
1

Abstract -- The central performance problem in the World Wide 
Web, in recent years, is user perceived latency. This is the time 
spent by a user while waiting for a Web page he/she requested. Im-
patience with poor performance is the most common reason visitors 
terminate their visit at Web sites. For e-commerce sites, such aban-
donment translates into lost revenue. For this reason, measuring the 
delay experienced by its customers is of high importance to a Web 
site. These measurements are critical for analyzing the site behavior 
and to size its components. As of today the main tool for conducting 
such measurements are external, client-side tools, whereby agents 
located on the net request pages from the site and measure its la-
tency. In this paper we propose a novel solution that conducts the 
measurements of the user perceived delay at the Web site. The ma-
jor advantage of this measurement approach, as opposed to client 
side approach, is that is can evaluate the latency experienced by 
each and every client (regardless of its network location). Further, 
this estimate can be conducted at real time, thus allowing the server 
to control its operation and prioritize the requests based on the ac-
tual performance observed by the clients. The solution does not re-
quire any agents to be placed at the net. Further, it does not sniff 
low-level protocols (that is, IP protocols) and is all based on imple-
mentation at the HTTP level. As such, it is very efficient and eco-
nomical. The solution is based on a novel technique in which a spe-
cial tiny HTTP object, called the sentry, assists in measuring the 
user perceived latency. The algorithm is implemented on the 
Apache server. The implementation was tested throughout an exten-
sive array of tests and found to provide very accurate measures. 

 
Keywords -- Web Server, Perceived User Latency, HTTP, Local 

Measuring. 

I. INTRODUCTION 

The rapid growth of the World Wide Web in recent years 
has caused a significant shift in the composition of Internet 
traffic. Today, Web traffic forms the dominant component 
of the Internet backbone traffic. Therefore, there is signifi-
cant value in understanding the Web performance, and es-
pecially that experienced by the users. The central per-
formance problem in the World Wide Web, in recent years 
is user perceived latency. This is the time elapses from the 
moment the user requests a Web page till the time he/she 
receives the requested page. Impatience with poor per-
formance is the most common reason users terminate their 
visit at web sites. For commercial sites, such abandonment 
translates into lost revenue. A key for reduction of these 
delays is proper measurement of the user perceived la-
tency. A Web site, once estimated the perceived latency 
seen by the users, can use several methods to reduce it: 1) 
A mirror site, 2) Wider connectivity to the Internet, 3) Bet-
ter Web server or, 4) Load balancing. Furthermore, if the 
estimation can be done at real time, it can be used for 
online control of the server scheduling and prioritization 
mechanism to improve the performance perceived by the 
clients.  

1 M. Marshak is currently with EMC, USA. 

Today, the common approach for measuring this per-
ceived latency, is to conduct the measurement from outside 
of the server using remote agents. This method deploys a 
limited number of remote agents placed around the Inter-
net. These agents fetch a specific Web page from the Web 
server, and thus measure the latency from those locations 
only. The disadvantages of this method are 1) The Web site 
is depended upon external body for conducting these 
measurements, 2) The number of agents is limited; there-
fore, their measurements do not reflect what real Web users 
experienced in other places, 3) The approach cannot pro-
vide a real-time measure of the latency as perceived by the 
individual clients, 4) The perceived latency measured by 
the agents does not have a breakdown to the various la-
tency components, and 5) The agents’ DNS lookup time is 
effected by prior DNS lookup queries.      

In this work, we propose a new approach to estimate user 
perceived latency, based on server side measurement. The 
new solution does not require any agents to be placed at the 
net and no additional hardware. Further, it does not moni-
tor packets at low-level protocols (TCP/IP) and is all based 
on implementation at the HTTP level. The other properties 
of the solution are 1) Low CPU and network overhead, 2) 
Minimal network architecture dependency. 3) Minimal 
modification to the Web server and, 4) No additional user 
perceived latency. Our solution is based on two fundamen-
tal observations. The first is that a common Web page con-
sists of text, inlined2 images and scripts. We exploit this 
structure, aiming at extracting information from the inter-
request times experienced by the server while the user 
fetches the Web page. The second is that while packet 
traces are normally not collected, HTTP access logs are 
kept by most sites. These logs contain hidden information 
that can be extracted, and when combined with the first 
observation, can be used to calculate the user perceived 
latency. 

Our solution is based on a new technique in which a spe-
cial tiny and practically unnoticeable HTTP object, called 
the sentry, is embedded at the HTML file and used in 
measuring the user perceived latency. Our solution consists 
of two elements, one element is the measuring element and 
the other one is the latency estimation element which can 
be run either in online or off-line fashion. The measuring 
element consists altogether of 4 components: 1) The sentry 
- a zero size inline HTTP object that is placed at the end of 
the HTML document (and thus does not add overhead) 
which tracks the arrival time to the user, 2) Extended 
Server Access Log, 3) Queue Latency Probe, and 4) Exter-
nal Pinger – an external program to measure RTT between 

2 This paper uses the terms of  embedded images and inlined images 
interchangeably. 

Evaluating Web User Perceived Latency Using Server Side Measurements 
Marik Marshak1 and Hanoch Levy                                                                                                                 

School of Computer Science              
Tel Aviv University, Tel-Aviv, Israel                                                                            

mmarshak@emc.com , hanoch@post.tau.ac.il

mailto:hanoch@post.tau.ac.il


2

the users and the server (It should be noted that this is not 
the only source for computing RTT, and that we compute 
an alternative measure of RTT from the Web server logs). 
The estimation element takes as input these data sets and 
compute an estimate for the time took for the user to fetch 
the textual portion of the Web page and the full Web page 
(text and inlines).  

Our method cannot measure the DNS lookup time. How-
ever, for most Web sites the DNS lookup time [2] in com-
parison with the whole transaction time is negligible. Note 
also, that other solutions that use remote measurements 
face the same problem, since their DNS queries are af-
fected by the previous queries, which bias the measure-
ments. To address the DNS access issue, we will show a 
scheme to check whether users have problem accessing the 
server due to DNS problems. 

A major advantage of our approach, in comparison to 
client (agent) based approaches, is that it can provide in 
real-time a good estimate of the delay experienced by each 
of the individual clients visiting the site. This information 
can be used dynamically by the server, in an online mode, 
to dynamically control its prioritization and scheduling 
algorithms in order to optimize the perceived performance 
of the system; for example, high priority can be given to 
clients which are subject to large delays. All this is imple-
mented without the need to use low-level protocols or 
without needing an extra expensive piece of hardware. 

We demonstrate our approach by implementing it on the 
Apache [3] Web server. The server was running on a PC 
acting as a dedicated Web server and we ran Web clients, 
that simulate Web browsers with extensive monitoring ca-
pabilities, under different Web server loads and from dif-
ferent locations with different network characteristics. To 
examine our approach we conducted an array of experi-
ments. Our experiments show that the proposed method 
estimates the latency to fetch the textual portion of the Web 
page and the full Web page with an average error of 4% 
under normal server loads, and an average error of 10% 
under overloaded server loads.  

The remainder of this work is organized as follows: Sec-
tion II provides background and notations; Section III ana-
lyzes a Web page transfer; Sections IV describes the ob-
servations led us to the solution; Section V describes the 
measuring architecture of our solution; Section VI de-
scribes estimation algorithm of our solution; Section VII 
evaluates our solution; Section VIII presents related prob-
lems and their solutions; Section IV presents concluding 
remarks and future work. 

