
1

Group Routing without Group Routing Tables:
An Exercise in Protocol Design

Jorge A. Cobb Mohamed G. Gouda
University of Houston The University of Texas at Austin

Houston, TX 77204-34785 Austin, TX 78712-1188
{cobb@cs.uh.edu} {gouda@cs.utexas.edu}

Abstract

We present a group routing protocol for a network of processes. The task
of the protocol is to route data messages to each member of a process
group. To this end, a tree of processes is constructed in the network, en-
suring each group member is included in the tree. To build this tree, the
group routing protocol relies upon the local unicast routing tables of
each process. Thus, group routing is accomplished by composing two
protocols: an underlying unicast routing protocol, whose detailed behav-
ior is unknown but its basic properties are given, and a protocol that
builds a group tree based upon the unicast routing tables. The group
routing protocol is developed in three steps. First, a simple protocol is
obtained, and is proven correct. Then, the protocol is refined twice. Each
refined protocol improves upon its predecessor by satisfying all of the
predecessor's properties plus some additional stronger properties. The
final protocol has the property of adapting the group tree to changes in
the unicast routing tables without compromising the integrity of the
group tree, even in the presence of unicast routing loops.

1. Introduction

In this paper, we present a group routing protocol for a network of processes.
In group routing, the processes in the network are organized into groups. When
the destination of a data message is a process group, the data message is forwarded
along the network until it is received by every member of the destination process
group. This dissemination of data messages to a process group has many applica-
tions, such as audio and video conferencing [WH92], replicated database updating
and querying, and resource discovery [KS92].

For simplicity, we present a group routing protocol for a single process group.
The extension to multiple groups is straightforward.

To forward data messages to all group members, a group tree is constructed.
Each node in the tree corresponds to a process in the network, and each edge in the
tree corresponds to a communication link between two processes. The tree con-
tains each member of the process group, plus any additional processes necessary to

2

connect the tree together. When a data message is addressed to the process group,
the message is forwarded along the entire tree. In this way, each node in the tree,
and hence each group member, receives the data message.

To build a group tree, processes need to learn about the topology of the net-
work and find the best paths between each other. These tasks, however, are typical
of unicast routing protocols, which are an integral part of most networks. Thus,
we assume that a unicast routing protocol exists in the network, and each process
has its local unicast routing table. We take advantage of the unicast routing table
in each process and use it as a guide in the construction of an efficient group tree.

Many unicast routing algorithms exist in the literature, e.g., [AGH90, AS92,
GS94, KG89, SC87]. These algorithms have many differences, such as using differ-
ent metrics in choosing the best path between two processes. However, common
to all of these is the ability to change the routing tables in response to varying net-
work conditions, such as fluctuations in traffic, or changes in the network topol-
ogy (e.g., links being taken in or out of service). To maintain the efficiency of the
group tree, when the unicast routing tables change, the tree is restructured to re-
flect these changes.

The design of our group routing protocol is based on the paradigm of protocol
composition. The protocol is correct when composed with any unicast routing
protocol that satisfies the following basic requirement. The routing tables may
fluctuate, but they eventually converge to a value that, for each pair of processes p
and q, defines a path from p to q. In this way, the group routing protocol performs
as desired even when the details of the particular unicast routing protocol in use
are unavailable.

We design our group routing protocol in three steps, using each step as a step-
ping stone to the next. First, we present a basic version of the protocol, and prove
some correctness properties for this version. Then, we present two refined ver-
sions of the basic protocol. Each refined version improves upon the previous ver-
sion by satisfying all of the properties of the previous version, and also satisfying
additional stronger properties.

The basic group routing protocol builds a tree that adapts itself to the unicast
routing tables in a manner that may temporarily disrupt the integrity of the group
tree. After the second refinement, the end result is a group routing protocol that
adapts itself to the unicast routing tables, and in addition maintains the integrity
of the group tree. That is, it does not introduce temporary loops, it always main-
tains the tree connected, and it never removes a group member from the tree.

Obtaining a broadcast tree from the unicast routing tables was introduced in
[DM78]. In [DC90] [De94], the broadcast tree is trimmed into a group tree that ex-
cludes those processes not needed to reach the members of the multicast group.
Unfortunately, as the unicast routing tables change, the tree may lose its integrity
and become disconnected, until the unicast routing tables converge to a stable
value. In [Bal95] [BFC93], a group tree is initially built from the unicast routing ta-
bles. However, the tree does not adapt itself to changes in these tables, and thus
may lose its efficiency as the network topology changes.

