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Transcoding, the conversion between dif-
ferent representations of Web content at an in-
termediate proxy, can ameliorate mismatches
between the complex content provided by an
origin server, and the limited bandwidth to, or
display capabilities of, a Web client.  Existing
transcoding systems use implicit information,
such as the HTTP Content-type, to control
when and how they convert between represen-
tations. This approach must balance the risk of
losing important information against the in-
tended goal (such as bandwidth reduction), of-
ten without sufficient information to make the
optimal choice.

A new approach, server-directed transcoding,
uses explicit guidance from the server to allow a
transcoding proxy to make the best possible
choice. This paper describes several possible
approaches to server-directed transcoding, in-
cluding transcoding applets, the use of mobile
code to provide the origin server detailed con-
trol over transcoding performed by proxies.
The paper discusses security, caching, and
other operational issues associated with
transcoding applets.

1. Introduction
Web site designers love to provide complex,

detailed content, rich with multimedia experien-
ces. Alas, this content often encounters technical
limitations between the origin server and the ul-
timate user: networks might be too slow or expen-
sive, screens might be too small, clients might be
underpowered, or the necessary rendering software
might be unavailable.

One can cope with this mismatch between con-
tent and capabilities by transcoding the original
representation to a more appropriate represen-
tation. Images can be reduced in size or converted
to monochrome; text files can be abstracted; video
formats can be converted. When used correctly,
transcoding (sometimes called distillation) can
provide the user with the most essential infor-
mation of the original content, without straining
the limits of feasibility.

Transcoding is lossy: while it preserves essential
information, it removes inessential or unrenderable
information, in order to meet goals such as
bandwidth reduction. A transcoding system must
often, therefore, make a tradeoff between loss of
detail and loss of effectiveness at meeting its
goals. Too little distillation, and the bandwidth
costs (for example) will still be prohibitive; too
much distillation, and the underlying message is
lost.

In the Web, transcoding may be done at an in-
termediate proxy server, or at the ultimate client
application. In either case, the transcoding system
operates at a distance from the origin server (the
source of the content).  To make the right tradeoff,
the transcoder must have information about what
information is essential and what is not.  Because
it is remote from the origin server, this information
is not directly available.  Existing transcoding sys-
tems use implicit information, such as the HTTP
Content-type header, to decide whether and
how to convert between representations. Implicit
information can be ambiguous, which can lead to
incorrect decisions.

This paper proposes a new approach to
transcoding, called server-directed transcoding.
In this approach, the origin server provides explicit
guidance to the transcoding system (proxy or
client) about whether and how to convert between
representations. In effect, the server provides
hints to the transcoder that can reduce or eliminate
the chances of making an inappropriate conver-
sion. The server’s directions can be arbitrarily
complex, allowing for full extensibility of the
transcoding mechanism.  These hints, which are
provided through a compatible extension of
HTTP, are fully optional for the transcoding sys-
tem.

Server-directed transcoding can be implemented
either through the use of simple directives sent in
HTTP headers, or through a more powerful
mechanism based on applets in Java or similar lan-
guages. While the applet-based approach creates
some implementation challenges, it simplifies the
conceptual issues behind server-directed transcod-



ing, and represents a more natural application of
the idea behind active networking.

This paper presents a conceptual overview of
server-directed transcoding, including a detailed
description of several different approaches, includ-
ing a proposed extension to HTTP, followed by a
discussion of several security and operational is-
sues.

2. Related Work
Transcoding has a lengthy history.  Perhaps the

first description of a general-purpose approach to
transcoding in the Web was the 1995 paper by
Brooks et al. on HTTP stream transducers [3].
Brooks et al. suggested that proxy caches could
apply datatype-specific transformations to HTML
and other Web content:  for example, adding using
the BLINK tag to make HTML anchors more
visible on monochrome displays.  Their proposal
used composable transducer ‘‘filters,’’ but these
were specified at the proxy, not by the origin serv-
er.

In a much earlier and much different context,
the Experimental Network Operating System
project at the National Bureau of Standards [11]
implemented a heterogeneous distributed database
by interposing a translation mechanism between
mutually incompatible database clients and ser-
vers.

Fox et al. [7] appear to have been the first to
suggest the use in the Web of lossy transcoding
(which they called distillation) to reduce the
bandwidth requirements for images and other
bulky content. Again, their approach used
datatype-specific conversions, based on the
response’s Content-type, not guided by
specific advice from the origin server.

