < (ρi − 1), the following idea is used.
Instead of stopping the differentiation of Hui when ui appears explicitly in dσi Hui

dtσi , it is continued
till the (ρi − 1)th differentiation. Thus, using the conditions ∆jFui = 0, for j = 0, 1, · · · , ρi − 1,
all the adjoint variables can be eliminated. However, the optimality conditions will also depend on
the derivatives of ui up to the order (ρi − σi − 1). So, a system of differential equations of order
(ρi−σi−1) needs to be integrated to compute the optimal feedback, the initial conditions of which
constitute additional decision variables.

3.1.3 Adjoint-free Analysis of the Types of Arcs

Though the knowledge of the adjoint variables is crucial to determine whether the solution is on
active constraints or in the interior of the feasible region, the optimal inputs can be computed
independently of the adjoints in each interval. This leads to the idea of analyzing the system
equations and the path constraints without involving the cost or the adjoint equations, to decipher
the types of arcs that can exist in the solution. However, this analysis is conservative in the
sense that it provides all possible types of arcs that might occur and not those actually present.
Therefore, though the analysis might indicate the possibility of having the solution in the interior
of the feasible region, it might happen that, for the given optimization problem, the solution is
always determined by the path constraints. Another disadvantage is that it does not provide the
sequence of arcs.

1. Active path constraints: Each path constraint Sj(x, u) is differentiated along the trajec-
tories of (2) as illustrated below:

dSj
dt

=
∂Sj
∂x

F +
∂Sj
∂u

u̇ (25)

Time differentiation of Sj(x, u) is continued until the input ui appears in d ςijSj
dt ςij

. ςij = ∞
indicates that the input ui does not influence the constraint Sj , and thus, ui cannot be be
determined from Sj . In contrast, when ςij < ∞, the input ui obtained from d ςijSj

dt ςij
= 0

constitutes a possible optimal input.
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2. Solution in the interior of the feasible region: To analyze the solution within the
feasible region, Fui is differentiated along the trajectories of (2) as in (24). Consider the
matrix

Mi =
[
Fui

... ∆1Fui
... · · · ... ∆ρi−1Fui

... · · ·
]

(26)

The differentiation is not stopped when ui appears explicitly in ∆σiFui , but continued until
the structural rank of Mi does not augment any further. In fact, ρi, which is the dimension
of state space that can be reached by manipulating ui, is the structural rank ofMi.

The rank ofMi is a function of the states and the inputs. The optimal input ui not being on
active path constraints or, equivalently, being in the interior of the feasible region corresponds
to the rank of Mi being lower than its structural rank. The four cases for the value of σi
discussed above can be revisited in this context. When σi < ρi−1,Mi loses rank for a specific
combination of x, u, u̇, · · · , u(ρi−σi−1), while for σi = ρi− 1, the rank loss is for a combination
of x and u only. In the case when σi > ρi − 1, the rank of Mi depends only on x, and for
σi =∞,Mi does not lose rank at all.

If ρi = n, the optimal input ui is obtained from the condition det(Mi) = 0. If ρi < n, then,
by an appropriate transformation of the states, it can be arranged that only the first ρi states
of the system are influenced by ui. In such a case, the determinant of the submatrix of Mi

consisting of the first ρi rows can be used to compute the optimal input.

The optimal input being in the interior of the feasible region corresponds to physical compromises
and tradeoffs intrinsic to the system. The fact that there are no intrinsic tradeoffs is represented by
the condition σi =∞ and is important for practical applications. This guarantees that the optimal
solution is always on the path constraints. These conditions are satisfied in controllable linear
systems, feedback-linearizable systems, flat systems, and involutive-accessible systems, a category
which encompasses many practical systems [53, 8].

3.1.4 Control-affine Systems

When the system is control affine, i.e., F (x, u) = f(x) + G(x)u, the inputs cannot be obtained
directly from (18). Control-affine systems are quite common in batch chemical processes, where
the manipulated inputs include flowrates of hot and cold fluids, and flowrates of reactants.

In the literature on optimal control of control-affine systems, the intervals where the inputs cannot
be obtained directly from (18) are referred to as singular intervals [14]. In contrast, intervals
where the inputs are computed from (18) are referred to as nonsingular intervals. When the path
constraints are state-independent (typically, bounds on the inputs), a nonsingular interval implies
that the optimal solution is determined by the input bounds, and a singular intervals implies that
the optimal solution is inside the feasible region. This analogy does not hold in the presence of
state-dependent path constraints (there exist singular intervals where the inputs are determined
by path constraints) and when the dynamics do not possess the control-affine structure (there
exist nonsingular intervals where the inputs are inside the feasible region). So, instead of using
the singular/nonsingular terminology, which is widely used in the community dealing with control-
affine systems, the discussion here focuses on whether or not the inputs are determined by the
active path constraints.
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3.1.5 Limitation of the Analytical Approach

The main disadvantage of the analytical approach is that it involves symbolic computations which
become arduous for high-order systems. However, if the goal is mainly to understand the arcs that
can constitute the optimal solution, it is often sufficient to use a simplified model of the system
that represents the intrinsic physical compromises. This way, the amount of symbolic computation
can be significantly reduced.

3.2 Input Parameterization

As discussed earlier, except for some simple examples, a numerical approach is necessary to solve the
optimization problem (1)-(3). Since, the decision variables u(t) are infinite dimensional, the inputs
need to be parameterized using a finite set of parameters in order to utilize numerical techniques, .
A piecewise constant or polynomial approximation of the inputs is often utilized. However, instead
of relying on an approximation, it is possible to use the analytical expressions presented in the
previous subsection.

Parameterization via initial values of adjoints: By solving (14) the optimal inputs u can be
written as a function of x and λ, i.e., u(x, λ). Then, the state and adjoint equations (11)-(13) read:

ẋ = F (x, u(x, λ)), x(0) = x0 (27)

λ̇T = −∂H
∂x

(x, λ), λT (tf ) =
∂φ

∂x

∣∣∣∣
tf

+ νT
(
∂T

∂x

)∣∣∣∣
tf

(28)

µTS = 0, νTT = 0 (29)

So, once the initial conditions λ(0) are specified, (27)-(28) can in principle be integrated to give
λ(t). Thus, the initial conditions λ(0) completely characterize the optimal inputs, thereby providing
an efficient parameterization. This parameterization, however, suffers from numerical problems
resulting from integrating the adjoint equations forward in time and also from discontinuities in
the adjoint variables in the presence of state constraints.

Parameterization via switching times: It was shown that, for each interval, it is possible to
obtain analytical expressions for the optimal inputs that do not depend on the adjoint variables.
So, if the sequence of intervals is known, the switching times and, possibly, the initial conditions
for the dynamic feedback completely parameterize the inputs.

In comparison with piecewise constant or piecewise polynomial approximations, the parameteriza-
tion proposed is exact and parsimonious. In comparison with choosing λ(0), the adjoint system
need not be integrated. This leads to numerical advantages and works well in the presence of
state constraints. On the other hand, since the proposed parameterization treats every interval
separately, the global picture is lost. So, the choice of the sequence of intervals needs to be handled
separately.

This parameterization is quite appropriate and very effective when the solution is determined by
the constraints, which is the case for many batch processes. In contrast, when applied to problems
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like the linear quadratic problem that have a low-order of singularity (σi = 0), this parameterization
boils down to choosing the initial conditions of the adjoints.

4 Numerical Solution Methods

Several numerical methods have been proposed in the literature to solve the class of problems
described in Section 2. In this section, these methods are classified into three broad categories
according to the underlying formulation:

1. Direct optimization methods, where the optimization (1)–(3) is performed directly.

2. PMP-based methods, where the differential-algebraic equations (11)–(14) are solved.

3. HJB-based methods, where the partial differential equation (15) is solved.

These methods are briefly described below.

4.1 Direct Optimization Methods

As seen in Section 3.2, the inputs need to be parameterized using a finite set of parameters.
Depending on whether the dynamic equations (2) are integrated explicitly or implicitly, two different
approaches have been reported in the literature, i.e., the sequential and simultaneous approaches,
respectively.

4.1.1 Sequential Approach

In this approach, the optimization is carried out in the space of the input variables only. For
a given u(t), the differential equations (2) are integrated using standard integration algorithms
to evaluate the objective function J . This corresponds to a “feasible” path approach since the
differential equations are satisfied at each step of the optimization algorithm. The basic procedure
is as follows:

1. Parameterize the inputs using a finite number of decision variables.

2. Choose an initial guess for the decision variables.

3. Integrate the system states to the final time and compute the performance index J and the
constraints S and T .

4. Use an optimization algorithm (such as steepest descent [26]) to update the values of the
decision variables. Repeat steps 3-4 until the objective function is minimized.

