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Abstract

An increasing effort is being devoted to consider controllability issues (or in a wider sense operability issues) at the process design

stage. Controllability has mainly to do with dynamics in the face of disturbances. One philosophy for the integration of design and

controllability is to explicitly consider dynamic elements within the process design formulation. An outstanding feature of dynamics

is stability, which is related with the spectrum (set of eigenvalues) of the dynamic system Jacobian matrix. Dynamic convergence

speed may also be analyzed in terms of the eigenvalues of the matrix from a Lyapunov function related to the Jacobian of the

system. It is the purpose of this contribution to formulate and solve the chemical process design problem, considering process

dynamics from an eigenvalue optimization approach.
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1. Introduction

The underlying idea behind the interaction between

process design and process operability is to perform

some sort of operability assessment at the early stages of

the process design procedure in order to generate a

design with good operability characteristics. Such an

interaction becomes necessary since the traditional

approach to process design, just interested in steady-

state economic optimality, or little more, could lead to

difficult or even impossible to operate processes.

Process operability is a wide concept, which is made

up by an amount of elements. As pointed out by Wolff,

Perkins and Skogestad (1994), outstanding elements of

operability are optimality, stability, flexibility and con-

trollability. Risk and environmental issues are also

becoming increasingly important within the operability

definition.

Optimality in an economical sense is a natural goal of

chemical process design. Open-loop local asymptotic

stability of the operating point, which implies the

existence of a certain domain of attraction for such

equilibrium, is a major feature and can by itself decide

the fate of the operation. Then, although operation at an

open-loop unstable steady-state may be feasible under

feedback control, it is undesirable and should be avoided

by proper design. Flexibility implies ensuring feasible

regions of steady state operation in the face of dis-

turbances and parametric uncertainty. Controllability

has to do with closed-loop dynamic response quality

between different steady states, as a result of distur-

bance-rejection and servo-actions (the latter case is also

referred as switchability). A high quality transient

response involves a fast and not very oscillating

trajectory, without violation of potential path con-

straints.

There exists an increasing interest in integrating these

and other operability elements at the design stage since

it is known that operability strongly depends on design.

In the last couple of decades an increasing effort has

been devoted to the development of operability analysis

tools. In terms of philosophies we can mention three

major approaches to the design-for-operability problem:

heuristic approach, operability measures and complete
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integration. See Lewin (1999) for a comprehensive

review on the subject.

Design heuristics approach relies on well proved

recipes based mostly on experience. Within such an
approach the book by Douglas (1988) on conceptual

design is remarkable. It makes wide use of experience

based knowledge in the form of rules of thumb.

Operability measures describe particular operability

features and become valuable tools in order to screen or

classify alternative designs regarding a particular oper-

ability issue (Barton, Chan & Perkins, 1991). A parti-

cularly important set of operability measures is that of
open-loop controllability and resiliency indices. Such

indices are mostly based on linearized models. We can

mention Relative Gain Array and singular value decom-

position techniques among others.

Integration between process design and process oper-

ability implies the explicit inclusion of operability

elements within the process design formulation, in order

to generate inherently operable designs. A number of
alternative formulations of the design-for-operability

integration approach have been proposed. For example,

Luyben and Floudas (1994) proposed a multi-objective

optimization approach between economic and operabil-

ity (typically a controllability or resiliency index)

objectives. Another ambitious formulation within this

category is that of Mohideen, Perkins and Pistikopoulos

(1996) in which a mixed-integer non-linear program-
ming problem is posed, such that both, a design super-

structure and a Proportional-Integral feedback control

superstructure are simultaneously solved.

All the previous approaches require some extent of

non-linear dynamic simulation to validate the resulting

design. This used to be a time consuming and compu-

tationally demanding activity. Current practice in the

design-for-operability problem involves some degree of
combination of all of the three approaches. However,

the trend is in the sense of complete integration,

although the complexity in modeling and solving the

problem increases towards integration.

In this contribution, which is intended to fit in the last

category, an integrating approach is proposed to con-

sider dynamics within the process design optimization

problem making use of the direct relation between
system dynamics and eigenvalue theory. Dynamic

stability has to do with the set of eigenvalues of the

dynamic system Jacobian matrix (A). Transient response

speed has also to do with the spectrum of the matrix

from the Lyapunov identity related to A.