One widely deployed system that apparently
uses transcoding is WebTV [19], which allows
browsing Web sites while using a standard televi-
sion screen as the display.  Because TV screens
have far less resolution than most computer
screens, WebTV converts many kinds of Web con-
tent so that they will be usable on the low-
resolution screen.  However, the conversion is ap-
parently datatype-specific, not response-specific.

Chandra and Ellis [5] recognized the need to
make transcoding choices based on the quality of
the resulting output.  They looked specifically at
how much compression could be applied to JPEG
images without eliminating important information,
and how a transcoding proxy might automatically
deduce the optimal JPEG quality factor.  They also
showed how a proxy might estimate both the com-

putational cost of transcoding a JPEG image, and
the resulting decrease in representation size.

Relatively little prior work addresses the use of
server-supplied hints to guide the use of transcod-
ing. One exception is the HTTP/1.1
Cache-control: no-transform feature,
which allows an origin server to specify that a
proxy must not transform the content of the
response [6]. This provides simple protection
against loss of vital information (although it is not
known if any transcoding proxies actually obey
this directive).

HTTP/1.1 also added a requirement that if a
proxy transcodes a response, it must add a
Warning header to that effect; this allows the ul-
timate client to alert the user to the transcoding.
The user may then repeat the request using a
Cache-control: no-transform request-
header, if it is necessary to obtain the unmodified
content.

Hori et al. [8] propose annotating HTML/XML
documents to guide the adaptation (i.e., transcod-
ing) of those documents. Instead of embedding
the annotations directly in an HTML file, they use
external annotations in an XML file. They use
XML mechanisms to provide pointers from the an-
notations back to the adaptable elements of the
original HTML file.  The proposal is not specific
about how a proxy discovers this XML file (that
is, how annotations are ‘‘attached’’ to the original
HTML resource), so this might be an potential ap-
plication of server-directed transcoding.  Also,
these annotations are declarative, and thus do not
provide the range of transcoding available via a
general-purpose procedural language.

The use of applets to dynamically customize the
operation of a proxy or client is similar in concept
to ‘‘active networks.’’  For example, Tennenhouse
et al. [18] describe the use of servers to provide
response-specific instructions to intermediate
points in the network, but primarily at the lowest
level of the network (the packet level).  While
Tennenhouse et al. mention transcoding, they do
not seem to consider the specific possibility of
response-specific transformations, or doing these
transformations at a higher level in the protocol
stack.

Similarly, Bhattacharjee et al. [2] hint in the
direction of using active networks for transcoding,
but apparently they only considered addressing the
problem on a packet-by-packet basis.  That is, they
use the capabilities of active networking to, for ex-
ample, preferentially drop low-priority frames
(packets) of an MPEG video stream. (The intent



of preferential drop policies is to avoid, as much as
possible, dropping ‘‘valuable’’ packets during
periods of congestion.) They do not seem to have
considered the problem of transcoding at the ap-
plication layer, or of policies that do not involve
simply dropping packets or bytes.

Cao et al. [4] describe a technique for better
caching of Web responses, which uses an HTTP
extension to attach an applet to a specific
response. In their technique, the applet is used to
control caching of the associated response. In
some cases, the applet might act to replace one
piece of content with another (e.g., ‘‘rotation’’ of
advertising banners referenced from a Web page,
by editing the cached HTML to refer to different
advertisement URLs). They do not appear to have
considered using applets for transcoding transfor-
mations, and in fact their design seems to specifi-
cally prohibit the cache from taking optional ad-
vantage of an applet.

The IBM WebSphere Transcoding Publisher
product [10] provides a framework for proxy
transcoding plug-ins, using Java applets and a
library of built-in transformations. The proxy is
responsible for deciding what to transcode and
how; this system does not expect origin servers to
provide specific directives.

One can extend cache behavior either by
moving the code to the data, or moving the data to
the code.  Applets (or ‘‘mobile code’’) follows the
former strategy; one example of the latter is the
Internet Content Adaptation Protocol (ICAP) [9].
ICAP extends HTTP to allow a proxy server to
pass HTTP messages (either requests or responses)
to a separate ICAP server, for adaptation or filter-
ing. ICAP, unlike server-directed transcoding,
does not include a means to specify what adap-
tations should be applied; this is beyond the scope
of the current ICAP design.