Typically, a piecewise constant approximation over equally spaced time intervals is made for the
inputs and the method is referred to as Control Vector Parameterization (CVP) in the literature
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[62, 22, 79]. This procedure has been utilized in various forms for solving dynamic optimization
problems in chemical engineering applications [57, 71]. For instance in [84] and [85], a numerical
algorithm is developed based on CVP to solve a class of multi-stage dynamic optimization problems
that are modeled by a differential algebraic system of index 1. In this approach, CVP is coupled
with a backward-difference formula for the integration. Inequality path constraints are handled
through the combined application of discretization of the constraints at a finite number of points,
and forcing an integral measure of their violation to zero. In [73], the CVP approach is utilized to
compute optimal profiles of the operating variables for an industrial reactive distillation process.
The approach of [85] is used in [32] for the optimization of an industrial batch process for the
production of dioctyl phthalate, in [49] for the optimization of a single batch distillation unit,
and in [25] for computing the optimal operating policies in multivessel batch distillation columns.
CVP is compared to iterative dynamic programming for the dynamic optimization of a distillation
column in [23].

While the CVP approach is straightforward to implement, it tends to be slow, especially in dealing
with inequality path constraints [6]. This is mainly due to the fact that this feasible path method
requires repeated and expensive solution of the differential equations. Furthermore, the quality
of the solution is strongly dependent on the parameterization of the control profile [41]. In that
respect, the parsimonious parameterization presented in Section 3.2 can be very helpful.

Sequential approach based on parsimonious parameterization: The main stumbling block
in using the parsimonious parameterization along with the sequential approach is the choice of the
type and sequence of intervals. In general, a mixed-integer type of algorithm is necessary for this
purpose. However, an initial sequence of intervals can be guessed and the sequence determined
iteratively upon checking the necessary conditions. The basic procedure is summarized below:

1. Choose an initial sequence of intervals.

2. Determine numerically the switching times and, possibly, the initial conditions for the dy-
namic feedback using the sequential approach.

3. Compute the adjoint variables for the resulting optimal solution by integrating (10) backward
in time, and check the necessary conditions of optimality.

4. If these conditions are not satisfied, choose a different sequence of intervals and repeat Steps
2–4 until the necessary conditions are verified.

4.1.2 Simultaneous Approach

The most computationally intensive part of the sequential approach is Step 3, where the system
equations are integrated accurately, even when the decision variables are far from the optimal
solution. In the simultaneous approach, an approximation of the system equations is introduced
in order to avoid explicit integration for each input profile, thereby reducing the computational
burden. The key characteristic of the simultaneous approach is the fact that the optimization
is carried out in the full space of discretized inputs and states. So, in general, the differential
equations are satisfied only at the solution of the optimization problem [84]. This is therefore
called an “infeasible path” approach. The basic procedure is as follows:
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1. Parameterize both inputs and states using a finite number of decision variables (typically
piecewise polynomials).

2. Discretize the differential equation (2) for selected time instants, i.e., the differential equations
are satisfied only at a finite number of time instants (typically via orthogonal collocation).
These two steps transform the dynamic optimization problem (1)-(3) into a standard nonlinear
program (NLP).

3. Choose an initial guess for the decision variables.

4. Solve for the optimal set of decision variables by using an NLP code.

Since the above procedure typically leads to a large NLP, efficient numerical methods are necessary
to solve this problem [26]. With the development of Successive Quadratic Programming (SQP)
and MINOS, the NLPs resulting from the simultaneous approach can be solved efficiently [9]. Even
high dimensional optimization problems have been solved with orthogonal collocation on finite
elements and piecewise constant approximations of control profile [65]. The role of finite elements
in terms of node locations and breakpoints that allow for control profile discontinuities is studied in
[18, 19]. This leads to a formulation that enforces accurate solution of the differential equations and
allows for a general description of the control profiles. The stability and error properties of implicit
Runge-Kutta methods for solving DAEs are considered in [41]. The same authors also use these
properties to enforce error constraints and method orders in a collocation-based NLP formulation
of dynamic optimization problems. A numerical algorithm using a reduced space SQP algorithm
is developed in [15].

The simultaneous approach, which was first used successfully in [51] and [82], has been demonstrated
in several batch reactor applications. For instance, in [65], the optimal temperature profile to
maximize the production of an intermediate product is computed using a global spline collocation.
In [21], the simultaneous approach is utilized to calculate the sensitivity of the optimal solution to
changes in model parameters. This framework is also used in [68] to develop an efficient technique
for the optimization of batch processes under uncertainty.

The use simultaneous methods requires awareness of the tradeoff between approximation and opti-
mization [76]. It could turn out that a less accurate approximation of the integration gives a better
cost. Thus, since the objective in Step 4 is merely the optimization of the cost, the solution obtained
could correspond to an inadequate state approximation. Improvement of the integration accuracy
requires either introducing accuracy as a constraint or increasing the number of collocation points.
Especially when the system is stiff, a very fine grid, which translates into a large number of decision
variables, is needed [86, 80].

4.2 PMP-based Methods

The key to PMP-based methods is the necessary conditions of optimality (14). This, on the one
hand, can provide a closed-form expression for the optimal inputs as a function of the state and
adjoint variables. On the other hand, the gradient information ∂H

∂u available from (14) can be used
to generate the search direction in gradient-based methods.
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4.2.1 Shooting Method

In the shooting approach [63, 13], the optimization problem is cast into that of solving a system of
differential-algebraic equations. This means that a search is done for x, u, λ, µ, and ν such that
(27)–(29) are satisfied. Also, the state equations (27) and the adjoint equations (28) need to be
solved simultaneously. However, the boundary conditions for the state and adjoint equations are
split, i.e., the initial conditions of the state equations and the terminal conditions of the adjoint
equations are known. Thus, the PMP approach leads to a two-point boundary value problem
(TPBVP).

The shooting method treats a TPBVP as a multidimensional root finding problem, where λ(0) are
the roots to be found in order to satisfy λ(tf ). The basic procedure is as follows:

1. Solve (14) analytically for u(x, λ).

2. Parameterize µ(t) using a finite number of variables. The vector of decision variables also
includes λ(0) and ν.

3. Choose an initial guess for the decision variables.

4. Integrate (27) and (28) forward in time using x(0), λ(0), and u(x, λ) obtained in Step 3, and
compute λ(tf ).

5. Check if equations (28) and (29) are verified; for the terminal conditions λ(tf ), the values
obtained by integration in Step 4 should match those specified in (28). Update the decision
variables (using for example steepest descent [26]) and repeat Steps 4–5 until convergence.

The use and updating of the Lagrange multipliers µ and ν depend on the problem formulation
and the type of optimization algorithm. If a constrained optimization routine is used, since the
Lagrange multipliers are handled internally, µ and ν need not be considered explicitly as decision
variables.

The shooting method [14, 34], also referred to as boundary condition iteration (BCI) [33], has
been used in several batch applications. In polymerization, where the profiles of temperature and
initiator concentration represent the inputs, this approach has been used for the optimization of
free-radical polymerization [31, 70], batch bulk polymerization [16], and batch methyl methacrylate
polymerization [81]. Optimal glucose feeding policy in a fed-batch fermentation for the produc-
tion of penicillin is computed in [56, 40]. The optimal temperature and pH profiles for a batch
cephalosporin C fermentation is calculated in [17].

There are several difficulties with this approach [50]. First, the method can have stability problems
in integrating the adjoint equations forward in time. Furthermore, unless good initial guesses for the
adjoint variables are available (which is rarely the case since the adjoints represent sensitivities),
it is computationally expensive to find the optimal solution. The method does not work with
discontinuities in the adjoints, which is typical in the presence of state constraints. Additional
degrees of freedom are necessary to handle these situations.
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4.2.2 Gradient Method

The necessary conditions of optimality (14) also provide the gradient along which the decision
variables can be updated. The solution via the gradient method resembles the sequential approach
of the direct formulation except that the gradient is calculated using (14). The basic procedure is
as follows:

1. Parameterize u and µ using a finite number of variables. The vector of decision variables also
includes ν.

2. Choose an initial guess for the decision variables.

3. Integrate the state equations (11) from 0 to tf .

4. Integrate the adjoint equations (12) backward in time from tf to 0 and compute the gradient
∂H
∂u using (14).

5. Use an optimization algorithm (such as steepest descent [26]) to update the values of the
decision variables. Repeat Steps 3–5 until H is minimized.