A. Related Work 

The collection of information about user activity on the 
Web has been the subject of extensive research in both 
academia and industry. Over the last years, several ap-
proaches for collecting information about user Web activ-
ity were proposed. These are: 1) Modified Web Browsers, 
2) Web servers logs, 3) Web proxies logs, and 4) Packet 
monitoring. Each of these methods has its own advantages, 

but most suffer from severe limitations regarding the detail 
of information that can be logged. Until now, the only 
method used for collecting information for estimating vari-
ous latency components was the packet monitoring method 
[5],[7], which used complex algorithm and additional 
hardware to produce the HTTP trace. It is important to em-
phasis that, to the best of our knowledge, no one tried to 
use any of those information collection methods to estimate 
the latency experienced by Web clients.  

Several companies have launched commercial products 
to measure Web Site latencies. These products estimate the 
latency by fetching a part or whole Web page from several 
locations in the Internet and using remote agents, compa-
nies like Sitescope [8] and Keynote [9]. The remote agents 
can measure the latency from their location; their DNS 
lookup time is effected by previous queries done to the 
DNS server that result in small DNS lookup time. These 
measurements are performed from limited locations, which 
are not necessarily the same as the actual client’s location. 
The actual clients may experience different network condi-
tions and different DNS lookup time. These solutions can-
not provide additional insight into the components of the 
latency, for example, whether the latency is high due to 
server load or due to another reason.  

II. BACKGROUND AND NOTATIONS 

A. Latencies of Web transfer 

The fact that each Web page consists of many embedded 
images implies that Web browsing sessions typically con-
sist of many HTTP [4] requests, each for a small size 
document. The practice with HTTP/1.0 was to use a sepa-
rate TCP connection for each HTTP request and response 
[10]. This led to incurring connection-establishment and 
slow-start latencies on each request [11]. Persistent connec-
tion addresses this problem by reusing a single long lived 
TCP connection for multiple HTTP requests. Persistent 
connections became default with HTTP/1.1, which be-
comes increasingly deployed. Deployment of HTTP/1.1 
reduces the latency incurred in subsequent requests to a 
server utilizing an existing connection, but longer per-
ceived latency is still incurred when a request necessitates 
establishment of a new connection. The process required 
for exchanging an HTTP message request/response be-
tween the client and the server is as follows: First, the IP 
address of the server is needed in order to establish a con-
nection. Therefore, the browser has to map a domain name 
of the server to the server’s IP address. Browsers may send 
a DNS query to a local name-server or get it from their in-
ternal cache. A name-server caches an address for TTL 
seconds [12]. Second, HTTP messages between a client 
and a Web server are sent using TCP connections. A new 
HTTP request may either use an existing persistent TCP 
connection, or establish a new connection. The events in 
the case of a new connection establishment phase of an 



3

HTTP transaction are as follows3: 1) The client sends a 
SYN segment to the serve, 2) The server’s TCP places the 
request to a new connection in the uncompleted connection 
queue and sends to the client the server’s SYN segment 
with the ACK flag on, 3) The client acknowledging the 
server’s SYN and the server’s TCP moves the new connec-
tion from the uncompleted connection queue to the com-
pleted connection queue, 4) The new connection is waiting 
to be accepted by the server. After the server establishes 
the connection, the Web server is ready to read the HTTP 
request from the client and sends back an appropriate re-
sponse. The completed connection queue’s average length 
depends on how fast the HTTP server process calls ac-
cept() and on the request rate. If a server is operating at its 
maximum capacity, it cannot call accept() fast enough to 
keep up with the connection request rate and the queue 
grows. When these queues reach their limit new connection 
requests will be refused. Lastly, once a connection is estab-
lished at the transport layer, the client sends an HTTP re-
quest to the server over that connection and waits to read 
the server response. The client request is processed by the 
server’s HTTP daemon. Before responding to the request, 
the server may add latency due to the following: 1) Disk 
I/O, 2) Generation of dynamic contents, and 3) Reverse-
DNS query which happen rarely. To display a typical Web 
page, a browser may need to initiate several HTTP transac-
tions to fetch the various components (HTML text, images) 
of the page. With persistent connections, supported by 
HTTP/1.14, subsequent requests (which can be requests for 
the embedded images or for a new URL) and responses 
may utilize the same TCP connection (this feature is shown 
in Figure 1). Pipelining is supported by HTTP/1.1, and al-
lows for several HTTP request-responses to overlap in time 
on the same TCP connection: A subsequent request can be 
issued without waiting for the response to the previous one 
(This feature is not shown in Figure 1). According to [14], 
popular browsers implement persistent connections, but do 
not implement pipelining. An additional factor contributing 
slightly to the latency factor is the “client program think” 
time. This latency can be caused by the following ele-
ments: 1) Waiting for discovering new references of em-
bedded images in the HTML page. 2) The client’s CPU is 
switching between the different browser threads.  

B. Interaction between HTTP and TCP at Web            
Servers 

The interaction between the operating system and the 
Web server application imposes some separation between 
the HTTP session and the transport layer. There is typically 
no channel for 'upward' communication from the transport 
layer to the HTTP server as to whether and when transmis-
sion is completed and acknowledged. 

3 For simplicity, we focus our discussion on a BSD [1] based network subsys-
tem. The process in many other implementations of TCP/IP, such as those found 
in Unix System V and Windows NT is similar. 

4 Prior to HTTP/1.1 some browsers and servers used the option Keep-Alive to 
keep TCP connections open and reuse them. 

C. Concurrent TCP Connections 

Modern multi-threaded browsers often facilitate HTTP 
transfers by opening multiple concurrent TCP connections. 
The browser initiates multiple parallel image requests as 
the basic HTML page is received. The maximum number 
of connections to one server is browser dependent. The 
suggested number is 2 concurrent persistent TCP connec-
tions with HTTP/1.1. According to Wang and Cao [14] and 
self-measurements, it seems that HTTP/1.1 version of Mi-
crosoft Explorer uses about 2 concurrent persistent TCP 
connections to a server and HTTP/1.1 Netscape Navigator 
uses about 4 concurrent persistent TCP connections to a 
server. Both browsers open these concurrent persistent 
TCP connections regardless of the number of embedded 
images in the Web page. 

D. Server Logs 

As part of processing an HTTP request, the Web server 
generates a log entry with several fields. The common 
fields found in most logs include: 1) IP address or name of 
the client, 2) First line of the request including the HTTP 
method and URL, 3) Date/Time (in whole seconds) stamp, 
4) HTTP response status code, and 5) Number of bytes in 
the response, not including headers. The meaning of the 
date/time stamp is one of the following: 1) The epoch when 
the server starts processing the request, 2) The epoch when 
the server starts writing the response contents into the 
socket buffer, or 3) The epoch when the server completes 
writing the response contents into the socket. Server Logs 
may also contain some of the following fields: 1) Cookie 
information and 2) Server processing time (in whole sec-
onds). Krishnamurthy and Rexford [5] indicate that cur-
rently standard log files generated by Web servers do not 
include sufficient detail about the timing of all possible 
aspects of data retrieval. The new standard HTTP 1.1 [6] 
introduces new features that are currently not logged in the 
server logs. 