The use of ‘‘hints’’ as a way to improve the per-
formance in distributed systems also has a long
history, going back at least to Lampson [13].
Mogul wrote about using hints specifically to im-
prove HTTP cache performance  [14].

3. Motivation
Previous transcoding systems have used implicit

information, usually the HTTP Content-Type
header field, to guide the decision about whether
and how to convert representations. Why is this
implicit information not sufficient?

Use of implicit information has several draw-
backs. First, since the Web comprises a huge
variety of content, any generic conversion algo-

rithm will often choose the wrong tradeoff be-
tween optimizing the goals of transcoding (e.g.,
bandwidth reduction) and the preservation of im-
portant information.  Second, and perhaps more
important, a response-specific transformation
might be able to take advantage of a simple but
non-generic transformation, to preserve all of the
important information while optimizing the
transcoding goals.

3.1. An example
It might be easiest to see this point with the help

of a simple, albeit somewhat contrived example.
Consider the graphic element in figure 3-1, which
originally appeared as a GIF image.  (The image in
the figure has been doubled in size, to improve
visibility.) Note that the figure includes
foreground text, some artful but redundant back-
ground text, and a green arrow on a bluish field.

If the GIF image in figure 3-1 is converted to
JPEG with a quality factor of 10, we get the result
shown in figure 3-2. The size of this file is about
40% of the original.  The foreground text is still
legible, although the green arrow now more
closely resembles a half-peeled banana.

One can reduce the JPEG quality factor to the
absurdly low value of 1, resulting in the image
shown in figure 3-3, and a file size 26% of the
original. Here, the foreground text (especially the
smaller words) is at the border of legibility, and
the green arrow has become unrecognizable.
However, the background text is still somewhat
legible, even though we really don’t care about it.

Instead of converting to JPEG and guessing a
quality factor that balances size and legibility,
however, we could instead make use of the fact
that the original figure has ‘‘foreground’’ and
‘‘background’’ information.  We want to preserve
the foreground information, yet most of the image
complexity is actually in the background of this
particular image. We can eliminate the back-
ground by a simple transformation on the GIF
color map: all dark elements are converted to
black, and all light elements are converted to
white, while the blue and green colors are
preserved. The result, shown in figure 3-4, is 25%
of the original size (smaller than figure 3-3), yet is
fully legible.  Even the green arrow is exactly
preserved. (This transformation eliminates the
anti-aliasing used for the foreground text, which
might have been worth preserving.)

Note that (ignoring the green arrow), the image
in figure 3-4 might be the best that one could pos-
sibly do for a monochrome display with shallow



File size: 7478 bytes

Figure 3-1: Original GIF

File size: 2974 bytes

Figure 3-2: Converted to JPEG, quality factor = 10

File size: 1978 bytes

Figure 3-3: Converted to JPEG, quality factor = 1

File size: 1859 bytes

Figure 3-4: Reduced-color GIF

pixels; such displays are common on small devices
such as PDAs and cell phones.

3.2. Generalizing from the example
We can generalize a few principles from the ex-

ample in section 3.1.

First, the most appropriate transcoding to apply
to an HTTP response might not be obvious from
the Content-type header. Simply converting
from GIF to JPEG might not give the best tradeoff
between usability and size.  On the other hand, one
can easily think of examples where the simple
color-reduction algorithm shown above would
work very badly.



Second, while it would be cumbersome to create
a unique transcoding algorithm for every HTTP
resource, this is not necessary.  Many sets of dis-
tinct resources are sufficiently similar that every
member of a set could be transcoded successfully
by a single algorithm.

For example, the color-reduction algorithm used
above isn’t exactly generic (because, among other
things, it gives special treatment to the green color
used in the arrow), but it certainly does not depend
on the specific text represented in the image.  It
might be applicable to a large set of similar text-
bearing images.

Therefore, we can describe a transcoding algo-
rithm as set specific, if it can be applied success-
fully to every member of a set of resources.