This approach has been applied widely [33, 62, 20, 60]. The main advantage of the gradient method
is that the initial guess of the decision variables is beneficial but not critical to the convergence. In
contrast, the drawbacks are: (i) slow convergence close to the optimum, and (ii) large number of
decision variables that may be necessary to parameterize the inputs.

Control vector iteration (CVI) follows the same basic procedure except that the input parameteriza-
tion is not explicitly incorporated in the algorithm [62]. However, for any practical implementation
of CVI, the inputs need to be parameterized.

4.2.3 State and Adjoint Parameterization

Two approaches will be discussed below where the states and adjoints are parameterized.

Discretization (NR)

This approach is similar to the simultaneous direct optimization method, where parameterization
of the states and adjoints followed by appropriate discretization is used to avoid the problems
encountered in the integration of the adjoints [28]. The basic procedure is as follows:

1. Parameterize x, u, λ, and µ using a finite number of decision variables (typically piecewise
polynomials). The vector of decision variables also includes ν.

2. Discretize the differential equations (11)–(12) and the necessary conditions (14) for a finite
number of time instants (typically via orthogonal collocation). These two steps transform
the problem of solving a set of nonlinear differential-algebraic equations (11)–(14) into that
of solving a set of nonlinear algebraic equations.

3. Choose an initial guess for the decision variables.
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4. Solve for the optimal set of decision variables by using, for example, the Newton–Raphson
(NR) algorithm [72] .

Quasi-linearization (QL)

In this approach, the analytical expression for the inputs provided by (14) is used. The two-point
boundary value problem (27)–(29) is solved by successive linearization [14, 34, 39]. The basic
procedure is as follows:

1. Parameterize x, λ, and µ using a finite number of decision variables (typically piecewise
polynomials). The vector of decision variables also includes ν.

2. Choose an initial guess for the decision variables.

3. Linearize the differential equations (27)–(28) around the current guess. This transforms the
problem of solving a set of nonlinear differential-algebraic equations (27)–(29) into that of
solving a set of linear differential-algebraic equations.

4. Solve the set of linear differential-algebraic equations analytically by appropriate use of tran-
sition matrices.

5. Using the solution of Step 4 as the next guess, repeat Steps 3–5 until convergence.

The discretization and quasi-linearization methods work well if the solution is smooth and if the
unknown boundary conditions are not particularly sensitive to initialization errors. The methods
inherit the problems of the simultaneous method regarding the tradeoff between approximation
and optimization [76]. Also, as in the shooting method, good initial guesses are needed for these
methods to work well.

4.3 A HJB-based Method: Dynamic Programming

The dynamic programming approach, which utilizes the HJB formulation, is discussed next. The
key idea behind dynamic programming is the principle of optimality, i.e., ‘parts of an optimal
trajectory are also optimal’ [7]. This approach is equivalent to computing V (x, t) in (15) with
discretization performed in both states and time. The minimization in (15) is performed using
exhaustive search. To make the search feasible, the domain of search has to be restricted. Hence,
the inputs are also discretized both in time and amplitude.

Consider (15) integrated for an arbitrary small interval [t, t+ ∆t]:

min
u([t,t+∆t]),µ([t,t+∆t]),ν

(
∂V

∂t
∆t+

∂V

∂x

dx

dt
∆t+ µTS∆t

)
= 0 (30)

Since the first two terms of the minimization correspond to the difference V (x(t + ∆t), t + ∆t) −
V (x(t), t) = ∂V

∂t ∆t+ ∂V
∂x

dx
dt∆t, (30) can be written as:

min
u([t,t+∆t]),µ([t,t+∆t]),ν

(
V (x(t+ ∆t), t+ ∆t)− V (x(t), t) + µTS∆t

)
= 0 (31)
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The time interval [0, tf ] is divided into P stages, with [tp, tp+1] being the time interval corresponding
to the (p + 1)th stage. Integrating over the time interval [tp, tp+1], the return function at time tp
can be written as:

V (xp, tp) = min
u([tp,tp+1]),µ([tp,tp+1]),ν

(
V (xp+1, tp+1) +

∫ tp+1

tp
µTS dt

)
(32)

where xp+1 is the state at tp+1 obtained by integrating the system with inputs u and the initial
condition x(tp) = xp over the interval [tp, tp+1] Since the boundary condition of V is known at final
time, (32) is solved iteratively for decreasing values of p.

A complication arises from the state discretization since V (xp+1, tp+1) will only be calculated for
a set of discrete values. When integration is performed from a discretization point xdp at time tp,
xp+1 will typically not correspond to a discretization point. Thus, the question is how to calculate
the return function at xp+1. One option is to interpolate between the return functions at various
discretization points at time tp+1. Another one, which will be used here, is to merely use the
optimal control u([tp+1, tf ]) that corresponds to the grid point closest to xp+1 and integrate the
system from tp+1 to tf to get the return function. The basic procedure is as follows [7, 34]:

1. Choose the number of stages P .

2. Choose the number of x-grid points, N , and the number of allowable values for each input,
Mi, i = 1, 2, · · · ,m.

3. Choose a region for each input, Rip, i = 1, 2, · · · ,m, and p = 1, 2, · · · , P .

4. Start at the last time stage. For each x-grid point, integrate the state equations from tP−1 to
tP for all allowable values of the inputs and determine the values of the inputs that minimize
the performance index.

5. Step back one stage (say Stage p). Integrate the state equations from tp−1 to tp for each of
the x-grid points with all the allowable values of the inputs. To continue integration from
tp to tf , choose the optimal inputs from the earlier stages that correspond to the grid point
closest to the resulting xp. Compare the values of the cost functions and, for each x-grid
point at tp−1, determine the optimal inputs for Stage p.

6. Repeat Step 5 until the initial time t0 is reached.

7. Reduce the regions Rip for the allowable input values by using the best input policy as the
midpoint for the allowable input values at each stage. Repeat Steps 3–7 until a specified
tolerance for the Rip is reached.

This approach has been used in numerous batch applications [44, 42, 43, 10, 29]. The two key
advantages of this method are: (i) dynamic programming is one of the few methods available to
compute the global minimum, and (ii) the number of iterations, and thereby the time needed for the
optimization, can be estimated a priori (specified only by the tolerance for the Rip). In addition,
the approach provides a feedback policy which can be used for on-line implementation: If, due
to mismatch in initial conditions, the real trajectory deviates from the predicted optimal one, the
optimal inputs that correspond to the x-grid point closest to the real value at a given time instant
can be used.

18



The major disadvantage of dynamic programming is its computational complexity, though small-
sized problems can be handled efficiently. However, in the presence of constraints, the computa-
tional complexity reduces since the constraints limit the search space.

4.4 Comparison of Numerical Optimization Schemes

Numerical Problem Formulation
Solution Direct PMP HJB

States - continuous
Inputs - continuous

- Shooting method
(BCI)

-

States - continuous
Inputs - parameterized

Sequential
approach (CVP)

Gradient method
(CVI)

-

States - parameterized
Inputs - parameterized

Simultaneous
approach (NLP)

State and adjoint
parameterization
(NR, QL)

Dynamic
programming
(DP)

Table 1: Classification of numerical optimization schemes

Table 1 classifies the different numerical schemes detailed in the preceding subsections for solving
dynamic optimization problems. Parameterization of the inputs and/or states is, in general, needed
to render the problem numerically tractable. However, explicit integration of system equations can
be used to avoid parameterization of the states. Also, the PMP formulation can provide analytical
expressions for the optimal inputs, thereby avoiding the necessity of input parameterization. The
three places in the table where there is no entry correspond to infinite dimensional problems that
cannot be solved numerically.

Direct optimization methods are by far the best since PMP-based methods are often ill-conditioned
and dynamic programming can be computationally expensive. The main disadvantage of direct
optimization methods is that the input parameterization is often chosen arbitrarily by the user
and only represents an approximation to the optimal solution. A large number of parameters may
be required to accurately represent the optimal solution, which increases the number of decision
variables. Thus, the efficiency of direct optimization methods depends crucially on the way the
inputs are parameterized.

On the other hand, the necessary conditions of PMP provide piecewise analytical expressions for
the optimal inputs. Thus, PMP can complement the direct optimization approach by providing a
parsimonious parameterization of the inputs. Though not applicable to all problems, the sequential
approach using parsimonious parameterization can be used for a large variety of batch processes. In
many batch optimization problems, it can be shown a priori that the solution is on the constraints
[78]. Then, there is no necessity to search for the optimal inputs in the interior of the feasible
region, thereby enhancing the numerical efficiency of the optimization procedure.
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5 Characterization of the Optimal Solution

In the present context, characterization means understanding or interpretation of the solution. A
characterization of the optimal solution is proposed that: i) treats the instantaneous objectives and
terminal objectives independently, and ii) separates constraint-seeking variables from compromise-
seeking variables. The instantaneous objectives correspond to either being on the path constraints
or following inputs which are inside the feasible region, while the terminal objectives correspond
to either being on the terminal constraint or optimizing the terminal cost. The constraint-seeking
variables are those that push the system to the (path and terminal) constraints of the problem,
while compromise-seeking variables exploit the intrinsic compromises present in the system for
optimizing the cost.