E. Notations 

In the rest of this paper we will use the following termi-
nology: Main Page latency - The time that elapsed from 
the moment the user request the specific URL till the time 
he receive the textual part of the Web page, that is the 
HTML portion of the Web page. Web Page latency - The 
time that elapses from the moment the user requests the 
specific Web page till the time he receives all the Web 
page, that is the text and all the embedded images. Connec-
tion latency – The time that takes to establish a TCP con-
nections (3-way handshake). Queuing latency – This is 
time the client is waiting in the complete connection queue. 
Web page transaction – This includes the all requests the 
client issues in the process of requesting the Web page 
(text and embedded images) and the corresponding server 
responses. Inter request time – This is the time between 
successive HTTP requests on the same persistent TCP con-
nection.   



4

III. ANALYSIS OF A WEB PAGE TRANSFER 

Our method was developed for use with persistent con-
nection with no pipelining. This follows a study done by 
Wang and Cao [14], indicating that popular browsers im-
plement persistent connections, but do not implement pipe-
lining. Extension to our method under the assumption of 
pipelining will be discussed in a later section �VIII. For 
understanding the principal idea of estimating the Main 
Page latency and Web Page latency, we begin with a de-
tailed analysis of these latencies.  depicts the process 
required for exchanging an HTTP request and response for 
fetching a whole Web page using two persistent connec-
tions. In this illustration the Web page consists of an 
HTML document and two inlines. The DNS lookup time is 
not shown in . The requests on the same connection are 
sequential and not parallel because pipelining is not used. 

The Main page latency, is the sum of the following 
times: 1) DNS lookup time, 2) TCP connection establish-
ment (, label 4 minus label 1), 3) Queuing time (label 5 
minus label, 4) Server processing time (label 6 minus label, 
and 6) Time to transmit the textual part (label 8 minus label 
6). It can be formulated as follows –

Bandwidth

HTML
RTT.5TT

RTT1.5TlatencypageMain

Size
mecessing tiServer proQueuing

pDNS  Looku

�u��
�u�|

0

(Eq. 1) 
This equation depends on the value of bandwidth, which 

depend on many factors – TCP acknowledgments that may 
slow the effective bandwidth, TCP slow start and TCP re-
transmissions. 

The fetch time of the whole Web page (text and inlines), 
the Web page latency, is the sum of: 1) DNS lookup time, 
2) TCP connection establishment time for the connection 
that fetches the HTML document (, label 4 minus label 1), 
3) Queuing time for the connection that fetches the HTML 
document (label 5 minus label 4), and 5) The time elapses 
since the server receives the first request (request for the 
HTML document) till the time client receives the last re-
sponse. Several notations are needed to formulate this time, 
we list them as follows: iS - The epoch at which the server 

receives HTTP request i. iE - The epoch at which the 

server writes HTTP response i to the write socket. N -
Number of HTTP requests needed to fetch the whole Web 
page. 

iSizeResponse - Size of HTTP response i.

Now the Web page latency can be formulated as follows: 
 

}0{max 1
1

S
bandwidth

SizeResponse
RTT.5E

TRTT1.5TlatencypageWeb

i
i

Ni

QueuingpDNS  Looku

��u�
��u�|

dd

(Eq. 2) 
 

Client Server

TCP SYN

TCP SYN + ACK

TCP ACK
HTTP Request 1(HTML)

Client opens
TCP

connection

Client sends
HTTP request

for HTML

Connection
placed in the
SYN-RCVD

queue

Connection
placed in the
accept queue

R
T

T
Q

u
eu

in
g

L
aten

cy

S
erver

P
ro

cess-
in

g
 T

im
e

Server accept the
connection +

read the request

Server write
the responseHTTP Response 1

(HTML)

R
T

T

Client parses
HTML while

receiving HTML

Persistent
Connection 1

Client sends
HTTP request

for image 2 HTTP Request 3(Image 2)

Server read
the request

Server write
the response

S
erver

P
ro

cess-
in

g
 T

im
e

HTTP Response 3

(Image 2)

Client Server

TCP SYN

TCP SYN + ACK

TCP ACK

Client opens
TCP

connection Connection
placed in the
SYN-RCVD

queue

Connection
placed in the
accept queue

R
T

T
Q

u
eu

in
g

L
aten

cy Server
accept the
connection

R
T

T

Client wait for
recieving HTML

and extracting the
inlines  images

Persistent
Connection 2

1st inline
image detected

HTTP Request 2(Image 1)

Server read
the request

Server write
the response

S
erver

P
ro

cess-
in

g
 T

im
e

HTTP Response 2

(Image 1)

Client sends
HTTP request

for image 1

HTML recieved

Web page
recieved

9

10

8

7

6

5

4

3

2

1

11

12

13

14

15

16

17

19

19
20

21

22

Figure 1: Web Page Transaction for Fetching a Web Page Using Persistent Connections.



5

IV. OBSERVATIONS 

Our objective is to compute the variables in Eq. 1 and 
Eq. 2 and we use the following observations: 1) The server 
may keep some internal information to the HTTP re-
quest/response timeline, 2) It may be possible using the 
inter-request times to extract estimation for the RTT and 
the bandwidth, 3) There is a dependency between the ep-
och at which a client requests an inline image to the portion 
of the HTML document received by that epoch, 4) Queuing 
latency cannot be measured from inside the web server. So 
external probe will be needed, and 5) The sever logs the 
client IP address, so we may ping the client to get an esti-
mate for the RTT. In order to estimate the Main page la-
tency and the Web page latency from the server side we 
will need to know the information listed in Table 1. In the 
following sections, we will show how we evaluate the vari-
ables listed in Table 1. 
_________________________________________________________________ 
1) The number of persistent connections the client uses to   
 fetch the Web page. 
2) The complete set of HTTP requests/response that  

 constitute the Web page transaction.  
3) Round Trip Time between the client and the server. 
4) The bandwidth between the server and client (this  

 may change due to network and server loads). 
5) The epoch each request is received by the server. 
6) The epoch the server finishes writing the response 

 contents into the socket for each response. 
7) Queuing latency. 
8) DNS lookup time. 

Table 1: Required Information for Estimating Latency.  

V. DATA COLLECTION ARCHITECTURE 

We now describe our measurement architecture that 
combines extended server logging, queue latency meas-
urement, RTT measurement and the sentry HTTP object. 
Figure 2 depicts an overview of the architecture. In the fol-
lowing sub sections, we describe in detail each element.  
 

Web Server
Computer

Extended Server
Access Log

External
Pinger

Web Server

Client RTT
Log

 External HTTP Requests and
Responses

Queue
Latency
Probe

Queuing
Latency

Log

Client IP

ICMP Echo
Request/Response

Message

HTTP
Request and
Response

In
te

rn
et

 
Figure 2: Data collection Architecture 

A. Extended Server Access Log 

We propose to extend the server logs to provide a de-
tailed timeline of the steps involved satisfying a client re-
quest, with limited interference at the server, due to the 
logging operation.  As was described previously, the time 

stamp used in current access log is in 1-second granularity, 
we extend this timestamp to have 1-millisecond granular-
ity. The additional fields we add are: 1) Flag indicating 
whether this request is the first one on its connection, 2) 
The client’s port number, 3) Server’s accept epoch, which 
is the epoch the server accepts the connection, 4) Server’s 
initial request processing epoch, which  is the epoch when 
the server starts processing the request, 5) Server’s final 
request processing epoch, which is the epoch when the 
server completes writing the response contents into the 
socket, and 6) Number of bytes left to send when the server 
logs the request. The granularity of all the additional time-
stamps is 1- millisecond.    