Third, a transcoding algorithm can often be
compactly represented.  If the original GIF image
can be produced or transformed so that the entries
in its color map are sorted in order of brightness,
the algorithm in section 3.1 becomes this transfor-
mation on the color map:

1. If the color map entry is ‘‘green’’ or ‘‘grayish-
blue,’’ preserve it.

2. Otherwise, if the color map index is less than a
threshold T, convert the entry to black.

3. Otherwise, convert the entry to white.
In general, many transcodings need to distin-

guish between ‘‘foreground’’ (important) and
‘‘background’’ (superfluous) information.  There-
fore, if the original image-generation process can
use two distinct sets of colors for foreground and
background pixels, it should be simple to describe
a color-reduction transcoding. More generally, a
small conspiracy between the content-generation
tools and the authors of transcoding algorithms
can yield major benefits.

One might take the example of section 3.1 one
step further, by noting that the only significant in-
formation in the original image is the text string
‘‘preview the new inline’’.  This string can be
represented in 22 bytes (plus perhaps a few more
for a specific font and color), about 0.3% of the
size of the original image, yet this preserves essen-
tially all of the original information.  (The
developer’s information for WebTV specifically
suggests using actual text instead of text-
containing images, but most Web site designers
seem unwilling to give up the graphical expres-
siveness of these images.)

Note that for this trick to work, the client would
have to be able to render a text-based response
message in place of an inline image.  Although
this is apparently not currently supported in

HTML, it might be useful for a number of similar
optimizations.

Could a transcoding system automatically con-
vert between images and text? Of course, a
generic text recognition algorithm might work, but
it would be expensive, and potentially error prone.
One might also simply replace the image with the
value of an associated <ALT> tag in the referenc-
ing HTML document; however, if the GIF image
is being transcoded at a proxy, the proxy might not
know which <ALT> tag goes with the image.

Instead, the content originator might hide the
significant text in a comment area of the image
encoding (this might require an extension to the
encoding format), or in a new HTTP header.
Then, the transcoding algorithm would simply be
‘‘replace the image with the hidden text.’’

4. Specific approaches to server-directed
transcoding
How might server-directed transcoding be im-

plemented in practice?  There are at least five
challenges to solve:

1. How does the origin server tell the transcoding
system about the transcoding algorithm ap-
propriate for an HTTP response?

2. What can a transcoding application do?
3. How can server-directed transcoding be made

secure?
4. How does the server choose the appropriate

transcoding algorithm (or set of algorithms)?
5. How does the transcoding system decide

whether the benefits of transcoding exceed the
costs?

Sections 4.1, 5.2, and 5.3 address the first chal-
lenge. Section 5.4 addresses the second.  Section
5.8 addresses the third.  Sections 4.1 and 5.4 touch
on the fifth challenge; in general, the origin server
can provide estimates of the costs and benefits of
transcoding a specific response.

Since the choice of transcoding algorithm is in-
herently response-specific, it is not possible to
provide a generic solution to the fourth challenge;
this will require additional work (such as the
development of heuristics).

4.1. HTTP header directives
The simplest way for the origin server to

provide transcoding guidance to a proxy or client
is to define a new HTTP header (which, according
to the HTTP specification, would always be ig-
nored by recipients that don’t understand it).  For
example, the GIF image in figure 3-1 might be ac-
companied by these HTTP headers:



HTTP/1.1 200 OK
Date: Tue, 04 May 1999 22:51:34 GMT
ETag: "ZSB3b3VsZCBjb252Z"
Content-type: image/gif
Content-Length: 7478
Transcode-info: convert-ok=image/jpeg,

min-jpeq-qual=10,
min-jpeg-size=2974

to indicate that it is safe to transcode the image to
JPEG as long as the quality factor is at least 10,
and that the result will be 2974 bytes.  The color-
reduction alternative might be expressed as:
Transcode-info: gif-remap=black:"0-17";

white="18-20,22-30"

to indicate which color map entries should be con-
verted to black or white.

While this approach requires relatively little
mechanism, it also requires servers and clients to
agree in advance on the meaning of
Transcode-info directives. Internet standar-
dization processes work slowly, and this is not
conducive to extensibility.

5. Transcoding applets
A far more powerful approach would be to use

transcoding applets: set-specific transcoding
programs that are downloaded by the transcoding
system. In this approach, the transcoding system
provides a virtual machine (such as Java or Tcl)
for executing a transcoding applet (‘‘mobile
code’’) specified by the origin server; this makes
the transcoding system fully extensible.  Once the
mechanism is in place, no further agreement or
standardization is necessary.