5.1 Separation of Instantaneous and Terminal Objectives

Structure of the optimal solution: The structure of the optimal solution consists of: i) the
type of intervals (set of active path constraints), ii) sequence of intervals and the iii) active terminal
constraints. Using this information, the optimal inputs can be dissected into: i) the values of the
inputs in the various arcs, η(t), and ii) the minimal parameterization, π, that typically consists
of the switching instants. As will be shown later, η(t) caters to instantaneous objectives, while π
handles terminal objectives.

Determination of the structure of the optimal solution: The structure of the optimal
solution can be obtained in three ways:
• educated guess by an experienced operator,
• piecewise analytical expressions for the optimal inputs,
• inspection of the solution obtained from numerical optimization.

In the first case, the operator provides the sequence of optimal operations based on intuition
and experience. In the second case, an analysis of the system equations, problem formulation,
and constraints indicates the types of intervals that can be present in the optimal solution. The
sequence of intervals, however, is not trivial. It can be determined by trial-and-error, using necessary
conditions of optimality to assess the validity of successive trials. In the third case, visual inspection
of the numerical solution can be used to identify the various intervals present in the solution. Each
interval has to be tagged according to the type it could represent. The analytical expressions for
the inputs can be used for verification.

Minimal input parameterization: Let (i) the type and sequence of intervals be known, and
(ii) the active path constraints be kept active, for example by tracking them using appropriate
controllers. Then, the inputs can be parameterized using the switching times and, possibly, addi-
tional decision variables corresponding to the inputs that are not determined by the active path
constraints.

Among the switching instants, a few correspond to reaching the path constraints in minimum time.
These switching instants do not contribute to the terminal objectives since the controllers that keep
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the corresponding path constraints active will correct the effect of any deviation in these switching
instants. Removing these switching instants leads to a minimal input parameterization, π, that
is necessary to handle the terminal objectives (meet the terminal constraints and optimize the
terminal cost).

Using this parameterization, the optimization reduces to minimizing a terminal cost subject to
terminal constraints only. Let the inputs be represented by u(π, x, t). Then, the optimization
problem (1)–(3) can be rewritten as:

min
π

J = φ(x(tf )) (33)

s.t. ẋ = F (x, u(π, x, t)), x(0) = x0 (34)
T (x(tf )) ≤ 0 (35)

The necessary conditions of optimality for (33)-(35) are:

νT T (x(tf )) = 0 and
∂φ

∂π
+ νT

∂T

∂π
= 0 (36)

Let τ̄ be the number of active terminal constraints. The number of decision variables arising from
the aforementioned parameterization, nπ, needs to satisfy nπ ≥ τ̄ in order to be able to meet all
the active terminal constraints. Note that nπ is finite.

5.2 Separation of Constraint-seeking and Compromise-seeking Variables

In any optimization problem, the optimal values of the decision variables are either determined by
the constraints of the problem or by certain compromises present in the system. It would be useful
to find a transformation that separates the two effects. Such a separation should also be done along
the time axis when the decision variables are functions of time, as is the case here with u(t).

Separation of constraint-seeking and compromise-seeking input directions: In each
interval, some of the path constraints (or possibly none) can be active. If there are active path
constraints, the inputs or combinations of inputs that push the system to the path constraints can
be separated from those combinations which have no effect on meeting the path constraints.

Let ζ̄ be the number of active path constraints in a given interval. Clearly, ζ̄ ≤ m. In the single
input case, and in the extreme cases ζ̄ = 0 and ζ̄ = m, this problem of separation does not
arise. In the other cases, the idea is to use a transformation η(t)T → [η̄(t)T η̃(t)T ] such that
η̄(t) is a ζ̄-dimensional vector that has a handle on meeting the path constraints and η̃(t) is a
vector of dimension (m − ζ̄) that do not affect the path constraints. Thus, η̄(t) are referred to as
the constraint-seeking input directions and η̃(t) as the compromise-seeking input directions. The
optimal values along the constraint-seeking directions, η̄∗(t), are determined by the active path
constraints, whilst η̃∗(t) are determined from optimality conditions.

Let rj be the relative degree of the constraint Sj(x, u) = 0. Then, the constraint-seeking direction
corresponding to the constraint Sj(x, u) = 0 is given by η̄j(t) =

(
∂
∂u

drjSj
dtrj

)
u. The directions η̃(t)
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are chosen orthogonal to the directions η̄ computed from all active path constraints. So, for the
compromise-seeking input directions, this construction guarantees that the vector ∂

∂η̃
dkSj
dtk

= 0 for
k = 0, 1, · · · , rj . The transformation ηT → [η̄T η̃T ] is, in general, state dependent and can be
obtained analytically if piecewise analytical expressions for the optimal inputs (see Section 3) are
available. Otherwise, a numerical sensitivity analysis is necessary to obtain this transformation.

If, in the derivation of the analytical expressions for the inputs, an input ui is computed from the
active constraint Sj(x, u) = 0, and the other inputs are inside their respective feasible regions, this
does not necessarily imply η̄(t) = ui(t) and η̃ = {uk(t), k �= i}. In fact, η̄j(t) is a combination of all
inputs that have the same relative degree with respect to Sj(x, u) as the input ui.

Separation of constraint-seeking and compromise-seeking parameters: In the parameter
vector π, there are elements whose variations affect the active terminal constraints and others that
do not. The idea is then to separate the two using a transformation πT → [π̄T π̃T ] such that π̄ is a
τ̄ -dimensional vector and π̃ is of dimension (nπ − τ̄) with ∂T

∂π̃ = 0. Then, the necessary conditions
of optimality (36) can be rewritten as:

νT T (x(tf )) = 0, and
∂φ

∂π̄
+ νT

∂T

∂π̄
= 0,

∂φ

∂π̃
= 0 (37)

The active constraints in T (x(tf )) = 0 determine the optimal values of the decision variables π̄∗,
whilst π̃∗ are determined from the optimality conditions ∂φ

∂π̃ = 0. Thus, π̄ are referred to as the
constraint-seeking parameters (which have a handle on meeting terminal constraints) and π̃ as the
compromise-seeking parameters (which are of no help in meeting terminal constraints). Note the
similarity with the classification of the input directions. The Lagrange multipliers ν are calculated
from ∂φ

∂π̄ + νT ∂T
∂π̄ = 0.

If the constraint Tj(x(tf )) is active, then the constraint-seeking parameter corresponding to this
terminal constraint is π̄j = ∂Tj

∂π π. π̃ is chosen orthogonal to the components of π̄ computed from
all active terminal constraints. This construction guarantees ∂T

∂π̃ = 0. Since analytical expressions
for ∂T

∂π are not available in most cases, this transformation is computed numerically. Though
this transformation is in general nonlinear, a linear approximation can always be found in the
neighborhood of the optimum.

5.3 Implications of the Characterization

The knowledge of the structure of the optimal solution can help enhance the numerical efficiency
of the optimization algorithm. This issue was addressed in Section 4.4. On the other hand, it helps
in an efficient implementation of the optimal solution. The separation of constraint-seeking and
compromise-seeking variables is equivalent to a sensitivity analysis which reveals where most of the
optimization potential lies.

If the inputs are in the interior of the feasible region, then to a first-order approximation, the
deviation in cost is δJ = Huδu. Since by definition Hu = 0, small deviation of u from the optimal
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trajectory will cause a negligibly small loss in cost. On the other hand, the Lagrange multipliers
µ and ν capture the deviation in cost resulting from the path and terminal constraints not being
active. So, to a first-order approximation, δJ =

∫ tf
0 µT δS dt + νT δT . Thus, in general, there is

little to be gained/lost along the compromise-seeking variables, while it pays off to keep the path
and terminal constraints active.

Thus, at the implementation level, care should be taken to keep the constraints active. This idea
can be used to integrate measurements in the optimization framework so as to combat uncertainty,
which will be the subject of the companion paper [75].

6 Examples

This section presents various examples for which the optimal solution will be characterized. Since
this solution will not necessarily be optimal in the presence of uncertainty, this issue will be covered
in the companion paper [75]. Four semi-batch reactors are chosen to illustrate various features of
optimal solutions. A classification of the examples is provided in Table 2. The first (rather simple)
example is worked out in more details, while only the features of the optimal solution are presented
for the others.