B. Queue Latency Probe 

For short periods, all new TCP connections waiting in 
the complete connection queue will experience a similar 
latency. The queue latency probe runs in parallel to the 
Web server and estimates at low rate the queuing latency 
by measuring the time duration that takes to perform an 
HTTP request for a small document on a new TCP connec-
tion. The probe writes in a file a timestamp and the latency 
measured. It measures the queue latency because for inter-
nal request, the time of the TCP connection, the RTT, the 
transmission time of the request/response and the server 
processing time for a small static HTML document are 
negligible5. The probes are generated at a constant rate6,
every 0.5 seconds. The additional benefit to the probing 
process is that the probe will warn us when users connec-
tion requests are declined. 

C. External Pinger 

We use two methods to estimate the RTT. One using the 
inter-request times (discussed in Section �VI), and the other 
using external program to estimate the RTT, called the Ex-
ternal Pinger. The External Pinger runs in parallel to the 
web server and at low rate reads the access log. For each 
new client IP address it sends a single ICMP request mes-
sage and waits for the response, after receiving the re-
sponse it will record the RTT for this IP. We are aware that 
because we use a single RTT measurement and we perform 
the measurement some time after the actual Web page 
transaction, it is not accurate, but it servers as a good ap-
proximation. The external pinger has a minimal processing 
and communication overhead to the server. The external 
pinger can also be used to verify that we do not have rout-
ing problems by pinging a list of frequent hosts/subnets at 
low rate and report us of any problem 

D. The Sentry: HTML Document Modification 

There are some cases in which we cannot extract addi-
tional information from the inter-request times (e.g. Web 
pages with less then three embedded images) or we can 

5 In our experiments, we observe an average 1 ms server processing time.  
6 We note that the use of Poisson sampling of the queue may add some more 

precision, due to the Poisson Arrivals See Time Averages property, but for sim-
plicity we avoided it in our implementation.   



6

extract a poor estimation for the Main page latency and the 
Web page latency (e.g. Web page with large HTML docu-
ment with few small embedded images). Our solution to 
these problems is to add a small inline image to the end of 
the HTML document. We shall call this last inline image 
the Sentry. The request for the Sentry will notify us when 
the client finishes receiving the HTML document. The sen-
try allows us to get an estimate for the Main page latency,
and in addition we will have 2 sequentially dependent re-
quests which will enable us to do some estimation of the 
bandwidth and the RTT. The latter will yield a better esti-
mation for the latencies. It is important to note that the Sen-
try imposes negligible overhead on the server, the client 
and the communications network. The sentry must be re-
fresh for each document in order to prevent it from being 
cached by the client. This can be performed by specifying 
Time-To-Live (TTL) of 0. 

VI. LATENCY ESTIMATION ALGORITHM 

In this section we present our algorithm of estimating the 
Main page latency and the Web page latency based on the 
data collected by our measurement architecture. Our la-
tency estimation algorithm estimates those latencies for 
each Web page transaction separately. Hence, we need to 
split the access log to Web page transaction. Therefore 
prior to the estimation there is a splitting phase of the ac-
cess log per Web page transaction. The splitting phase 
consists of two steps: 1) Sorting the access log according to 
the HTTP request timestamp, 2) Splitting the chronicle or-
dered access log according to the client IP address and re-
quest for the HTML document. After the splitting phase, 
we have a complete timeline of the Web page transaction 
for each persistent connection (each persistent connection 
has a different client port number). The only missing in-
formation in order to compute the latencies is the RTT and 
the bandwidth. Next, we describe our heuristics to estimate 
these variables.  

A. Inter-Request RTT 

In this subsection we present our method of estimating 
the RTT from the inter-request in each persistent connec-
tion. Figure 3 illustrates the timeline of two consecutive 
response/request on the same persistent connection. The 
time elapses between the epoch at which the server finishes 
writing the response and epoch at which it receives the next 
request is the sum of 1) One round-trip time delay inherent 
in the communication, 2) Transmission time of the request, 
3) “Client think time”, and 4) Transmission time of the re-
sponse. Assuming that the response size and the request 
size are small, therefore their transmission time is negligi-
ble and the “client think time” is zero, we can estimate the 
RTT as the inter-request time. This might not be precise in 
some cases where the transmission time of the response is 
not negligible in comparison to the RTT. Also the “client 
think time” can be quite large in cases that the reference to 
the inlines in HTML document are sparsely distributed. 
Our method of estimating the RTT from the inter-request 

times is to select the minimum inter-request time among all 
the inter-request times in all the persistent connections used 
in the Web page transaction. From now on, RTTmin will 
denote the RTT measured from the inter-request times. It 
should be clear that this is not the real RTT and it is larger 
then the real RTT. Our RTT encapsulates in it some bias 
due to transmission time7. The accuracy of our estimated 
RTT depends on the bandwidth. The estimation will im-
prove as the bandwidth increases. 

Figure 3: Timeline of Two Consecutive Requests on the Same 
Persistent Connection 

B. Inter-Request Perceived Packet Rate 

In this sub-section we present our approximation for the 
downstream bandwidth. If we knew the RTT for each 
HTTP response/request, TCP window size, segment size, 
TCP acknowledgments and TCP retransmissions we could 
use this information to calculate the bandwidth for each 
HTTP request/response. Unfortunately, none of these vari-
ables is available and we must resort to alternative ap-
proaches. From now on, we assume that the HTTP request 
size is small, therefore its transmission time is zero. Hence 
we can estimate the bandwidth using inter-requests using 
the following equation:  

)/( __ 1
RTTttSizeResponsebw

ii sendservrecvserveri �� 
�

This is however problematic since we do not know the ac-
tual RTT, for this HTTP request/response couple. We 
might get from some inter-request times almost an infinite 
bandwidth or even a negative bandwidth. Due to these 
problems, we propose the following terms to be used for 
estimating the bandwidth: 

Perceived Packet Transmission Time – The time per 
packet that is required to send a collection of data packets 
from the server to the client till it is received completely. 

Perceived Packet Rate ( requestinterRate � ) – Inverse of Per-

ceived Packet Transmission Time. 

7 This bias can be reduced by using the server -throughput and the inline size 
(both can be known at the server size) to compute the response transmission time 
and accounting for it when calculating RTTmin.



7

The perceived packet transmission time is at least half 
the round trip time. Using Figure 3, we can calculate these 
two values for any inter-request as follows: 

 

ª º^ `5.0,5.0max

/

__ 1
RTTRTTtt

SizePacketSizeResponse

RatePacketPreceived

ii sendservrecvserver

i uu��
 

�

(Eq. 3) 

The Perceived Packet Rate estimates the actual band-
width only if the dominant part of the transmission is the 
transmission time and not half of the RTT. Using Eq. 3, we 
will have a different value for the Perceived Packet Rate 
for any two successive requests on the same persistent 
connection. The reasons for the different Perceived Packet 
Rate for each couple of inter-request times is that each in-
ter-request time is effected differently by: high client think 
time, many TCP acknowledgments or TCP retransmissions. 
As the HTTP response size increases the effective band-
width decreases due to TCP overheads. Hence, the Per-
ceived Packet Rate is better estimation for the transmission 
rate for large HTTP response size. Note that the actual 
packet size used does not affect the algorithm. 