Transcoding applets are more elegant, and con-
ceptually simpler, than explicit transcoding direc-
tives. However, they do require the transcoding
system to implement a virtual machine, which in-
troduces its own problems (see section 5.8).

5.1. Division of labor and decision-making
Historically, people have thought of proxy-

based transcoding mechanisms as value-added ser-
vices provided by the proxy implementation.  In
this model, transcoding techniques are the
province of clever proxy designers, who must con-
sider all of the potential complexities, including
the safety of the transformations, the choice of
which transformations to apply for specific clients,
etc.

The use of transcoding applets makes it possible
to think instead of each specific transcoding opera-
tion as an extension of origin server functionality,
not of proxy functionality.  That is, we can move
away from thinking of transcoding proxies as

complex collections of special-purpose extensions,
and towards treating them as general-purpose plat-
forms for executing operations on behalf of, and at
the direction of, origin servers and clients (as the
dictionary definition of ‘‘proxy’’ would imply).

In this view, proxies are important not because
of the cleverness of their implementors, but be-
cause of their privileged location in the network
(i.e., closer to the clients), because of their caching
benefits (from aggregating the request streams of
many clients), and because of their ability to of-
fload computation from either origin servers or
clients, or both.  Intelligence about what transfor-
mations to apply should reside not in the proxy
implementation, but in the origin server and/or
client implementations.  This is an application of
the ‘‘end to end argument’’  [17]:

The function in question can completely and
correctly be implemented only with the
knowledge and help of the application stand-
ing at the end points of the communication
system.

The use of mobile code to shift the locus of com-
putation to the proxy respects the end-to-end ar-
gument, while taking advantage of the perfor-
mance optimization available through the use of a
proxy. (See also [16] for a discussion of the
relationship between the end-to-end argument and
active networking.)

This argument does not entirely eliminate the
decision-making role of the transcoding proxy.
The origin server cannot know, in advance, the
capabilities of every client that might receive a
cached response from a transcoding proxy, so the
proxy must combine some information (from the
origin server) about the range of possible transfor-
mations with information (for each specific client
request) about the capabilities and preferences of
that client and the intervening network path.  The
proxy may also use information about the
availability of resources (CPU, RAM, etc.) to the
transcoding system.  With all this information, the
proxy can then decide what transformations to
apply, if any.

More concretely, the server might supply a set
of algorithms rather than a specific conversion.
For example, if the server generates a GIF
response, it could provide an applet that knows
how to convert GIF responses to any one of a set
of formats (JPEG, PNG, smaller GIFs).  The proxy
can select the best transformation, depending on
the capabilities of the client and the availability of
resources. Note that even this choice could be per-
formed by an applet method, as described in sec-



tion 5.4. Moreover, the client’s capabilities and
preferences could be embodied in a client-supplied
applet, as described in section 5.5.

In summary, the use of transcoding applets sup-
ports a model in which the end points (origin serv-
er and client) supply application-specific guidance
for transcoding, in the form of mobile code. The
proxy provides general-purpose execution resour-
ces, and a rendezvous point for combining server-
supplied guidance specific to the response with
client-supplied guidance specific to the client’s
capabilities.

5.2. Transcoding applets by reference
The server can specify the transcoding applet

specific to a response by reference; for example,
Transcode-Info: app=

"http://applets.compaq.com/app37.cls"

If the transcoding system wants to use this applet,
it downloads the specified URL. This potentially
adds an extra round trip to the server.  Of course,
if the applets are sufficiently general, they can be
profitably cached by the transcoding system.  This
might be true even if the content-bearing response
is itself not cachable.  The extra round trip might
only rarely be necessary.

The example above shows how the applet could
be named using a URL.  In some cases, it might be
more appropriate to use a location-independent
name, such as a cryptographic hash (which also
would solve a security problem; see section 5.8).
Alternatively, an index into a list of registered
transcoding applets could be a more compact form
of location-independent name.

5.3. Transcoding applets by value
If the transcoding applet is very small, and the

round-trip time between the origin server and the
transcoding system is very large, it might pay to
transmit the transcoding applet by value.  That is,
it would be included directly in the content-
bearing response. However, this eliminates any
chances for caching, and seems only beneficial in
unusual environments (e.g., servers on Earth, users
on the Moon).

5.4. Methods in transcoding applets
Chandra and Ellis [5] showed that a transcoding

system should not just blindly apply a content
transformation. It should also evaluate the
cost/benefit tradeoff, which includes (for example)
the expected reduction in content size, and also the
expected computational cost for the transfor-
mation.