# Example Path Terminal Compromise Number Terminal
constraints constraints -seeking arc of inputs time

1 Reactor with a safety constraint Yes Yes No 1 Free

2 Bioreactor with inhibition and a
biomass constraint

Yes No Yes 1 Fixed

3 Reactor with parallel reactions and se-
lectivity constraints

No Yes Yes 1 Fixed

4 Nonisothermal reactor with series reac-
tion and a heat removal constraint

Yes Yes Yes 2 Fixed

Table 2: Features present in the various examples

In the sequel, the subscripts (·)des, (·)min, (·)max, (·)o, and (·)f represent desired, minimum, maxi-
mum, initial, and final values, respectively. ucomp will be used to represent a compromise-seeking
input in the interior of the feasible region, and upath an input that will keep a path constraint
active.

6.1 Isothermal Semi-batch Reactor with a Safety Constraint [83]

6.1.1 Description of the Reaction System

• Reaction: A+B → C.
• Conditions: Semi-batch, exothermic, isothermal.
• Objective: Minimize the time needed to produce a given amount of C.
• Manipulated variable: Feed rate of B.
• Constraints: Input bounds, constraint on the maximum temperature reached under cooling

failure, constraint on the maximum volume.
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• Comments: In the case of a cooling failure, the system becomes adiabatic. The best strategy
is to immediately stop the feed. Yet, due to the presence of unreacted components in the
reactor, the reaction goes on. Thus, chemical heat will be released, which causes an increase
in temperature. The maximum attainable temperature under cooling failure is given by:

Tcf (t) = T (t) + min(cA(t), cB(t))
(−∆H)
ρ cp

(38)

where the parameters are described in the next subsection, and the term min(cA, cB) serves
to calculate the maximum extent of reaction that could occur following the failure.

Without any constraints, optimal operation would simply consist of adding all the available B
at initial time (i.e., batch operation). However, because of the safety constraint, the feeding
of B has to account for the possible cooling failure. Once the volume constraint is attained,
the feedrate is set to zero.

6.1.2 Problem Formulation

Variables and parameters: cX : Concentration of species X, nX : Number of moles of species X,
V : Reactor volume, u: Feed rate of B, cBin: Inlet concentration of B, k: Kinetic parameter, T :
Reactor temperature, Tcf : Temperature under cooling failure, ∆H: Reaction enthalpy, ρ: Density,
and cp: Heat capacity.

Model equations:

˙cA = −k cA cB −
u

V
cA cA(0) = cAo (39)

˙cB = −k cA cB +
u

V
(cBin − cB) cB(0) = cBo (40)

V̇ = u V (0) = Vo (41)

The concentration of C is given by

cC =
cAoVo + cCoVo − cAV

V
. (42)

The numerical values are given in Table 3.

k 0.0482 l
mol h

T 70 ◦C
∆H −60000 J

mol
ρ 900 g

l

cp 4.2 J
gK

cBin 2 mol
l

umin 0 l
h

umax 0.1 l
h

Tmax 80 ◦C
Vmax 1 l
nCdes 0.6 mol

cAo 2 mol
l

cBo 0.63 mol
l

Vo 0.7 l

Table 3: Model parameters, operating bounds and initial conditions for Example 1
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Optimization problem:

min
u(t),tf

J = tf (43)

s.t. (39)− (42)
Tcf (t) ≤ Tmax

V (tf ) ≤ Vmax

nC(tf ) ≥ nCdes

umin ≤ u ≤ umax

6.1.3 Characterization

Model Reduction:

The dynamic model (39)-(41) can be reduced since the three differential equations are linearly
independent, as is shown next. The balance equations for various species and total mass read:

ṅA = −k cA cB V nA(0) = nAo (44)
ṅB = −k cA cB V + cBinu nB(0) = nBo (45)
V̇ = u, V (0) = Vo (46)

(45) can be expressed in terms of (44) and (46):

ṅB = ṅA + cBinV̇ ⇒ d

dt
(nB − nA − V cBin) = 0 (47)

indicating that I = nB − nA − V cBin = V (cB − cA − cBin) is a reaction invariant [74]. Integration
of (47) from 0 to t allows expressing cB in terms of other states and initial conditions:

cB =
(cBo − cAo − cBin)Vo + (cA + cBin)V

V
(48)

Types of arcs:
Consider the dynamic model given by (44) and (46), together with (48). The types of arcs that
can be present are determined using the matrixM = [Fu ∆Fu].

F =

[
−k cAcBV

0

]
+

[
0
1

]
u, Fu =

[
0
1

]
, ∆Fu =

[
k cA(cBin − cB)

0

]
(49)

The matrix M has structural rank 2. Since (cBin − cB) is always positive, M can only lose rank
for the trivial case cA = 0. Thus, the rank is independent of the evolution of the state and inputs
(σ =∞), and the optimal input is always on path constraints.

Thus, the possible options for the optimal solution are the input bounds and the path constraint
that corresponds to meeting the safety constraint Tcf = Tmax: (i) u = umin, (ii) u = umax, and
(iii) u = upath.
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Specific choice of experimental conditions:
The number and sequence of arcs actually present in the optimal solution depend on the experi-
mental conditions. Let the experimental conditions be chosen such that the number of moles of
B that can be added is less than the initial number of moles of A, then cB(t) ≤ cA(t). Since
isothermal conditions are chosen, the condition Tcf (t) ≤ Tmax implies cB(t) ≤ cBmax where
cBmax = ρ cp(Tmax−T )

(−∆H) . Furthermore, the initial condition is chosen to have as much B as pos-

sible, i.e., cBo = cBmax = 0.63mol
l .

Sequence of arcs (Figure 1):

• Since the initial conditions verify cBo = cBmax, upath is applied to keep cB = cBmax, i.e.,
Tcf = Tmax.
• Once V = Vmax is attained, the input is set to umin = 0.
• Once nC = nCdes is attained, the batch is stopped so as to minimize the final time.

Analytical expression for upath:
Since cB(t) has relative degree ς = 1, the optimal input that keeps the path constraint cB = cBmax
active can be obtained by differentiating the path constraint once with respect to time:

upath =
(
k cA cB V

cBin − cB

)∣∣∣∣
cB=cBmax

(50)

Minimal input parameterization:
The switching time ts between upath and umin and the terminal time tf are adjusted numerically
to satisfy the terminal constraints V (tf ) = Vmax and nC(tf ) = nCdes. Thus, the two parameters in
this example are constraint-seeking parameters. For the numerical values provided in Table 3, the
cost is J = tf = 19.80 h and the switching time is ts = 11.44 h.

The optimal input and the corresponding evolution of the concentrations of A, B, and C are given in
Figure 1. Notice that cB = cBmax = 0.63mol

l in the first interval, which corresponds to Tcf = Tmax.
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Figure 1: Optimal input and evolution of the concentrations for Example 1
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6.1.4 Discussion

Wrong sequence of arcs:
Instead of the correct arc sequence, Sequence I = upath and umin, let one of the following sequences
be chosen: Sequence II = umin, umax, and upath or Sequence III = umin, umax, and umin. Note
that any sequence that has umin after upath is a superset of Sequence I and will lead to the same
solution as in Figure 1 by reducing the other interval(s) to zero. Numerical optimization shows that
the required amount of C cannot be attained with Sequence II, while a solution different from that
in Figure 1 can be obtained with Sequence III. However, the cost with Sequence III is tf = 30.80
h, which is much larger than tf = 19.80 h obtained with Sequence I.

Using the necessary conditions of optimality, it can be argued that Sequences II and III are non-
optimal. Consider the system equations (44), (46), and (48) along with the adjoint equations:

ṅA = −k nA nB
V , λ̇nA = k (nA+nB)

V λnA − 1
V µcf

V̇ = u, λ̇V = k nA (cBin−cB)
V λnA −

(cBin−cB)
V µcf

(51)

with µcf being the Lagrange multiplier related to the cooling failure constraint. The terminal
conditions for the adjoints are λnA(tf ) = 1 and λV (tf ) = ν > 0. The constraint on which the
solution lies is determined by the sign of λTFu(t) = λV (t); λV (t) > 0 for u = umin, λV (t) < 0 for
u = umax, and λV (t) = 0 for u = upath.