C. Average Inter-Request Perceived Packet Rate 

The Web page transaction timeline has several inter-
request times. The average of all the perceive- packet-rate 
measures taken over all the inter-requests in all the active 
connections, is a good rate estimator for determining when 
a large HTTP response (e.g. HTML document) will be re-
ceived by the clients. However, for average HTTP re-
sponse, which is relatively small, this estimate is an under 
estimate. The reason for this is that TCP acknowledgments 
overhead is low for a small response. Therefore, we define 
the following rate estimators: 

Connection perceived packet rate ( ConnRate ) – The av-

erage perceived packet rate for a particular connection.  
Web transaction perceived packet rate ( TransWebRate _ )

– The average of the all ConnRate over all the connections. 

Perceived packet line rate ( lineRate ) – The average per-

ceived packet rate ( requestinterRate � ) over all the connec-

tions that the client uses in the process of fetching the Web 
page, excluding perceived packet rate calculated from long 
inter-request times. We define short inter-request time if it 
is less than MINxRTT6 . It is valid only if there are at least 

four samples of short inter-requests times. 

ConnRate is a good rate estimator for large responses 

which suffer from TCP overheads, while lineRate is a 

good rate estimator for small responses. For connections 
with high RTT, lineRate and ConnRate will be similar. It 

may happen that lineRate is invalid; this usually happens for 

Web pages that have small number of embedded images or 
for Web pages that have many large embedded images and 
few small embedded images. Rarely it may happen that 

ConnRate will be invalid for all the connection; this hap-

pens when a Web page has only a few embedded images. 
Obviously in this case TransWebRate _ will be invalid also. 

In this case by using our estimation to the epoch at which 
the client received the HTML document (Eq. 5), we can 
estimate the perceived packet rate for the HTML docu-
ment. Using this perceived packet rate, we recalculate 

ConnRate for the connection on which the HTML docu-

ment request came on and recalculate TransWebRate _ .

D. Main Page Latency 

The estimated Main page latency, excluding the DNS 
lookup time, can be summarized in the following formula: 

 

HTMLHTML recvservrecvclient

Queuing

tt

RTT1.5TLatencyPageMain

__ �
�u| �

(Eq. 4) 
The queue time latency is obtained from the queue la-

tency log. The RTT used by our algorithm is the minimum 
between RTTmin and the external measured RTT. We es-
timate the epoch at which the HTML document was re-
ceived by the client, from three sources: 1) Using inter-
request time, 2) Using Connection perceived packet rate, 
and 3) Using the Sentry. The actual time is the minimum 
calculated by these three sources. Using Figure 3 we derive 
the estimation:  

ª º

conns  HTML’onrequest  2least  at if(b)

Validif)(

(b)if

)(if
/

_

_

Ratea

RTT0.5t

RTT0.5t

a
Rate

SizePacketSizeResponse
t

min

t

Conn

vserver_rec

vserver_rec

Conn

HTML
sendserver

recvclient

geSentry_ima

_requestnext_inter

HTML

HTML

°°¯

°°®
­

u�
u�

�
 

(Eq. 5) 

E. Web Page Latency 

The estimated Web page latency, excluding the DNS 
lookup time, can be finally calculated according to the fol-
lowing formula: 

 

HTMLsponseLast recvservrecvclient

Queuing

tt

RTT1.5TLatencyPageWeb

__ Re_
�

�u| �

(Eq. 6) 



8

The only unknown time, is 
nseLast_Respovclient_rect which 

we next calculate. We define the following notations: 

ConnN - The number of persistent connection used. j -

Connection number. 
HTMLC - The connection number on 

which the request to the HTML document came. 

jlastsendservt ,_
- The time the server finished writing the last 

HTTP request into the write socket of connection j. jN -

The number of requests on connection j. HTMLN - The num-
ber of requests on the connection on which the request to 
the HTML document came. jlastSizeResponse , - The re-

maining part of the last response when the server finished 
writing to connection j. jlastrecvclientt ,_ - The time the client 

finished receiving the last HTTP response from connection 
j. 

We estimate this latest time as follows: 

 
Conn

nseLast_Respo

Nj

recvclientrecvclient tmaxt
�d

 
1

jlast,__ )(

Where - 

ª º
ª º

Validnot not (c)

Valid)(not )(

)(

)(if
/

t

)(if
/

t

)(if

,
serv_send

,
serv_send

_

_

jlast,

jlast,

,

linehtmlhtml

linehtmlhtml

htmlhtml

Web_Trans

jlast

line

jlast

recvclient

recvclient

) and RateC1 and j(N

RateandC1 and jNb

Cjand1Na

c
Rate

SizePacketSizeResponse

b
Rate

SizePacketSizeResponse
at

t

html

jlast

  
  

  
°°
°
¯

°°
°
®

­

�
�

 

(Eq. 7) 

VII. EVALUATION OF THE ALGORITHM 

This section describes the experimental methodology, 
benchmarking and analysis tools, the results of our experi-
ments, our analysis of the results and the measuring over-
head on the server. We implemented our algorithm on the 
Apache version 1.3.9, a public domain HTTP/1.1 server. 
We conducted the measurements using three locations. The 
Web server was located at Tel-Aviv University (TAU), 
Israel. The Web clients were located at Tel-Aviv college 
(MTA), Israel and at the University of California, Irvine 
(UCI), CA. 

A. Measurements Testbed 

We want to evaluate the performance of our estimation 
method. In order to make our evaluation valid we need to 
simulate real clients with real-world Web traffic character-
istics (bandwidth, RTT and loss rate), fetching different 
Web pages under various server loads. Also, in order to 
estimate our performance we need to know the actual la-

tencies the clients experienced. Figure 6 demonstrates the 
topology of the testbed. In the following sub-section we 
will describe each element of the testbed. 

 

A.1 Web Server 
 

The Web server computer includes three elements: the 
modified Apache Web server, the queue latency probe and 
the external pinger. The server ran on a dedicated PC run-
ning the Linux operating system version 2.2.14.  

 

Internet
(WAN)

LAN

Web Server

Web Loader Web Loader

Web Loader Web Loader
Web Client

Web Client

Figure 4: Testbed Topology 
 

A.2 Web Clients 
 

In order to evaluate our method we needed a Web clients 
that will simulate a Web browser and perform measure-
ments of the Main Page Latency, the Web Page Latency 
and other parameters like RTT. Therefore, we wrote a 
multi-thread “Web browser” program utilizing BSD-socket 
interface. This program supports HTTP/1.1 persistent con-
nections and simulates the dependency between the request 
for the HTML document and the requests for the embedded 
images.  The program fetches whole Web pages using a 
predefined number of persistent TCP connections. After 
fetching the whole Web page all the threads close the con-
nections and the master program writes in a log file, called 
the client log file, the RTT, the Main page latency and the 
Web page latency.