Lyapunov’s theory has been applied some decades

ago to the study of dynamic stability of chemical

processes (Berger & Perlmutter, 1964, for example) but
mainly from an analysis point of view. Energy function

methods have been almost neglected from since in

chemical engineering literature. This responds to inher-

ent drawbacks in the application of such techniques to

the difficult non-linear dynamics of chemical processes.

It is our belief, however, that energy function techniques

are still valuable in chemical process dynamics and this

contribution intends to be a step in such direction.
Eigenvalue optimization is a subject of interest in

many fields of applied science (Lewis & Overton, 1996)

and present challenging algorithmic features since

models that involve eigenvalues (as objective function

and/or constraints) may become non-smooth when

coalescing eigenvalues appear (Ringertz, 1997).

Two different formulations are proposed in this

contribution: design for local asymptotically stable
operating points and design for fast local transients.

The former is applied to the economically optimal

design problem and the later to the optimal controller-

tuning problem.

The proposed methodology is known to overcome

several drawbacks that arise when eigenvalues are

present in optimization models: the lack of analytic

expressions for the eigenvalues of larger than 4 by 4
matrices and the potential non-smoothness of the

resulting formulations as already commented. It is also

expected to be a step in the sense of avoiding the tedious

dynamic simulation at the process design stage.

In the following sections, most relevant theoretical

topics concerning this contribution are briefly intro-

duced, then proposed formulations are presented and

outlined through a simple motivating example and
finally applied to the design and control of simple,

although meaningful, chemical engineering models.

2. Lyapunov’s stability theory

For a general non-linear dynamic system ẋ�f(x);
local analysis of the steady-state equilibrium xss is the

best we can do regarding stability. For asymptotic local

dynamic stability we understand the existence of a

certain neighborhood around the equilibrium point

within which asymptotically stable trajectories originate.
This means that any trajectory starting inside this

neighborhood also called stability region or domain of

attraction (Fig. 1), approaches the equilibrium point as

Fig. 1. Domain of attraction for a two states system.
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time increases. At the moment we are not interested in

the shape or size of such a region but just on its

existence. In the present section, some basic ideas from

dynamic systems theory are reviewed. See, for example,
Vidyasagar (1993) for a complete analysis.

2.1. Lyapunov’s linearization method

Consider the free, autonomous (time invariant) dy-

namic system:

dx

dt
�f(x); f(0)�0 (1)

where x, represents the deviation state vector. We can

put f(x)�Ax�f1(x); where A�/[@f/@x]x�0. Then, it

can be proved (Vidyasagar, 1993) that 0 is an exponen-

tially stable local equilibrium of Eq. (1) if all eigenvalues

of A have negative real parts (if A is a Hurwitz matrix).

Lyapunov’s stability theory provides an energetic ap-
proach to stability. Quadratic form V(x)�/xTPx is a

suitable Lyapunov function for system (Eq. (1)) (which

means that matrix A is a Hurwitz matrix) if matrix P is

positive definite (real and symmetric) and the energy

function derivative with respect to time V̇(x)�
�xTQx�2xTPf1(x); verifies that matrix Q is also

positive definite (real and symmetric). Matrices A, P

and Q are related through Lyapunov’s matrix equality:

ATP�PA�Q�0: (2)

Usual practice is to choose matrix Q to be a positive

definite symmetric matrix (in general the identity

matrix). Therefore, provided A, Eq. (2) can be solved

for P, also symmetric. If P is positive definite, then A is a

Hurwitz matrix. Furthermore (Vidyasagar, 1993), define

Br�fx � Rnj½½x̄½½Brg such that (let li denote eigenva-

lue):

½½f1(x)½½

½½x½½
B

lmin(Q)

2lmax(P)
; � x � Br: (3)

It stands that V̇ (x)B0; whenever x � /Br and x"/0.

Therefore, Br, provides an estimate of the domain of

attraction of 0, that is, the region of the state space
where asymptotically stable trajectories are generated.

2.2. Estimation of transients

Consider now parameter h, defined as: h�
minx f(�dV(x)=dt)=V(x)g; which may be loosely re-

garded as the reciprocal of the largest time constant

descriptive of the motion over the region of asymptotic

stability and is, therefore, a figure of merit for the
control system. A large value of h indicates that the

system returns rapidly to the origin. In particular, from

Eq. (2), it is found (Koppel, 1968) that

h�lmin(P�1Q) (4)

3. Eigenvalue optimization

Eigenvalues of matrices play important roles in many

fields of applied mathematics to engineering. For certain
applications it might be desirable to formulate optimi-

zation problems involving eigenvalues of matrices as

objective functions and/or constraints.