The adjoint equations have two different structures depending on whether or not the path constraint
is active. When the path constraint is not active µcf = 0 and the adjoint equations read: λ̇nA =
k (nA+nB)

V λnA and λ̇V = k nA (cBin−cB)
V λnA . If the cooling failure constraint is active, then µcf =

k nAλnA to satisfy λV = λ̇V = 0. The adjoint equations become λ̇nA = knB
V λnA and λV = 0. Since

nA > 0, nB > 0, V > 0, cBin > cB, the following conclusions can be drawn from (51): λnA(t) > 0
and λ̇V (t) ≥ 0, ∀t.

For Sequence II to be optimal, λV (t) has to be first positive, then negative, and finally zero. For
Sequence III to be optimal, λV (t) has to change from positive to negative and then again positive.
Both these are contradictions to the fact that λV is monotonic.

Nonparsimonious parameterization:
Since umin and the analytical expression for upath are known, the optimal input is parameterized
by two parameters, the switching time between upath and umin and the terminal time. In contrast,
if the input is parameterized as being piecewise constant on equally spaced intervals (which is the
usual choice), then approximately 20 parameters are needed to determine the solution with the
same accuracy (Table 4).

Number of Parameters 2 4 6 8 10 20 ∞
Cost 20.23 19.93 19.87 19.84 19.82 19.80 19.80

Table 4: Cost as a function of the number of parameters in a piecewise-constant parameterization

Effect of different experimental conditions:
1. If cBo < cBmax, the optimal input has an additional arc. Initially, the input is at the upper
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bound, umax, in order to attain the path constraint as quickly as possible. Once Tcf reaches
Tmax, the two arcs presented in Figure 1 form the optimal solution.

2. If the number of moles of B that can be added is larger than the initial number of moles of A,
the optimal input has an additional arc. Once cB(t) = cA(t) is attained, the input switches to
its maximum value since this no longer affects Tcf . Then, when the volume reaches V = Vmax,
the input is set to umin = 0.

Effect of constraints:

1. Without the safety constraint, it would be optimal to operate in batch mode, where all the
B is fed initially, leading to tf = 17.3 h. So, the “price” to pay for safety is a longer time
(19.8 h) to attain the same conversion.

2. Without the volume constraint, the optimal solution would correspond to continue feeding B
in such a way that the safety constraint is met. Since more B could be added this way, the
final time would reduce to tf = 18.4 h.

6.2 Fed-batch Bioreactor with Inhibition and Biomass Constraint [87]

• Reactions: S → X S
X→ P .

• Conditions: Fed-batch, isothermal.
• Objective: Maximize the concentration of product P at a given final time.
• Manipulated variable: Feed rate of S.
• Constraints: Input bounds, constraint on the maximum biomass concentration.
• Comments: The specific growth rate µ(S) contains an inhibition term:

µ(S) =
µm S

Km + S + S2

Ki

.

Owing to the presence of inhibition, it will be shown that the optimal substrate value cor-
responds to dµ

dS = 0 (i.e., S∗ =
√
KmKi). Without any constraints, optimality consists of

operating at S = S∗ so as to increase X, and thus P , as quickly as possible. However,
there is a constraint on the biomass concentration which is motivated by oxygen limitation
typically occurring at large biomass concentrations. The interesting part is that the optimal
input cannot switch immediately from ucomp (corresponding to S∗) to upath since the internal
dynamics are unstable. An additional arc is required to lower the substrate concentration to
an equilibrium value.

6.2.1 Problem formulation

Variables and parameters: S: Concentration of substrate, X: Concentration of biomass, P : Concen-
tration of product, V : Volume, u: Feed flowrate, Sin: Inlet substrate concentration, µm,Km,Ki, ν:
Kinetic parameters, and Yx, Yp: Yield coefficients.
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Model equations:

Ẋ = µ(S) X − u

V
X X(0) = Xo (52)

Ṡ = −µ(S) X
Yx

− ν X

Yp
+

u

V
(Sin − S) S(0) = So (53)

Ṗ = ν X − u

V
P P (0) = Po (54)

V̇ = u V (0) = Vo (55)

with µ(S) = µm S

Km+S+S2

Ki

and the numerical values given in Table 5.

µm 0.53 1
h

Km 1.2 g
l

Ki 22 g
l

Yx 0.4
Yp 1
ν 0.5 1

h
Sin 20 g

l

umin 0 l
h

umax 1 l
h

Xmax 3 g
l

tf 8 h

Xo 1 g
l

So 0 g
l

Po 0 g
l

Vo 2 l

Table 5: Model parameters, operating bounds and initial conditions for Example 2

Optimization problem:

max
u(t)

J = P (tf ) (56)

s.t. (52)− (55)
X(t) ≤ Xmax

umin ≤ u ≤ umax

6.2.2 Characterization

Model reduction:
As in Example 1, one state is redundant. The redundant state is first removed to make calculations
simpler. With x1 = X V, x2 = P V, x3 = V , the reaction dynamics can be described by:

ẋ1 = µ(S) x1 x1(0) = Xo Vo (57)
ẋ2 = ν x1 x2(0) = Po Vo (58)
ẋ3 = u x3(0) = Vo (59)

where the substrate concentration is obtained from the mass balance:

S =
1
x3

(
So Vo + Sin(x3 − V0)−

1
Yx

(x1 −XoVo)−
1
Yp

(x2 − PoVo)

)
(60)
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Types of arcs:

F =


 µ(S) x1

ν x1

0


 +


 0

0
1


u, Fu =


 0

0
1


 , ∆Fu = −




∂µ
∂x3

x1

0
0


 (61)

∆2Fu =




∂µ
∂x1

∂µ
∂x3

x2
1 − ∂2µ

∂x1 ∂x3
x2

1 µ− ν x2
1

∂2µ
∂x2 ∂x3

ν ∂µ
∂x3

x1

0


− u




∂2µ
∂x2

3
x1

0
0


 (62)

The matrix M = [Fu ∆Fu ∆2Fu] has structural rank 3, but the rank depends on the states.
The loss of rank can be analyzed using det(M) = 0, which occurs when:

ν x2
1

(
∂µ

∂x3

)2

= ν x2
1

(
∂µ

∂S

∂S

∂x3

)2

= ν
x2

1

x2
3

(Sin − S)2
(
∂µ

∂S

)2

= 0 (63)

S = Sin, x1 = 0, or ∂µ
∂S = 0 are solutions to det(M) = 0. Since S = Sin and x1 = 0 result in

trivial solutions, rank drop occurs for ∂µ
∂S = 0, which corresponds to S = S∗ =

√
Ki Km. Thus, it

is possible to have a compromise-seeking input in the interior of the feasible region.

The possible options for the optimal solution are the input bounds, a compromise-seeking input,
and the path constraint: (i) u = umin, (ii) u = umax, (iii) u = ucomp, and (iv) u = upath.

Sequence of arcs (Figure 2):

• The input is initially at the upper bound, umax, in order to increase S as quickly as possible.

• Once S = S∗, the input is given by ucomp in order to increase X, and thus P , as quickly as
possible.

• The input is then lowered to umin in order to reach S = Se. The switching time between the
second and the third interval should be so chosen that the conditions X = Xmax and S = Se
occur at the same time instant.
• When X = Xmax, the input is set to upath.

Analytical expression for the inputs:
Though the input appears in ∆2Fu, det(M) is independent of u since the vector that multiplies u
in (62) is parallel to ∆Fu. Thus, an additional differentiation is required to obtain the input (order
of singularity, σ = 3) or, equivalently, the surface S = S∗ can be differentiated to obtain the input:

ucomp =
V

Sin − S

(
1
Yx

µ(S) X +
1
Yp

ν X

)∣∣∣∣∣
S=S∗

(64)

The path constraint corresponds to X = Xmax. The input can be obtained by differentiating the
path constraint once (ς = 1):

upath = µ(S)V |X=Xmax
(65)
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Figure 2: Optimal input for Example 2

When u = upath is applied at X = Xmax, the substrate dynamics and its linear approximation are:

Ṡ = − 1
Yx

µ(S) Xmax −
1
Yp

ν Xmax +
µ(S)
V

(Sin − S) (66)

∆Ṡ =
∂µ

∂S

(
Sin − S

V
− Xmax

Yx

)
∆S − µ(S)

V
∆S (67)

It can be verified numerically that the linear approximation of the substrate dynamics is unstable.
Hence, to remain bounded, the biomass constraint has to be entered with the substrate value Se
that corresponds to the equilibrium point of the internal dynamics (66).

Since there is a single input, there is no need for separation of the input directions. The input can
be either constraint-seeking or compromise-seeking depending on the interval. In fact, u = η̄ in all
intervals except the second one where u = ucomp = η̃. It can be verified numerically that a small
deviation of the input in this interval has very little influence on the cost.