A.3 Web Workload Generator 
 

To generate the workload we wrote a program called 
Web Loader, based on the “Web browser” program with a 
few modifications. The Web Loader uses a fixed number of 
threads. Each thread runs in infinite loop with the same 
task: opening a TCP connection to the server, fetching one 
web page from server and closing the connection.  The web 
page to be fetched is selected randomly from various web 
pages, which vary in size. Hence, each Web Loader simu-
lates several clients running on the same client machine. 
We limited the number of threads per computer to 10. In 
order to reach the required workload we ran the Web 
loader on several machines located on our LAN. 

 



9

A.4 Representative Web Pages Used in the Experiment 
 

We wanted to test our estimation on representative Web 
pages of the Web. We wanted to determine typical HTML 
document size, the number of embedded images and their 
typical size for popular Web pages. Several rating sites 
offer statistics on popular Web sites like Hot100 [16]. 
Hot100 claims to survey 100,000 users (40% of whom are 
outside the USA). Hot100 claims to gather data at “strate-
gic” points on the Internet (not at the browser or server). 
For those top 100 sites we measured their page sizes and 
found that the average HTML document size is 30K, the 
average number of embedded images is 21 with an average 
size of 2.5K per embedded image. As a result we selected 
to use the following Web pages as representatives: combi-
nations of HTML document sizes 10K, 30K and 60K with 
5, 15, 30 and 50 embedded images with an average size of 
2K-3K, this gives us 12 various pages. Two additional 
Web pages were used: A Web page consisting of a 30K 
HTML document and 21 embedded images of average size 
6K (a Web page with very large inlines) and one Web page 
which includes only 2 inlines. Thus, altogether we have14 
different Web pages. Lastly, in order to use genuine Web 
pages,  we selected Web pages of these characteristics 
them from the top 100 Web pages.  

 

A.5 Testing under Real-World Traffic Characteristics  
 

We want to estimate our method using clients with real-
world Web traffic characteristics connecting through a 
WAN. We want to estimate the performance under WAN 
effects: large RTT disparity, packet loss and various band-
width characteristics. The PingER project at Stanford Ac-
celerator Center (SLAC) [17] conducts continuous network 
monitoring to measure network latency and packet loss 
over the Internet. Their measurements show average loss 
rate of 0.5% and RTT of 30-60 milliseconds in the U.S., 
Asia and Europe, while between the continents the average 
loss rate is of 1.4% and RTT varies between 200 to 600 
milliseconds. We conducted our experiments with two cli-
ents, one located at MTA and UCI.  Our experiments were 
performed at various hours of the day and over a one week 
span. During this time frame we measured these clients’ 
network characteristics in terms of RTT, bandwidth and 
loss rate.  UCI’s RTT was 600-620 milliseconds, band-
width 30-40 KB/s and loss rate of 0%. MTA’s RTT was 
30-100 milliseconds, bandwidth 5-17 KB/s and loss rate of 
2%. UCI’s RTT reflect longer network RTT to the US 
from the server (located in Tel-Aviv). UCI’s RTT, band-
width and Loss Rate showed a minor disparity. MTA 
showed large disparity in the RTT and in the bandwidth. 
Therefore, these two sites are good representatives for real-
world Web traffic characteristics, because they cover large 
ranges of RTT, bandwidth and loss rate. Heidemann et al. 
[15] summarized network characteristics for several exist-
ing networks, which include typical bandwidth and RTT. 
According to Heidemann’s terms we can categorize them 
as follows: MTA can be categorized as something between 

WAN-Modem to WAN-ISDN due its large disparity, while 
UCI can be categorized as Medium-Internet connectivity 
with large number of hops. 

B. Experiments Runs 

We conducted the test runs as follow: Each web-client 
located in MTA or UCI fetched all the 14 Web pages in 
serial fashion. For each Web page our browser first fetched 
it with 4 persistent connections for 5 times and later the 
browser fetched it with 2 persistent connections for 5 
times. Between each Web page download, it waited for 4 
seconds before continuing. The tests were repeated under 
various server loads. We controlled the server load by 
number of Web Loader computers running in our LAN. 
The number of Web Loader computers varies between 0-9, 
which means between 0 to 90 clients, in total. We used 
four server loads: Light, medium, high and overloaded. 

 

Load CPU 
Usage [%] 

Requests  
Per Sec 

Average Queue 
Latency [msec] 

No. Of 
Web Load-
ers 

Light 3 7 1 0 
Medium 20 68 20 1 
High 50 75 500 4 

Overloaded 90 56 6000 9 

Table 2: Web Server Load Characteristics 

C. Performance Evaluation 

 Figure 5 depicts the accuracy of our Main Page La-
tency and Web Page Latency estimation method for all the 
tests runs for both of the clients under the various server 
loads. The figure depicts also the effect of the estimating 
method for the RTT (RTTmin or RTT from the external 
pinger). It should be clear that the external pinger is inte-
gral part of our method. Therefore, the performance of our 
method should be evaluated for the case of using the pinger 
for estimating the RTT. The RTT measurements subject to 
some errors due to variability, however our results are not 
sensitive greatly to it. Table 3 summarizes the median and 
average of the estimation error. The table shows also the 
median value of the estimation error because the average 
values are shifted by the few high errors in the test runs 
under overloaded server. The average latency estimation 
error of our method for various Web pages is 4% under 
normal server loads and 10% under overloaded server. For 
Web pages with few embedded images our method re-
quires the use of the external pinger for the RTT estima-
tions. In order to better understand the performance of the 
method we present in the following subsections the results 
of the runs under various conditions. Since the accuracy of 
the experiments seems to not be affected by the normal 
server load (light, medium and high) we aggregate the dif-
ferent load results together. The latency estimation errors 
for MTA and UCI have similar behavior, so some of the 
results will present MTA’s estimation errors and other 
UCI’s estimation errors. The rest of this section is divided 
into the following sub-sections: 1) Evaluation of perceived 
delay estimation for typical Web pages under normal 



10

server loads, 2) Evaluation of perceived delay estimation 
for Web pages with large embedded images under normal 
server loads, 3) Evaluation of perceived delay estimation 
for Web pages with a few embedded images under normal 

 

Figure 5: Cumulative Distribution of Latency Estimation Error 
for all Test Runs 

Meaning Average 

RTT Est. Method RTTmin  Pinger 

Main  Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

All runs 8.8 11.2 4.0 4.8 

Meaning Median 

RTT Est. Method RTTmin  Pinger 

Main Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

All runs 1.4 3.3 0.7 3.0 

Table 3 - Average and Median of the Latency Estimation Error 
for all Test Runs 

server loads, and 4) Evaluation of perceived delay estima-
tion for an overloaded server.  

 

C.1 Latency Evaluation with Typical Web Pages   
 under Normal Server Load 
 

Figure 6 depicts the accuracy of our Main Page Latency 
and Web Page Latency estimation method as a function of 
the number of the embedded images for both of our clients. 
We aggregated the runs of Web pages with the same num-
ber of embedded images. For 15, 30 and 50 inline images, 
the latency estimation errors for MTA and UCI’s behaved 
similar so we present MTA’s errors for Web pages with 15 
and 30 inlines and UCI’s errors for Web pages with 50 
inlines. Figure 6 depicts the effect of estimating method for 
the RTT. Table 4 summarizes the average latency estima-
tion error. For typical Web pages the latency estimation 
error for both of our clients does not depend on the number 
of inline images or on the method of estimating the RTT. 
Hence, the effect of the external pinger for typical Web 
pages is negligible. For a Web page with large inline im-
ages there is no significant change in the estimation error.   
 The average estimation error for MTA was larger than 
UCI because: 1) UCI has high bandwidth,. 2) MTA has 
high packet loss. We conclude that the average latency es-
timation error is 4% for a typical Web page. 