Our particular interest in eigenvalue optimization

is related to the contents of the previous section where

the connections between eigenvalues and system dy-

namics (mostly the stability issue) were roughly estab-

lished.
It is the purpose of this section to provide a brief

overview of the most relevant topics on eigenvalue

optimization. For a comprehensive survey on the

subject, which also includes an historical account of

the development of the field, see Lewis and Overton

(1996).

The main difficulty arising in eigenvalue optimization

problems is the potential coalescence of eigenvalues. The
eigenvalues of a matrix with differentiable elements

(smooth in the optimization variables) are themselves

non-differentiable (non-smooth) at the points where

coalescence occurs. It is also frequent that the optimiza-

tion objective tends to make the eigenvalues coalesce at

the solutions (Overton, 1992). The following classic

example illustrates this point. Consider the following

matrix:

A(x)�
1�x1 x2

x2 1�x1

� �

whose eigenvalues are:

19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1�x2
2

q

It can be seen that the maximum eigenvalue is

minimized by x1�/x2�/0. Clearly the maximum eigen-

value is not a smooth function in such a point. Then it is

necessary to develop specialized optimization methods

to overcome this difficulty.

Besides this potential non-smoothness, there exist the
impossibility of obtaining mathematical expressions for

the eigenvalues of larger than 4 by 4 systems (Kokossis

& Floudas, 1994). This makes it impossible to include

eigenvalues within the optimization model in a straight-

forward manner (as objectives and/or constraints).

Furthermore, even in the cases where analytical expres-

sions can be obtained, their usual high complexity and

non-convexity make difficult to standard NLP solvers to
cope with them.

An amount of well-developed theory is available for

the case of eigenvalue optimization of symmetric
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matrices depending linearly on the optimization vari-

ables and subject to linear constraints. The general non-

linear unsymmetric case has been far less boarded

although some meaningful results have been obtained
in the field of structural design (Ringertz, 1997).

This contribution is an attempt to apply some of those

results in the chemical engineering area. Just an

introduction to the main ideas is going to be presented

in the remainder of this section since details are provided

in the following sections where specific problems are

proposed and analyzed through examples.

Most of the eigenvalue optimization theory has been
developed for real symmetric matrices. It is known that

such matrices have real eigenvalues. Unsymmetric

matrices, on the other hand, have complex eigenvalues

in general. It is possible, however, to translate the

constraint on the real part of the eigenvalues of a real

unsymmetric matrix (say A) to be negative, into a

positive definiteness condition on a real symmetric

matrix (P) through Lyapunov’s matrix equality Eq.
(2). Since it is a sufficient and necessary condition for a

real symmetric matrix to be positive definite its eigen-

values to be positive, the condition on the eigenvalues of

the ‘difficult’ unsymmetric matrix A is translated into

another condition on the eigenvalues of the ‘not-so-

difficult’ symmetric matrix P.

In order to avoid the potential non-smoothness

arising in eigenvalue optimization as already commen-
ted, interior-point/logarithmic-barrier-transformation

techniques have been successfully applied (Ringertz,

1997). For a comprehensive reference of interior-point

optimization, see Fiacco and McCormick (1990). The

underlying idea behind interior-point minimization, in

particular that which makes use of logarithmic penalty

functions, is to reduce in value the objective function,

simultaneously assuring non-violation of the con-
straints. The strategy consists in penalizing the objective

function with logarithmic terms whose arguments are

the constraints themselves expressed in the form of

greater than zero.

Making use of logarithmic and matrix determinant

properties, it will be shown that the n (potentially non-

smooth) constraints on the eigenvalues of matrix P

(where n is the size of the dynamic system) may be
comprised into one simple logarithmic term involving

the determinant of matrix P which is a smooth function

of the optimization variables.

4. Optimal design of stable processes

The basic general problem of (steady-state) chemical

process design may be posed as a constrained, non-
linear programming problem under uncertainty. Local

stability at the steady-state equilibrium point requires

the jacobian (unsymmetric) matrix of the dynamic

system (A) to be Hurwitz. In terms of eigenvalues, the

design problem may be formulated as:

min
y

F(y; u)

s:t: Re(li(A(y; u))B0; i�1; . . . ; n

h(y; u)�0

g(y; u)50

y � Y; u �V

(5)

where, y is the vector of optimization variables and u the

vector of uncertainty. In general, F(y, u) is an economic

type objective function, h(y, u) is the set of equality
constraints (mass and energy steady-state balances,

geometric and equilibria relationships, etc.) and g(y, u)

is the set of inequalities (operational and design

constraints).