3

p q

r

st

u

v

Figure 1: Network of processes

The structure of the paper is as follows. In Section 2, the notation to specify
each group routing protocol is introduced. The basic group routing protocol is in-
troduced in Section 3. In Section 4, the correctness properties of the basic protocol
are presented. The first refinement of the basic protocol, along with its correctness
properties, is presented in Section 5. The second refinement is presented in
Section 6. In Section 7, possible further refinements to the group routing protocol
are mentioned. Concluding remarks are given in Section 8. To simplify the exposi-
tion, all proofs are deferred to the appendix.

2. A Protocol Family

Below, we present a family of group routing protocols. Each protocol consists
of a set of processes which exchange messages via communication channels. The
processes and their channels form a network that may be represented as an undi-
rected graph, as shown in Figure 1. In this graph, a node represents a process, and
an edge between processes p and q represents two communication channels, one
channel from process p to process q and another channel from process q to process
p. We say that processes p and q are neighbors iff they are joined by an edge in the
network graph. Each process is assigned a unique identifier, which we assume to
be of type integer.

The channel from a process p to a process q is denoted by ch.p.q. A message
sent from process p to process q is stored in channel ch.p.q until the message is re-
ceived by q. When process p sends a message to q, the message is added at the tail
of the message sequence of channel ch.p.q. When process q receives a message
from p, q receives the message at the head of the message sequence in ch.p.q.

Each process is defined by a set of global and local constants, a set of local vari-
ables, and a set of actions. If multiple processes have the same name for a local
variable, say v, then we denote variable v in process p by p.v.

Actions are separated from each other with the symbol [], using the following
syntax:

begin action [] action [] . . . [] action end

Each action is of the form guard → command. A guard is either a boolean expres-
sion involving the local variables of its process, or a receive statement of the form
rcv msg from j, where msg is a message type and j is the identifier of a neighboring
process. A command is constructed from sequencing (;), conditional (if fi), and it-
erative (for rof) constructs that group together skip, assignment, and send state-

4

ments of the form send msg to j. Similar notations for defining network protocols
are discussed in [Gou93] [Gou95].

An action in process p is said to be enabled if its guard is either a boolean ex-
pression that evaluates to true, or a receive statement of the form rcv msg from j,
and there is a message of type msg at the head of channel ch.j.p.

An execution step of a protocol consists of choosing any enabled action from
any process, and executing the action's command. If the guard of the chosen action
is a receive statement rcv msg from j, and this action is in process p, then, before
the action's command is executed, a message of type msg is removed from the
head of channel ch.j.p. Any protocol execution is fair, that is, each action that re-
mains continuously enabled is eventually executed.

Multiple actions that differ by a single value can be abbreviated into a single ac-
tion by introducing parameters. For example, let j be a parameter whose type is the
range 0 . . 2. The action

 rcv msg from j → x := j

is actually a shorthand notation for the following three actions, one for each possi-
ble value of parameter j.

 rcv msg from 0 → x := 0

[] rcv msg from 1 → x := 1

[] rcv msg from 2 → x := 2

3. The Basic Protocol

In this section, we define a protocol for routing data messages to every mem-
ber of a process group. Any member of the group can generate data messages, and
each data message is forwarded to each member of the group. Since group mem-
bers do not necessarily have direct channels between each other, data messages are
forwarded from one process in the network to another until they reach each group
member.

Assume there are n members in the group. When a process creates a data mes-
sage, the process could construct n - 1 copies of this message, and unicast each mes-
sage to a distinct member of the group, using the regular unicast routing tables of
the network. This, however, is wasteful, since it generates more messages than
necessary, plus it requires each member to have knowledge of all other members
of the group.

We adopt instead the approach of constructing a group tree of processes. The
edges of the tree are a subset of the edges in the process network, and the set of
processes in the tree contains all members of the process group. Each data message
is forwarded along the entire group tree. In this way, each node in the tree, and
hence each group member, receives each data message. Notice that there may be
processes that are nodes in the group tree but are not members of the process
group. These additional nodes are needed to ensure the group tree is connected.

5

p q

st

v

data

data data

p q

st

v

data

data data

network edge not on tree

tree edge

a) p is originator of data message b) p is not originator of data message

Figure 2

To forward a data message along the group tree, the originator of the message
forwards the message to all of its neighbors in the tree, as shown in Figure 2a.
When a node receives a data message from a neighbor in the tree, it forwards the
message to all of its neighbors in the tree except the one from which the message
was received, as shown in Figure 2b.