Table 4: Latencies Estimation Errors for Typical Web Page 
 

C.2 Latency Evaluation with Web Pages with a Few   
 Inlines under Normal Server Load 
 

Figure 7 depict the accuracy of our Main Page Latency 
and Web Page Latency estimation method for Web pages 
with a few embedded images (two and five embedded im-
ages). The latency estimation error for Web pages with two 
and five embedded images behave similar so we present 
the error for Web pages with five embedded images. Each 
figure also depicts the effect of the method for estimating 
the RTT. Table 5 summarizes the average errors for UCI 
and MTA. As can be seen from the Table , for a Web page 
with a few embedded images it is preferred  to use the ex-
ternal pinger to estimate the RTT rather than relying on the 
RTTmin. The error decreases in some cases from an aver-
age error of 90% to an average error of 6%.  
 We conclude that for Web pages with a few embedded 
images our method estimates the Main Page Latency and 
the Web Page Latency as good as for Web pages with 
many embedded images. This holds when we have RTT 
estimation via the external pinger. 
 

C.3 Latency Evaluation under Overloaded Server  
 

In this subsection, we evaluate our method under over-
loaded server condition. Figure 8 depicts the accuracy of 
our Main Page Latency and Web Page Latency estimation 
method as a function of the number of the embedded im-
ages for MTA.  Figure 8 depicts only the runs with 5 and 
15 inline images because the rest runs showed the same 
behavior. We also do not show UCI’s results because they 
exhibit a similar behavior. We aggregated the runs of Web 
pages with the same number of embedded images. Each 
figure depicts the effect of the method of estimating the 
RTT. Table 6 summarizes the median and average of the 
latency estimation errors for MTA. The behavior of the 
latency estimation error is similar for the tests run under 
normal server load and overload sever as Figure 8, Figure 6 
and Table 6 depict, except to the long tail for the overload 
case. The reason for that is that for an overloaded server 
there are periods of time in which the queue latency in-
creases rapidly in short time. Our queue latency probe sam-
ples the queue latency in low frequency, hence it may sam-

Client MTA 

RTT Est. Method RTTmin  Pinger 

No. of Inlines 
Main Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

15 4.5 5.6 3.5 4.8 
21  2.3 2.4 2.2 2.3 
30 3.5 5.5 3.4 5.4 
50 4.3 6.1 4.3 6.1 
Client UCI 

RTT Est. Method RTTmin  Pinger 

No. of Inlines 
Main Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

15 0.5 1.9 0.5 1.9 
21 0.3 2.4 0.2 2.4 
30 0.2 3.2 0.2 3.2 
50 0.7 3.3 0.7 3.3 



11

sample the queue in this rapid increase in queue latency, 
and therefore it may under-estimate the queue latency.  
Therefore, in those runs we get high error. For this reason, 
we got higher average error than in the case of the runs 
under normal server loads. Hence, for overloaded server 
the median error is more meaningful than the average error. 
We see, again, that there is need for the external pinger 
only for Web pages with a few embedded images. The av-
erage latency estimation error is 10%, in contrast the me-
dian latency estimation error is only 4%. 
 

The estimate of the queue delay can possibly be im-
proved by studying more sophisticated sampling and sam-
ple averaging techniques. However, since the impact of the 
queue latency accuracy seems to be small, we avoid it in 
this context. 

Figure 6: Cumulative Distribution of Latency Estimation Error 
for typical HTML Documents 

 
Client MTA 

RTT Est. Method RTTmin Pinger 

No. of  Inlines 
Main Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

2 75.7 91.6 0.6 5.6 
5 32.3 46.4 2.6 3.9 
Client UCI 

RTT Est. Method RTTmin Pinger 

No. of  Inlines 
Main Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

2 38.1 40.1 0.1 7.6 
5 19.1 23.9 0.3 2.7 

Table 5: Latencies Estimation Errors for Web Page with few 
Inline Images 

 

C.4  Measurement Overhead 

In this section, we present the overhead of our meas-
urement architecture. The server CPU overhead due to the 
additional fields logged is 0.15%. The queue latency probe 
samples the server every four seconds, which adds an aver-
age 0.025% CPU overhead. The external pinger is running 
once every 30 seconds, which adds average 0.04% CPU 
overhead. Hence, the total average server CPU overhead 
due to our measurements is less then 0.2%. 

 

Figure 7: Cumulative Distribution of Latency Estimation Error 
for Web Pages with 5 Inline Images 

Figure 8: Cumulative Distribution of Latency Estimation Error 
under Overloaded Server 

Meaning Average 
RTT Est. Method RTTmin  Pinger 

No. of Inlines 
Main Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

5 14.3 20.7 3.6 3.9 
15 10.5 9.6 10.1 9.5 
30 10.3 6.1 10.3 6.1 
50 8.6 11.5 8.5 11.5 
Meaning Median 

RTT Est. Method RTTmin  Pinger 

No. of  Inlines 
Main Page 
Error [%] 

Web Page 
Error [%] 

Main Page 
Error [%] 

Web Page 
Error [%] 

5 7.0 7.1 1.9 2.5 
15 2.8 2.5 2.0 2.9 
30 4.9 2.3 4.9 2.3 
50 1.2 7.7 1.2 7.7 

Table 6: Average and Median of the Latency Estimation Error 
under Overloaded Server 

 



12

VIII. RELATED PROBLEMS AND THEIR SOLUTION 

A. DNS Lookup Time 

Our method cannot measure the DNS lookup time that 
the client may experience. However it seems that for the 
current Web its contribution on the overall perceived la-
tency is negligible.  

Keynote [9] is a commercial company that measures 
Web sites’ latencies using remote agents. According to 
their measurements, the average DNS lookup time is 60 
milliseconds. Cohen and Kaplan [2] studied DNS lookup 
times under various conditions. Their study shows that 
DNS lookup times for 80% of the servers took under 300 
milliseconds, and repeated DNS query conducted hours 
later took less then 150 milliseconds for 80% of the serv-
ers. Because DNS queries are cached also in Web browsers 
and ISP’s name servers, this time can be even lower. Their 
study measured the DNS lookup time compared to the time 
to download only the textual portion of home page of some 
URLs, without the embedded contents. They assume that 
transmission time is negligible, because they conducted 
their measurements in high bandwidth environment. In our 
experiments with a client with average bandwidth and low 
RTT (MTA), the typical average time of downloading 
HTML document and whole Web page excluding DNS 
lookup time, is 2 sec and 5 sec, respectively. This means 
that the DNS lookup time relatively to the download time 
of HTML document and the download of the whole Web 
page is 10% and 4%, respectively. This ratio can go down 
to less than 1% if the DNS query is already in the cache of 
the Web browser or in the ISP’s DNS server. Hence for 
most Web sites the DNS lookup time in comparison to the 
whole transaction, or even just the HTML document 
download time, is negligible.  

Nonetheless, we propose a server-side approach for veri-
fying that the Web access does not have DNS problems: 
The world is divided into several zones, where each zone is 
under the responsibility of a well-known Root DNS server. 
Therefore, the Web server, by using a program like 
nslookup, could query each one of the root DNS servers 
with its domain name periodically and report the adminis-
trators about DNS problems in any zone.  