Such a problem has been addressed by Kokossis and

Floudas (1994) and applied to the meaningful problem

of complex reactor network synthesis. In their work the

authors propose a matrix measure relaxation approach
for bounding the eigenvalues of A in order to ensure

local dynamic asymptotic stability of the design. With a

similar philosophy, dynamics is explicitly considered

within the design problem from an eigenvalue optimiza-

tion approach in this contribution.

Such a problem may be non-smooth because of the

eigenvalue constraints (Ringertz, 1997). In order to

avoid the difficulties of solving problem Eq. (5), the
stability issue is considered by adding Lyapunov’s Eq.

(2) to the steady state model of the system and requiring

positive definiteness on symmetric matrix P�/[pij]

(Pc0) provided that matrix Q is symmetric and positive

definite (usually Q�/I):

min
y

F(y; u)

s:t: AT(y; u)P�PA(y; u)�I�0

Pc0

h(y; u)�0
g(y; u)50

y � Y; u �V

(6)

The above is a non-linear semi-definite programming

problem because of the positive definiteness requirement

on matrix P, which implies that li(P)�/0, i�/1, . . ., n.

Since Lyapunov’s equation might force matrix P to

become unbounded when the largest eigenvalue of A

approaches zero, an equivalent, but numerically better

posed constraint is P�1c0, which implies li(P
�1)�/0,

i�/1, . . ., n:

min
y

F(y; u)

s:t: AT(y; u)P�PA(y; u)�I�0
li(P

�1)�0; i�1; . . . ; n

h(y; u)�0

g(y; u)50

y � Y; u �V

(7)

Such a problem may be efficiently tackled via interior-
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point methods. In terms of a logarithmic barrier

transformation, problem Eq. (7) can be reformulated

as (Ringertz, 1997):

min
y
fF(y; u)�m log(det P)g

s:t: AT(y; u)P�PA(y; u)�I�0

h(y; u)�0

g(y; u)50

y � Y; u �V

(8)

since a
n

i�1 log(li(P
�1))� log

Qn

i�1 li(P
�1)� log/

/(det(P�1))��log(det(P)): From a feasible starting-

point (Pc0), the solution of Eq. (8) converges to the

solution of Eq. (7) for a decreasing sequence of barrier

parameters {mk} as mk0/0. Positive definiteness on

matrix P should be ensured at the solution since
det(P)�/0 is not a sufficient condition.

4.1. Algorithmic insight

Before going on further, some comments on algo-
rithmic issues should be done. The above described

interior-point/logarithmic-barrier-transformation pro-

blems are solved in the present contribution with

standard NLP solvers and positive definiteness of matrix

P checked at the solution since, as already commented,

determinant of matrix P being positive is not a sufficient

condition for matrix P being positive definite.

Such an approach has several drawbacks. In interior-
point/logarithmic-barrier-transformation techniques,

the constraints (expressed as greater than zero) are

arguments of logarithmic functions. Along the optimi-

zation process, it may happen that some constraint

become zero or negative undetermining the logarithm

and producing a runtime error. In order to cope with

such situations interior-point/logarithmic-barrier-trans-

formation optimization algorithms use to check con-
straint feasibility before evaluating the objective

function, and if violation verifies, backtracking is

performed on the line-search until feasibility is achieved

(bear in mind that feasibility in the starting point is

required in interior point techniques).

In our particular optimization problem, matrix P

positive definiteness checking convenience is two-fold. It

may happen that along the optimization an odd number
of eigenvalues change sign simultaneously making

matrix P determinant negative and runtime error

occurrence. Even worse, it may happen that an even

number of eigenvalues change sign simultaneously such

that matrix P determinant remains positive but loosing

positive definiteness condition on P and hence local

stability.

For the general case, an algorithm that checks
positive definiteness on P in each iterate (by checking

its eigenvalues, for example) and the step-length para-

meter in line-search reduced until positive definiteness

condition is achieved should be applied (Fig. 2). Such an

algorithm has been applied in the solution of large-scale

models within the structural design field (Ringertz,

1997).