A transcoding applet can therefore provide a
number of standardized methods, in addition to the
actual transformation method. One method could
estimate the cost of applying the transcoding;
another could estimate the resulting size, quality,
etc. All of the applet’s methods could take as in-
put not only the content itself, but also attributes of
the recipient, such as the available bandwidth and
the capabilities of the client.  (These capabilities
could be expressed using ‘‘feature sets’’ [12], or
derived from the HTTP User-agent and/or
Accept headers.)

It might take some careful thought to define a
standard for the methods of transcoding applets, to
balance extensibility with simplicity.

5.5. Composed transcoding applets
A transcoding applet need not be a monolithic

(self-contained) application.  In fact, it is quite
likely that it will have to rely on some simple stan-
dardized methods provided by the proxy platform
(e.g., memory allocation).  A transcoding applet
might also make use of a library of generally-
useful components, which, due to their com-
plexity, might be too bulky to incorporate into
each applet.  For example, an applet might make
use of a general-purpose GIF-to-JPEG conversion
component, combined with some image-specific
transformations (e.g., cropping).

More generally, the behavior of a transcoding
applet could be the result of composing the
response-specific applet specified by the server
with generic components, platform-provided
methods, and even client-provided applets.  In that
approach, a client would specify an applet by ref-
erence, in its request headers, that a transcoding
proxy could optionally employ to help determine
what transformations to apply, or to implement
some aspect of the transformations. For example,
a PDA client might specify an applet (stored at a
server operated by the PDA software supplier) that
knows how to optimize audio for the PDA’s tinny
little loudspeaker.

A transcoding applet could also make use of
other network resources, such as databases con-
taining graphical elements. Of course, this might
complicate the security concerns described in sec-
tion 5.8, and would almost certainly complicate
the design of standardized interfaces between
proxies and applets.



5.6. Other benefits of transcoding applets
Although transcoding is normally thought of as

a lossy mechanism, whose goal is to reduce
bandwidth requirements, display requirements,
etc., it can also be used as an extensibility
mechanism. Server-directed transcoding allows a
server to introduce a new media format without re-
quiring any further revisions to clients or proxies.
For example, if the clients only implement MP3
format for audio clips, but the server has content in
AIFF format, it could (in theory) let transcoding
proxies do the conversion on demand, by specify-
ing an applet that can do this conversion.  If the
client’s Accept request header specifies several
potential target content-types, the transcoding ap-
plet can choose the most appropriate format from
that list.

This approach should improve the abilities of
proxies to divert work from origin servers. A
transcoding proxy does not only offload the CPU
costs for format conversion; because the proxy
only needs content in one input format to satisfy
many different clients, it improves the probability
of a cache hit.  This also reduces the need for
clients to install media players for all of the
various formats favored by site designers (a sig-
nificant consideration for storage-constrained or
zero-administration clients).

5.7. Caching of transcoded results
It would clearly be beneficial to allow caching

of transcoding results, to the extent that caching is
allowed for the untransformed response.  This
raises issues both of cache correctness (or ‘‘trans-
parency,’’ the criterion that the client does not get
the wrong information because of caching), and of
cache performance.

For transcoded results, cache correctness
depends on three requirements:

1. The semantics of the resource would allow cach-
ing of the untransformed responses.

2. The cache can identify the appropriate instance
of a resource whose value may change over time.

3. The cache can ensure that a cached transcoded
response has been transformed consistent with
the requirements of the new request.  This should
not necessarily require exact matching of the
client’s capabilities; a ‘‘acceptable’’ cached
transcoded response might be a better choice
than an ‘‘optimal’’ newly transcoded response.

The first requirement is met simply by obeying
the usual HTTP caching rules, based on the re-
quest and response headers for the untransformed
response.

The second requirement requires some care, be-
cause a transcoded response might be stored at a
cache between the transcoding proxy and the re-
questing client (or possibly at the client). This in-
termediate cache might not be aware of transcod-
ing at all, and therefore must not be allowed to
confuse the transcoded response with an untrans-
formed response; otherwise, it might return the
cache entry to a client for which it would not be
appropriate.