B. Pipelining 

If popular web browsers will use pipelining in the future, 
our method is still valid. Some minor modifications need to 
be performed. These are: 1) The RTT could not be meas-
ured from the inter-request times, therefore we will rely 
only on the external RTT measuring program, our pinger, 
and 2) We need to change the way we calculate the per-
ceived rate in our method. In case of pipelining subsequent 
server responses can be written without the previous ones 
being received. Hence, the server will write not to an 
empty write buffer as in the case of not using the pipelin-
ing. Therefore, we can measure the decrease rate of the 
write buffer each time the server writes a new response. By 

monitoring the changes along the timeline of the whole 
transaction, we will be able to estimate the perceived rate. 

C. Load Balancing 

Some Web sites use several Web servers and distribute 
the clients’ requests using a load-balancing device. In case 
that all the client’s connections are sent to the same server 
our algorithm does not require modification. In a case that 
each connection is sent to a different server there is a need 
to merge all the site server’s access logs together before 
running our latency estimation method. 

D. Web Proxy 

Our method used the client IP address in order to distin-
guish between the different users. Some Web clients are 
forced to go through proxies to connect to the Internet. 
Therefore, the server will not be able to distinguish be-
tween the different clients that are connecting to the server 
via the proxy. One can use cookies to distinguish between 
them. 

E. Distributed Embedded Images 

Some Web sites distribute their embedded images in 
other servers around the Internet. Microsoft Explorer opens 
2 persistent connections to the server while Netscape Navi-
gator opens 4 persistent connections to the server. We no-
ticed that when Microsoft Explorer and Netscape Naviga-
tor detect reference to images at a different server, they 
open additional 2 or 4 additional connections to the new 
server, respectively. Hence the download of these images is 
done simultaneously to the download of the page 
downloaded from the original site. These new TCP connec-
tions may slow down the rate of the connections to the 
original server if the client has a limited bandwidth. Thus 
the new requests on the already established connections to 
the original server will suffer from rate decrease which will 
be noticeable from the access log, and thus will be taken 
into account in our estimation algorithm.  

We examined the 100 Web sites that we used previously 
and found that 30% of these Web pages have no external 
images and 70% have less than 8 external images. For 60% 
of the Web pages the relative fraction of the external im-
ages is less then 20%. In addition, we can see that about 
20% of the Web pages have about 80% of their images 
stored in other servers. The average number of external 
images is 6, while the average number of embedded images 
per Web page is 21. Hence, on the average most of the im-
ages come from the original Web server.  

Thus, our algorithm will accurately estimate the latency 
of the HTML document and accurately estimate the 
download time of the images located in the original server, 
which, for most cases is the major portion of the images. 

 

IX. CONCLUDING REMARKS 

We presented a new approach to estimate user perceived 
latency, based on server side measurement. The new solu-



13

tion does not require any agents to be placed at the net and 
no additional hardware. Further, it does not monitor pack-
ets at low-level protocols and is all based on implementa-
tion at the HTTP level. The solution we proposed is based 
on a new technique in which a special tiny and unnotice-
able HTTP object, the sentry, is used in measuring the user 
perceived latency. We demonstrated our approach by im-
plementing it on the Apache Web server. Our experiments 
showed that the proposed method estimates the latency to 
fetch the textual portion of the Web page and the full Web 
page with an average error of 4% under normal server 
loads, and an average error of 10% under overloaded server 
loads.  

The major advantage of our measurement approach, as 
opposed to client (agent) side approach, is that is can 
evaluate the latency experienced by each individual client 
(regardless of its network location). Further, this estimate 
can be conducted at real time, thus allowing the server to 
control in online mode its operation and prioritize the re-
quests based on the actual performance observed by the 
clients. 

Several issues remain open for further research. These 
relate to the application of our method 1) users using prox-
ies. 2) HTTP transactions that use pipelining and 3) Web 
sites that have external embedded images. 

 

X. REFERENCES 
[1] W.R. Stevens. TCP/IP Illustrated Volume 1. Addison-Wesley, Reading, 

MA, 1994. 
[2] E. Cohen and H. Kaplan. Prefetching the means for document transfer: 

A new approach for reducing Web latency. In Proceedings of the IEEE 
INFOCOM’00 Conference. 2000.  

[3] Apache HTTP server project.  http://www.apache.org. 
[4] E. Cohen, H. Kaplan, and J. D. Oldham. Managing TCP Connections 

under Persistent HTTP. Computer Networks. 31:1709-1723, 1999.  
[5] B. Krishnamurthy and J. Rexford, En Passant: Predicting HTTP/1.1 

traffic. Proc. Global Internet Symposium, 1999. 
[6] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, 

and T. Berners-Lee, Hypertext transfer protocol - HTTP/1.1, Request 
for Comments 2616, 1999. ftp://ftp.isi.edu/in-notes/rfc2616.txt. 

[7] A. Feldmann, BLT: Bi-Layer Tracing of HTTP and TCP/IP. WWW-9, 
2000, to appear. 

[8] Sitescope company. http://www.sitescope.com/. 
[9] Keynote company. Http://www.keynote.com/. 
[10] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Proto-

col - HTTP/1.0. RFC 1945, MIT/LCS, 1996.  
[11] H. Frystyk Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. 

W. Lie, and C. Lilley. Network performance effects of HTTP/1.1, 
CSS1, and PNG. In Proceedings of the ACM SIGCOMM’97 Confer-
ence, France, 1997. 

[12] E. Cohen and H. Kaplan. Proactive caching of DNS records: approaches 
and algorithms. Submitted. 1999. 

[13] W. Stevens. TCP/IP Illustrated Volume 3. Pages 188-189,Addison-
Wesley, Reading, MA, 1996. 

[14] Z.Wang and P.Cao, Persistent connection behavior of popular browsers. 
http://www.cs.wisc.edu/cao/papers/persistent-connection.html. 

[15] J. Heidemann, K. Obraczka, and Joe Touch. Modeling the Performance 
of HTTP Over Several Transport Protocols. ACM/IEEE Transactions 
on Networking, 5(5), 616-630, 1997.  

[16] 100 hot.com. http://www.100hot.com/ 
[17] L. Cottrell, W. Matthews, and C. Logg. Tutorial on internet monitoring 

pinger at SLAC. Available from 
http://www.slac.stanford.edu/comp/net/wanmon /tutorial.html/, 1999. 

 


	Introduction
	Related Work

	Background and Notations
	Latencies of Web transfer
	Interaction between HTTP and TCP at Web            Servers
	Concurrent TCP Connections
	Server Logs
	Notations

	Analysis of a Web Page Transfer
	Observations
	Data Collection Architecture
	Extended Server Access Log
	Queue Latency Probe
	External Pinger
	The Sentry: HTML Document Modification

	Latency Estimation Algorithm
	Inter-Request RTT
	Inter-Request Perceived Packet Rate
	Average Inter-Request Perceived Packet Rate
	Main Page Latency
	Web Page Latency

	Evaluation of the Algorithm
	Measurements Testbed
	Experiments Runs
	Performance Evaluation

	Related Problems and Their Solution
	DNS Lookup Time
	Pipelining
	Load Balancing
	Web Proxy
	Distributed Embedded Images

	Concluding remarks
	References