4.2. Parametric uncertainty

Formulation Eq. (8) involves uncertain parameters

and represents, therefore, an infinite dimensional opti-

mization problem. An amount of approaches has been

presented for optimal process design under uncertainty

within deterministic, probabilistic and flexibility-analy-

sis philosophies (Pistikopoulus & Ierapetritou, 1995).
In this work a classic deterministic-based approxima-

tion is considered, which drives to a multi-period

program when disturbance and parametric uncertainty

vectors are specified in advance according to a certain

realization. A general formulation of the problem may

be:

min
y

P(y; u)

s:t: h(y; u)�0
g(y; u)50

y � Y�fyjyl 5y5yug
u �V�fujul 5u5uug

(9)

where y is the vector of optimization variables and u the

vector of uncertainty. Vector y comprises design, control

and state optimization variables, with usual definitions
each. The underlying idea of the deterministic-based

approach for design under uncertainty is to transform

the original, semi-infinite in u, optimization problem

into a deterministic approximation by specifying in

advance a number of uncertain parameter realizations,

giving rise to the following multi-period program:

min
y

XN

i�1

P(yi; ui)

s:t: hi(yi; ui)�0

gi(yi; ui)50

�
i�1; . . . ; N

yi � Y; ui �V (10)

Note that a subset of variables of vector yi, the so-

called design variables, remains the same for all the
periods since it corresponds to the vector of degrees of

freedom of the algebraic equation system of the model.

It should be emphasized that problem Eq. (10) is an

approximation to the direct solution of problem Eq. (9)

due to its discrete nature. Such an approach has been

adopted here to cope with uncertainty because of its

straightforward application.

The related multi-period formulation Eq. (10), of Eq.
(8) is:

min
yi

�XN

i�1

F(yi; ui)�m
XN

i�1

log(detPi)

�
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s:t: AT(yi; ui)Pi�PiA(yi; ui)�I�0

hi(yi; ui)�0
gi(yi; ui)50

�
i�1; . . . ; N

yi � Y; ui
�V (11)

By means of the above formulation the existence of a
certain domain of attraction for every point of the

uncertain parameter vector realization can be ensured.

This is roughly sketched in Fig. 3 for a two states system

and two points of uncertainty realization.

As already commented, constraint feasibility (which

implies local stability) is only ensured at the provided

discrete realization and not in the whole parameter

space. Other strategies to cope with uncertainty in a
more elegant and conclusive fashion could be applied

(Raspanti, Bandoni & Biegler, 2000).

The above ideas are illustrated through the following

simple extended example from Kokossis and Floudas

(1994).

4.3. Motivating example

Consider the optimization problem:

min x2
2

associated with the dynamical system:

ẋ1�x2
1�x2

2�c

ẋ2�x2
1�x2�4p

and variable restrictions:

05p51

x150

x2]0

x1 and x2 are the state variables, p is a design parameter

and c is an uncertain parameter expected to vary in the

range {0.9, 1.05}.

It is interesting to note that for certain uncertain

parameter realizations (c�/1, for example) the corre-

sponding steady state optimization problem of the
above model (with no stability constraints) drives to

an unstable solution as reported in Kokossis and

Floudas (1994), although a better optimum is obtained.

Fig. 2. Suggested algorithm for large-scale models.

Fig. 3. Local stability for uncertainty realization.
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The system jacobian matrix of the dynamic system is

A�/[aij]:

A�
2x1 2x2

2x1 1

� �

In order to consider the stability issue, the model is
formulated as Eq. (8):

minfx2
2�m log(det P)g

s.t.Jacobian matrix elements definition

a11�2x1

a12�2x2

a21�2x1

a22�1

Lyapunov’s equation elements

0�2a11p11�2a21p12�1

0�a11p12�a21p22�a12p11�a22p12

0�2a12p12�2a22p22�1

Determinant definition

det P�p11p22�p2
12

Steady state equations

0�x2
1�x2

2�c

0�x2
1�x2�4p

Variable constraints

05p51

x150

x2]0

Parameter c realization is assumed to be {0.90, 0.95.

1.00, 1.05}, and the above model posed as Eq. (11).

Table 1 summarizes the optimization results.

The problem was solved with GAMS/CONOPT2

(Brooke, Kendrick & Meeraus, 1996). As expected,

corresponding Jacobian matrices are Hurwitz and then
local stability is verified for the proposed parameter

realization.

As can be concluded by inspection of the resulting

spectra, the system verifies different local convergence

behavior for the different parameter realization points,

from fast non-oscillating response (c�/0.95) to slow

oscillating transients (c�/1.05).