Minimal input parameterization:
Though there are three switching times, all of them represent achieving some intermediate goals,
such as getting to the path constraints. The first switching corresponds to reaching S = S∗. The
second and third switchings correspond to attaining S = Se and X = Xmax. So, if there are
controllers to force S = S∗ during the second interval and to have S = Se and X = Xmax during
the last interval, then there is no degree of freedom left to meet any terminal objective. This is
logical since there is no terminal constraint. Thus, the production of P is maximized by the type
and sequence of arcs shown in Figure 2.

6.3 Isothermal Semi-batch Reactor with Parallel Reactions and Selectivity Con-
straints [69, 77]

6.3.1 Description of the Reaction System

• Reactions: A+B → C, 2B → D.
• Conditions: Semi-batch, isothermal.
• Objective: Maximize the production of C at a given final time.
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• Manipulated variable: Feed rate of B.
• Constraints: Input bounds, constraints on the maximum concentrations of B and D at final

time.
• Comments: If the second (undesired) reaction were absent, it would be optimal to have as

large a value of cB as possible. The optimization potential is created by the presence of the
second reaction, thereby giving rise to a possible compromise However, this compromise is
only present if there is a constraint on the final amount of D. Furthermore since the amount
of B present in the reactor at final time is limited, the feed rate of B is turned off towards the
end of the batch. Note that, in the absence of constraints, optimal operation would simply
consist of adding all the available B at initial time (i.e., batch operation).

6.3.2 Problem Formulation

Variables and parameters: cX : Concentrations of species X, V : Reactor volume, u: Feed rate of
B, cBin: Inlet concentration of B, and k1, k2: Kinetic parameters.

Model equations:

˙cA = −k1 cA cB −
u

V
cA cA(0) = cAo (68)

˙cB = −k1 cA cB − 2 k2 c
2
B +

u

V
(cBin − cB) cB(0) = cBo (69)

V̇ = u V (0) = Vo (70)

with

cC =
1
V

(cA V − cAo Vo) (71)

cD =
1

2V
((cA + cBin − cB) V − (cAo + cBin − cBo) Vo) (72)

The numerical values are given in Table 6.

k1 0.053 l
molmin

k2 0.128 l
molmin

cBin 5 mol
l

umin 0 l
min

umax 0.001 l
min

cBf,max 0.025 mol
l

cDf,max 0.15 mol
l

cAo 0.72 mol
l

cBo 0.05 mol
l

Vo 1 l
tf 250 min

Table 6: Model parameters, operating bounds and initial conditions for Example 3

Optimization problem:

max
u(t)

J = V (tf ) cC(tf ) (73)

s.t. (68)− (70)
cB(tf ) ≤ cBf,max

cD(tf ) ≤ cDf,max

umin ≤ u ≤ umax
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6.3.3 Characterization

Types of arcs:
The types of arcs that can be present are determined using the matrixM.

F =


 −k1 cA cB
−k1 cA cB − 2 k2 c

2
B

0


 +

1
V


 −cA
cBin − cB

V


u, Fu =

1
V


 −cA
cBin − cB

V




∆Fu =
1
V


 k1 cA (cBin − cB)
k1 cA (cBin − cB) + 2 k2 cB (2 cBin − cB)

0




∆2Fu =
cBin
V


 k2

1c
2
A + 4 k1k2cAcB

k2
1c

2
A + 4 k1k2cAcB + 8 k2

2c
2
B

0


− 2 (cBin − cB)

u

V 2


 k1cA
k1cA − 2 k2(cBin − cB)

0




The matrix M = [Fu ∆Fu ∆2Fu] has structural rank 3. However, since the rank depends on
the states and input, it may be possible to reduce it by an appropriate combination of states and
input, i.e., ucomp = u(x). Hence, the options for the optimal solution are: (i) the minimum feedrate
umin, (ii) the maximum feedrate umax, and (iii) a compromise-seeking feedrate u = ucomp.

Sequence of arcs (Figure 3):

• The input is initially at the upper bound, umax, to increase cB and thus the rate of the desired
reaction.

• The input switches to the compromise-seeking arc ucomp so that only a limited amount of D
is produced.

• The input switches to umin so that cB can meet its constraint at final time.

Analytical expression for the inputs:
The combination of x and u for which the rank of M drops can be computed from det(M) = 0.
The input appears in ∆2Fu, which indicates that the order of singularity is σ = 2. Since σ + 1 =
rank(M), a static feedback for the optimal input can be computed from det(M) = 0:

ucomp =
cBincBV (k1cA(2 cBin − cB) + 4 k2cBcBin)

2(cBin − cB)
(74)

The input can be either constraint-seeking or compromise-seeking depending on the interval. In
fact, u = η̄ in the first and third intervals, and u = ucomp = η̃ in the second one. It can be verified
numerically that a small deviation of the input in this interval has very little influence on the cost.

Minimal input parameterization:
The two switching times (tm and ts – See Figure 3) parameterize the solution completely. In turn,
they are determined by the two active terminal constraints cB(tf ) = cBf,max and cD(tf ) = cDf,max.
Thus, the two parameters in this example are constraint-seeking parameters. Furthermore, it is
possible to approximate ucomp(t) by a piecewise constant or piecewise linear profile rather than
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using the expression (74). Consider the case of a piecewise constant approximation of ucomp(t)
with the scalar value us. Thus, there are three parameters, (tm, ts, and us), to meet the two
terminal constraints and optimize the cost.

Separation of constraint-seeking and compromise-seeking parameters:
To determine the constraint-seeking and compromise-seeking parameters, the gain matrix G : π →
T , computed in the neighborhood of the optimal solution, with π = [tm, us, ts]T and T (x(tf )) =
[cD(tf )− cDf,max, cB(tf )− cBf,max]T , can be used:

G =

[
0.6× 10−3 1.5× 102 0.5× 10−3

1.9× 10−5 0.2× 102 1.1× 10−3

]

The compromise-seeking parameter π̃ is given by the null space of G and corresponds to π̃ =
tm− 4× 10−6us +4.7× 10−2ts. Since the contributions from us and ts are negligible, tm essentially
acts as the compromise-seeking parameter. It is interesting to note that tm, which was a constraint-
seeking parameter when ucomp was not approximated, becomes a compromise-seeking parameter
after the approximation.
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Figure 3: Optimal input for Example 3

6.4 Nonisothermal Semi-batch Reactor with Series Reactions and a Heat Re-
moval Constraint

6.4.1 Description of the Reaction System

• Reactions: A+B → C → D.
• Conditions: Semi-batch, exothermic, nonisothermal, operated in a jacketed reactor such that

the reactor temperature can be adjusted quickly.
• Objective: Maximize the production of C at a given final time.
• Manipulated variables: Feedrate of B and reactor temperature.
• Constraints: Bounds on feedrate and reactor temperature, constraint on the maximum heat

that can be removed by the cooling system, constraint on the maximum volume.
• Comments: The reactor temperature is assumed to be a manipulated variable though, in

practice, either the flowrate or the temperature in the cooling jacket is manipulated. The
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heat balance equation for the reactor is: ρ cp
d(V T )
dt = qrx − qin − qex, where V is the volume,

T the reactor temperature, ρ the density, cp the heat capacity, qrx the rate of heat produced
by the reactions, qin the rate of heat removal associated with the feed of B, and qex the
rate of heat removal through the cooling jacket. The inclusion of the heat balance equation
complicates the analytical expressions without fundamentally changing the type and sequence
of arcs present in the solution. So, for simplicity, the heat balance equation is neglected.
However, to guarantee meeting the upper bound on qex even in the worst case, it is necessary
to limit qrx as follows: qrx ≤ max(qex) + min

(
qin + ρ cp

d(V T )
dt

)
≡ qrx,max. Thus, an upper

bound on the heat rate produced by the reactions, qrx ≤ qrx,max, is imposed as a constraint.

The optimal solution tries to reduce the temperature towards the end so that the undesired
reaction, which utilizes the desired product C, is slowed down. The compromise between the
production and consumption of C corresponds to a compromise-seeking temperature profile.
As far as the feedrate is concerned, it is first determined by the heat removal constraint and
then by the volume constraint.

Without any constraints, optimal operation would consist of adding all the available B at
initial time and following a temperature profile that expresses the compromise between the
production and consumption of C.

6.4.2 Problem Formulation

Variables and parameters: cX : Concentration of species X, T : Reactor temperature, u: Feedrate
of B with inlet concentration cBin , V : Reactor volume, qrx: Heat production rate, k1o, k2o: Pre-
exponential factors, E1, E2: Activation energies, R: Gas constant, ∆H1,∆H2: Reaction enthalpies.