HTTP/1.1 [6] supports the concept of an ‘‘en-
tity tag,’’ which allows a cache to validate a stored
response with the origin server.  When a response
is transcoded, it cannot carry the same entity tag as
the untransformed response, or else sub-range
retrievals would yield garbled results.  But nor-
mally the entity tag is assigned by the origin serv-
er, and is opaque to intermediate proxies, so
HTTP/1.1 does not allow a proxy to modify the
entity tag.

One solution would be to allow a transcoding
applet to modify the entity tag during the transcod-
ing process, so as to maintain the unique mapping
between the response value and the entity tag
value; this could be done using a standardized
method of the applet. While this appears to con-
tradict the requirement that proxies not modify the
entity tag, it is consistent with the view of a
transcoding applet as remotely-executed extension
of the origin server.

The third requirement also relates to the pos-
sibility of an intermediate cache.  HTTP/1.1 in-
cludes a Vary header that allows a response to
specify that it depends not just on the URL in the
request, but also on other request headers.  A
transcoding proxy could add a Vary header to in-
dicate this dependency.  However, this approach
might not work; we have recently discovered at
least one other plausible application of the Vary
header where it turns out, on analysis, to be insuf-
ficient.

Finally, the storage of transcoded results opens
up many interesting questions related to cache per-
formance. The most important may be how to
make the tradeoff between storing each transcoded
response (which adds I/O costs) and recomputing
the transcoded results from a single stored copy of
the untransformed response (which adds CPU
costs). Previous studies by Acharya et al. [1] and
by Ortega et al. [15] have looked at this problem.



5.8. Security issues with transcoding
applets

The use of transcoding applets introduces
several security concerns:

1. Can the transcoding applet modify inappropriate
data, violate privacy, or generate excessive net-
work traffic?

2. How can the transcoding system limit the
resource consumption of a transcoding applet?

3. How can the transcoding system be sure it is
using the right transcoding applet?

The first problem is solved, in theory, by lan-
guages such as Java, which by design prevent ap-
plets from inappropriate access.  It might be
reasonable to further restrict the capabilities of
transcoding applets: for example, to prohibit them
from engaging in any network communication at
all, and to ignore their output if it is significantly
larger than the original content.

The second problem is equivalent to a problem
faced in many other active-networking contexts.
For example, Cao et al. [4] suggest setting upper
limits on the resources consumed by an applet.  It
might be feasible to set a relatively low resource
limit on the method used to estimate the cost of a
full transformation, and then to use this estimate
(with a fudge factor) to limit the resource con-
sumption of the transformation method itself.

The last problem is typically solved through
cryptographic means; for example, a message
digest such as MD5.  In this approach, the origin
server might send something like:
Transcode-Info: app=

"http://applets.compaq.com/app37.cls"
; app-digest=

"md5:HUXZLQLMuI/KZ5KDcJPcOA=="

giving the transcoding system a relatively secure
means to confirm that the applet it downloads (or
takes from its cache) is the one intended for use
with the content of this response.  Unfortunately,
there is some unavoidable tradeoff between
security and HTTP header length.

5.9. Non-streaming transcoders
A proxy normally should start forwarding a

response message as soon as enough data arrives
to fill an output buffer.  However, while some
transcoding operations can be applied in a stream-
ing mode, others might require access to the entire
input data. This would require the proxy to enter a
store-and-forward mode, and brings up two issues.
First, a store-and-forward transcoding applet needs
to allocate buffer space on the proxy, in addition to
CPU time.  Second, this complicates the tradeoff
decision, because a store-and-forward transcoding

that reduces bandwidth requirements might still in-
crease latency.  A proxy might need either ad-
ministrative or client input to specify relative
valuations of bandwidth and latency.

6. Summary and conclusions
Transcoding has shown promise in various con-

texts, but suffers from inevitable problems when
making tradeoffs, in the absence of sufficient ex-
plicit guidance, between information loss and
transcoding’s goals.  Server-directed transcoding
can eliminate the ambiguities that afflict these
tradeoff decisions, and thus protect against any
loss of significant information, while simul-
taneously allowing very aggressive lossy transfor-
mations.

Server-directed transcoding applets provide a
completely extensible mechanism for proxy-based
or client-based transcoding, freeing the use of
transcoding from the drag of standardization
processes. While some initial standardization of
applet methods would be required, the require-
ments for a transcoding standard are fairly simple.
The mechanism is a compatible extension to
HTTP, and no other layers need modification.
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