It is also noticeable that almost critical stability

(Re(li)$/0) is achieved for c�/0.95 and 1.05. Critical
stability is dangerous in the face of parametric un-

certainty since small perturbations may force the

eigenvalues of the system to become unstable. There-

fore, certain stability margin might be desirable. As

already commented the proposed multi-period approach

to cope with uncertainty is not conclusive since local

stability is only ensured at the considered discrete values

and not for the whole uncertain space. A more general
approach to flexibility (Raspanti et al., 2000) in order to

ensure robust stability will be considered for future

research.

The eigenstructure of A is related to the value of the

determinants of the leading minors of P in a non-evident

way. The final values of such determinants depend on

how small barrier parameter m is allowed to become. It

was observed that the smaller the m, the closest the
system to critical stability. This suggests the conflicting

nature between the ‘cost objective’ and the ‘stability

objective’. Parameter m final value might be a way to

establish the desirable stability margins. In all the

presented examples m was made as small as 10�4.

4.4. Chemical engineering example: CSTR

Jacketed exothermic continuous stirred tank reactors

(CSTRs) have been widely studied (Russo & Bequette,

1995) because of their challenging operational features

and their outstanding importance in process industry.

From Devia and Luyben (1978), the dynamics of a

typical CSTR (Fig. 4) in which an homogeneous,
exothermic, first order, A0/B reaction takes place, is

described by the following set of equations:

dCA

dt
�

	
F

VR



CA;0�

	
F

VR



CA�CAa e�E=RT

dT

dt
�

	
F

VR



T0�

	
F

VR



T�

lCAa
rCp

e�E=RT�
UAH

rVRCp

� (T�TJ)

dTJ

dt
�

	
FJ

VJ



(TJ;0�TJ)�

UAH

rJCJVJ

(T�TJ)

Table 1

Optimization results of motivating example

c p x1 x2 l1 l2

0.90 0.287 �/0.806 0.501 �/0.607 �/0.005

0.95 0.287 �/0.653 0.724 �/1.153�/0.749i �/1.153�/0.749i

1.00 0.287 �/0.578 0.816 �/0.077�/0.850i �/0.077�/0.850i

1.05 0.287 �/0.513 0.887 �/0.012�/0.890i �/0.012�/0.890i
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Reactor temperature (T), reactant A concentration

(CA) and cooling fluid temperature (TJ) are the states of

the system. The following restrictions should be con-
sidered in the design formulation because of geometric

and operational reasons:

HR�2DR

AH�pDRHR�
p
4

D2
R

V�
p
4

D2
RHR

VJ�0:25V

55DR515

6505T5725

6505TJ5700

05CA50:01

DR, AH and VR stand for reactor diameter, reactor

heat transfer area and reactor volume, respectively. VJ

represents reactor jacket volume. Since heat transfer

area is related to the square of the diameter, and reactor

volume is related to the cubic of the diameter, certain

designs may result unstable if enough heat-transfer

capacity per unit volume is not achieved, as reported
in Devia and Luyben (1978) for a number of cases. The

proposed technique to ensure local dynamic stability in

an uncertainty framework was applied to the design of

the CSTR.

A typical total cost objective function to be minimized

has been considered:

Cost�c1D1:066
R H0:802

R �c2FJ

The first term of the objective represents the capital

cost, which depends on the size of the vessel according
to a potential law. The second term stands for operating

cost and is a linear function of the cooling utility.

Productivity is not explicitly considered in the objective

function since output reactant concentration is restricted

to be low and then high conversion is achieved in the

reactor.

The design problem was solved for the numerical data

of Table 2 and the following uncertainty realization: CA

(mol/cu. ft.)�/{0.45, 0.50, 0.55}, T0 (R)�/{525,

530,535}, and U (Btu/h per sq. ft. per R)�/{145, 150,

155}. The proposed formulation was implemented in

GAMS/rSQP and a reactor diameter Dr�/5.18 ft. and

cooling flow-rate, Fj�/45.44 cu. ft./h were obtained as

the design that is open-loop stable for the considered

uncertainty and model constraints.