Model equations:

˙cA = −k1 cA cB −
u

V
cA cA(0) = cAo (75)

˙cB = −k1 cA cB +
u

V
(cBin − cB) cB(0) = cBo (76)

˙cC = k1 cA cB − k2 cC −
u

V
cC cC(0) = cCo (77)

V̇ = u V (0) = Vo (78)

with k1 = k1o e
−E1
RT , k2 = k2o e

−E2
RT . The numerical values are given in Table 7.

k1o 4 l
mol h

k2o 800 1
h

E1 6× 103 J
mol

E2 20× 103 J
mol

R 8.31 J
molK

∆H1 −3× 104 J
mol

∆H2 −104 J
mol

umin 0 l
h

umax 1 l
h

Tmin 20 ◦C
Tmax 50 ◦C
Vmax 1.1 l
qrx,max 1.5× 105 J

h

cAo 10 mol
l

cBo 1.1685 mol
l

cCo 0 mol
l

Vo 1 l
cBin 20 mol

l
tf 0.5 h

Table 7: Model parameters, operating bounds and initial conditions for Example 4
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Optimization problem:

max
u(t), T (t)

J = cC(tf )V (tf ) (79)

s.t. (75)− (78)
Tmin ≤ T (t) ≤ Tmax

umin ≤ u(t) ≤ umax

(−∆H1) k1 cA cB V + (−∆H2) k2 cC V ≤ qrx,max

V (tf ) ≤ Vmax

6.4.3 Characterization

Model reduction: Since the equations (75)-(78) are linear dependent, one of the state can be re-
moved, which leads to:

ẋ1 = −k1 x1 cB x1(0) = Vo cAo (80)
ẋ2 = k2 (x1 − x2) x2(0) = Vo (cAo + cCo) (81)
ẋ3 = u x3(0) = Vo (82)

where x1 = V cA, x2 = V (cA + cC), x3 = V , and cB = 1
x3

(cBinx3 + x1 + Vo (cBo − cAo − cBin)).

Types of arcs:
The types of arcs that can be present is determined using the matrices Mu and MT for the two
inputs.

F =


 −k1 cA cB V
−k2 cC V

0


 +


 0

0
1


u, Fu =


 0

0
1


 , FT =

V

RT 2


 E1 k1 cA cB

E2 k2 cC
0




∆Fu =


 k1 cA (cBin − cB)

0
0


 , ∆2Fu =


 k2

1 c
2
A cBin

k1 k2 cA (cBin − cB)
0


− 2u

V
∆Fu +

E1 Ṫ

R T 2
∆Fu

∆FT = − V

RT 2


 0
k1 k2 cA cB (E1 − E2)

0


− Ṫ V

R2 T 4


 E1 k1 cA cB (E1 − 2RT )

E2 k2 cC (E2 − 2RT )
0


 +

E1 u

RT 2
∆Fu

It can be verified that the matrix Mu = [Fu ∆Fu ∆2Fu] has structural rank 3. Furthermore,
the rank is independent of the states and inputs. Thus, the input u is always determined by the
input bounds and the path constraint: (i) u = umin, (ii) u = umax, and (iii) u = upath.

The matrixMT = [FT ∆FT ∆2FT ] has structural rank 2 since the third element of all concerned
vector fields is zero. Intuitively, this is because the temperature cannot affect the volume. Even
though the structural rank is 2, the rank depends of the states and inputs. So, the temperature
can correspond to a compromise-seeking input and be in the interior of the feasible region. Hence,
the possible arcs for the optimal temperature are: (i) T = Tmin, (ii) T = Tmax, and (iii) T = Tcomp.
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Specific choice of experimental conditions:
The number and sequence of arcs actually present in the optimal solution depend on the experi-
mental conditions. Let the initial conditions be chosen such that as much B as possible is charged
initially in the reactor while still meeting the heat removal constraint. Thus, cBo is chosen to verify
(−∆H1) k1 cAo cBo Vo + (−∆H2) k2 cCo Vo = qrx,max.

Sequence of arcs:

• Since the initial condition cBo verifies qrx(0) = qrx,max, the feedrate input upath is applied to
keep the path constraint active.

• Once the constraint on the maximum volume is attained, the feedrate is set to umin = 0.
• The temperature starts at its upper bound Tmax to favor the desired reaction.
• Later, the temperature switches to Tcomp(t) to take advantage of the temperature-dependent

compromise between the production and consumption of C.

Analytical expression for the inputs:
upath is obtained by differentiating the path constraint regarding the heat production rate (ςu = 1):

upath = V

(
(−∆H1) k2

1 cA cB (cA + cB)− (−∆H2) k2 (k1 cA cB − k2 cC)
)

(−∆H1) k1 cA (cBin − cB)
−

Ṫ V

R T 2

(
(−∆H1) E1 k1 cA cB + (−∆H2) E2 k2 cC

)
(−∆H1) k1 cA (cBin − cB)

(83)

Tcomp is obtained from the combination of x, u, and T for which the rank of MT drops. This can
be computed from the determinant of the first two rows of FT and ∆FT . Since FT is already a
function of T , the order of singularity is σT = 0. Since σT + 1 < rank(MT ) = 2, Tcomp corresponds
to a dynamic feedback:

Ṫcomp = −R T 2 k1 cA cB
E2 cC

− R T 2 (cBin − cB)
cB (E1 − E2)

u

V
(84)

The initial condition of Tcomp as it enters the compromise-seeking arc is a decision variable, but it
can be verified numerically that it is equal to Tmax. It is interesting to note that upath depends on
Ṫ , and Ṫcomp depends on u. So, if in a given interval u is determined by the path constraint and T
is compromise-seeking, then the two equations (83) and (84) have to be solved simultaneously.

The optimal inputs for the feedrate and temperature are depicted in Figure 4. When the temper-
ature switches to the interior of the feasible region, there is a discontinuity in the feedrate due to
the coupling between the two inputs (see equation (83)). Similarly, when the feedrate switches to
zero due to the volume constraint, there is a difference in the rate of change of temperature (see
equation (84)).

Separation of constraint-seeking and compromise-seeking input directions:
There are three arcs in this solution and each of them needs to be addressed separately.

• In the first arc, both inputs are on path constraints, i.e, η̄ = {u, T}, and η̃ = {}.
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Figure 4: Optimal feedrate and temperature profiles for Example 4

• In the second arc, only the path constraint regarding the heat production rate is active,
for which two inputs are available. Any choice of u and Ṫ which satisfies (83) will keep
the path constraint active. So, (83) is differentiated with respect to u and Ṫ to compute
the constraint-seeking direction η̄ (see Section 5.2). The compromise-seeking direction η̃ is
constructed orthogonal to the constraint-seeking direction.

η̄ = u
(−∆H1) k1 cA (cBin − cB)

V
+ Ṫ

(−∆H1) E1 k1 cA cB + (−∆H2) E2 k2 cC
R T 2

η̃ = u
(−∆H1) E1 k1 cA cB + (−∆H2) E2 k2 cC

R T 2
− Ṫ

(−∆H1) k1 cA (cBin − cB)
V

• In the third arc, only the input bound for the feedrate is active. So, η̄ = u, and η̃ = T .

Minimal input parameterization:
The two switching times (tT and tu – see Figure 4) parameterize the solution completely. Since
there is only one active terminal constraint, V (tf ) = Vmax, one combination is constraint-seeking.

Separation of constraint-seeking and compromise-seeking parameters:
The gain matrix, in the neighborhood of the optimum, G : π → T , with π = [tT tu]T and T (x(tf )) =
V (tf )− Vmax is given by G =

[
0.3 −0.4

]
. The compromise-seeking parameter π̃ is given by the

null space of G and corresponds to π̃ = tu − 1.33 tT .

7 Conclusions

Most techniques proposed in the literature for the optimization of dynamic processes take a nu-
merical approach. In contrast, this paper emphasizes the solution structure that arises from an
interplay between manipulated variables, cost and constraints. A series of examples are provided
to illustrate the theoretical concepts.

One of the advantages of understanding the structure of the optimal solution is the enhancement
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of numerical efficiency. However, this advantage is important only for the class of problems where
the solution is determined by the constraints, a category which contains most batch processes.

Handling uncertainty in the context of optimization is a very important issue, especially in the
presence of constraints on quality and safety. Most optimization techniques are model-based, while
perfect models of industrial batch processes are rarely available. On the other hand, frequent
process measurements which have been made possible by recent developments in sensor technology
are now available in many industrial setups. Hence, measurement-based optimization strategies are
necessary to cope with uncertainty. These strategies, which constitute the focus of the companion
paper [75], are based on the characterization presented in this work.
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