5. Optimal dynamic performance

Within the same philosophy, it is possible to for-

mulate the design problem in order to optimize some

sort of dynamic performance index. From Eq. (4) (let

choose Q�/I, as it is in general suggested) it can be seen

that h�/lmin(P�1) becomes a natural objective function

to be maximized in order to achieve a fast as possible

transient response. Since lmin(P�1)�/1/lmax(P), max-

imizing lmin(P�1) corresponds to minimize lmax(P),
which is also a desirable objective in order to enlarge the

estimate of the domain of attraction of the origin, as can

be concluded from Eq. (3). Positive definite condition on

matrix P (or on P�1) is also required. The resulting

problem turns to become the following eigenvalue

optimization, non-linear semi-definite programming

problem:

min
y

lmax(P)

s:t: A(y; u)TP�PA(y; u)�I�0

P�1c0

h(y; u)�0

g(y; u)50

y � Y; u �V

(12)

By considering a slack variable z, which becomes an

upper bound for the eigenvalues of P (Ringertz, 1997),

problem Eq. (12) may be posed as:

Fig. 4. Three states CSTR.

Table 2

Numerical data

Feed flow-rate F 50 cu. ft./h

Cooling water inlet temperature TJ0 530 R

Reactor liquid heat capacity Cp 0.75 Btu/lb. R

Jacket water heat capacity CJ 1 Btu/lb. R

Reactor liquid density r 50 lb/cu. ft.

Cooling water density rJ 62.3 lb/cu. ft.

Pre-exponential factor a 7.08e10 1/hr

Activation energy E 30 000 Btu/mol

Heat of reaction l �/30 000 Btu/mol

Cost coefficient 1 C1 1917

Cost coefficient 2 C2 120
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min
y;z

z

s:t: A(y; u)TP�PA(y; u)�I�0

z�li(P); i�1; . . . ; n

li(P
�1)�0; i�1; . . . ; n

h(y; u)�0

g(y; u)50

y � Y; u �V

(13)

Again, this is a difficult non-smooth problem because

of the eigenvalue constraints. Interior-point/logarith-

mic-barrier-transformation methods shown to be effec-
tive to tackle such problems as already commented. The

barrier term corresponding to the z�/li(P)�/0, i�/1, . . .,

n constraints, may be posed as a
n

i�1 log(z�li(P))�
log

Qn

i�1(z�li(P))� log(det(zI�P)): As already seen in

the former sections, the barrier term for li(P
�1)�/0, i�/

1, . . ., n is �/log(det(P)). Positive definiteness of both

zI�/P and P should be verified at the solution as also

commented. Problem Eq. (13) may then be reformulated
as follows:

min
y;z

fz�m1 log(det(zI�P))�m2 log(det P)g

s:t: A(y; u)TP�PA(y; u)�I�0
h(y; u)�0

g(y; u)50

y � Y; u �V

(14)

Again, from a feasible starting point, the solution of

Eq. (14) converges to the solution of Eq. (13) for a
decreasing sequence of barrier parameters {mk} as mk0/

0. The corresponding multi-period approximation is:

min
yi ;zi

�XN

i�1

zi�m1

XN

i�1

log(det(ziI�Pi))�m2

XN

i�1

log(det(Pi))

�

s:t: AT(yi; ui)Pi�PiA(yi; ui)�I�0

h(yi; ui)�0

g(yi; ui)50

�
i�1; . . . ; N (15)

For our motivating example:

minfz�m1 log(det(zI�P))�m2 log(det(P))g
s.t.

a11�2x1

a12�2x2

a21�2x1

a22�1

0�2a11p11�2a21p12�1

0�a11p12�a21p22�a12p11�a22p12

0�2a12p12�2a22p22�1

det(zI�P)�(z�p11)(z�p22)�p2
12

det(P)�p11p22�p2
12

0�x2
1�x2

2�c

0�x2
1�x2�4p

05p51

x150

x2]0

Parameter c realization is assumed to be {0.90, 0.95.

1.00, 1.05}, and the above model posed as Eq. (15).

Table 3 summarizes the optimization results.

As expected, corresponding jacobian matrices are

Hurwitz and then local stability verified for the pro-

posed realization of uncertainty. The problem was

solved with GAMS/CONOPT2.

The results reported in Table 3 are similar to those of
Table 1 (both corresponding to the motivating example)

for different objective functions. In the former model,

however, the objective function value ðau x2
2Þ resulted in

2.2278 while the corresponding in the later is 2.238.

From Table 3 it can be seen that lmax(P), which is the

objective to be minimized in the second case, is bounded

by 177.76 while the corresponding to the previous model

(max{li(P)}) is 1928.2. These figures suggest the con-
flicting nature of the objectives, as expected in design

problems between different performance indices, and

determine a multiple objective design formulation.

Multiple objective design is beyond the scope of this

contribution but will be considered for future research.

5.1. Chemical engineering example: controller tuning of

three non-interacting tanks

Such a design formulation appears to be well suited

for feedback controller tuning, since a (closed-loop)

dynamic performance index is optimized, and admits a
straightforward approach to switchability by consider-

ing the set points as uncertain parameters. Again what

we are trying to do is to ensure the existence of a certain

domain of attraction for each point of the set-point

realization as sketched in Fig. 5 for a two points set-

point realization.

In order to illustrate this issue, the proportional

feedback controller tuning of three non-interacting
tanks in series (extended model from Ogunnaike &

Ray, 1994) (Fig. 6), will be performed in the following.

Although the system is open-loop stable, an overly

aggressive control action (controller gain too large) may

drive the system to closed-loop unstability. The follow-

ing dynamic model is considered:

dh1

dt
��

1

t1

ffiffiffiffiffi
h1

p
�

K1

t1

F0

dh2

dt
�

K2

t2

ffiffiffiffiffi
h1

p
�

1

t2

ffiffiffiffiffi
h2

p

dh3

dt
�

K3

t3

ffiffiffiffiffi
h2

p
�

1

t3

ffiffiffiffiffi
h3

p

F0�Kc(h3sp�h3)�F0sp
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hi stands for tank level, Kc is the proportional controller

gain and subscript sp corresponds to set-point value.

Numerical data are presented in Table 4.

Steady-state open-loop values for the levels are h1�/

0.25, h2�/1.00 and h3�/9.00. In order to consider the

switchability issue, the following realization is consid-

ered for h3sp: {7.00, 8.00, 9.00, 10.00, 11.00}. A Eq. (15)

type formulation was solved for the above model and

data with GAMS/CONOPT2. Results are summarized

in Table 5.

The corresponding eigenstructure for the considered

set point realization is graphically shown in Fig. 7. As

expected the eigenvalues remain in the stable part of the

complex space although closer to critical stability as h3sp

increases. The inclusion of stability margins, as sug-

gested in Ringertz (1997) and commented previously for

the motivating example, is not obvious and remain an

issue for future research.

6. Conclusions

In this paper, we have presented a new theoretical

formulation for the problem of interaction between

process design and process operability, approaching

the controllability/switchability issue within an eigenva-
lue optimization framework. The proposed technique

allows the generation of economically optimal open-

loop designs, which are also locally dynamically stable

in a Lyapunov’s sense. The problem of control tuning

has been also addressed, by optimizing a dynamical

performance index related to convergence response

speed: the minimum eigenvalue of matrix P�1, which

is desired to be maximized. The new framework also
avoid the use of dynamic simulation at the process

design stage, relying entirely on steady-state formula-

tions to simultaneously consider design and operability.

To consider flexibility in the face of parametric and

disturbance uncertainty, a deterministic-based approx-

imation, that gives rise a multi-period program by

defining in advance a certain realization of uncertainty,

has been applied. Future work will take into account the
application of energy function techniques to the assess-

ment of non-linear behavior through the analysis of the

Table 3

Optimization results of motivating example

c p z x1 x2 l1 l2

0.90 0.287 177.76 �/0.800 0.511 �/0.534 �/0.066

0.95 0.287 177.76 �/0.653 0.724 �/1.153�/0.749i �/1.153�/0.749i

1.00 0.287 177.76 �/0.577 0.816 �/0.077�/0.850i �/0.077�/0.850i

1.05 0.287 177.76 �/0.512 0.887 �/0.012�/0.890i �/0.012�/0.890i

Fig. 5. Local stability for set-point changes.

Fig. 6. Three non-interacting tanks in series.

Table 4

Data for non-interacting tanks system

t1 2

t2 4

t3 6

K1 1

K2 2

K3 3

F0sp 0.5

Table 5

Optimization results for non-interacting tanks system

h3sp z Kc h1 h2 h3

7 28.14 0.26 0.15 0.61 5.48

8 28.14 0.26 0.18 0.71 6.36

9 28.14 0.26 0.20 0.81 7.24

10 28.14 0.26 0.23 0.91 8.14

11 28.14 0.26 0.25 1.00 9.00
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shape and size of the domains of attraction of the

equilibrium points. The trade-off between economics

and dynamic performance, which may be naturally
posed as a multi-objective optimization problem, will

also be explored.
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