To determine which edges in the network belong to the group tree, we take
advantage of the existing spanning trees provided by the unicast routing tables in
the network. Recall that the unicast routing table at node p determines, for each
possible destination node r, which neighbor is the next-hop in the unicast path
from p to r. Hence, a spanning tree rooted at r is obtained by choosing all network
edges (p, q), where q is the next-hop in the unicast path from p to r.

To construct a group tree, we designate one node in the network as the root
node of the group tree, and the parent of each node p in the group tree is the next-
hop neighbor in the unicast path from p to the designated root node. In this way,
the group tree is a subset of the unicast spanning tree with the same root.

Note that the group tree must contain all members of the process group, plus
any additional nodes required to complete the tree. A node p determines that it be-
longs to the group tree as follows. If p is a group member, then p belongs to the
group tree. If p is not a group member, but it has a neighbor that belongs to the
group tree, and the neighbor's parent in the group tree is p, then p also belongs to
the group tree.

The general strategy is the following. If a process determines that it belongs in
the group tree, it sends a request message to its parent in the tree. When the parent
receives the request, it adds the process to its set of children and returns a reply to
the child. Each process in the tree sends a request periodically to its parent. To en-
sure that at most one request is outstanding at any time, a process will not send a
new request to its parent until a reply is received for the previous request. If a par-

6

ent does not receive a request from a child within some timeout period, it re-
moves the process from its set of children.

The unicast spanning tree, although usually stable, may change due to varying
network conditions, such as communications channels taken into and out of ser-
vice, processes being added or removed from the network, variations in channel
utilization, etc.. These changes in the network may temporarily cause problems in
unicast routing, such as fluctuations in the routing tables at a process, and also
unicast routing loops. We assume that these problems are temporary, and that the
unicast spanning tree will again become stable.

If the unicast spanning tree changes, the group tree changes accordingly, and
becomes a subgraph of the new spanning tree. However, while these changes are
occurring, the group tree may become disconnected, and hence, some data mes-
sages may not be delivered to all group members. In Sections 5 and 6 below, we re-
fine our solution to prevent disruption of message delivery due to changes in the
unicast routing tables.

We next present in detail the code for each process. The constants and vari-
ables in each process are as follows.

Each process has a global constant, root, which is the identifier of the group
member chosen as the root of the group tree. Each process also has two local con-
stants, also known as inputs. Input nbr in process p is a set containing the identi-
fiers of the neighbors of process p. Input mbr is a boolean indicating whether p is a
member of the process group or not.

Each process maintains in variable pr the identifier of its parent in the group
tree, and maintains in variable chl the set of neighbors which are its children in
the group tree. If a process p determines that it should not belong to the group tree,
the process assigns its own identifier p to pr.

When process p calls the function ROUTE(p, q), it gets in return the next-hop
neighbor in the unicast path from p to q. Note that this function call may not al-
ways return the same value, since the unicast routing path may be undergoing
some changes. Also, we assume that ROUTE(p, p) always returns p. Hence, if p is
the root of the group tree, its variable pr is always equal to p.

Each process p in the network can now be defined as follows.

process p

const
root : integer { root of group tree }

inp
nbr : set of integer, { set of neighboring processes }
mbr : boolean { true iff p is a group member }

var
chl : set of integer, { children of p in group tree }
pr : integer, { parent of p in group tree}
wr : set of integer { waiting for replies from these neighbors }

7

par
j : nbr { j ranges over each element of nbr }

begin

 mbr → for each d in (chl ∪ {pr}) - {p} do
send data to d

rof

[] rcv data from j →
if j ∈ chl ∪ {pr} →

for each d ∈ (chl ∪ {pr}) - {j, p}
send data to d

rof;

if mbr → deliver data

[] ¬mbr → skip
fi

[] j ∉ chl ∪ {pr} → skip
fi

[] chl ≠ ∅ ∨ mbr →
pr := ROUTE(p, root);

if pr ≠ p ∧ pr ∉ wr → send rqst to pr;
wr := wr ∪ pr

[] pr = p ∨ pr ∈ wr → skip
fi

[] rcv rqst from j →
chl := chl ∪ j;
send rply to j

[] rcv rply from j →
wr := wr - j

[] timeout j ∈ chl ∧ j.pr ≠ p →
chl := chl - {j};

if chl = ∅ ∧ ¬mbr → pr := p

[] chl ≠ ∅ ∨ mbr → skip
fi

end

Process p has six actions. In the first action, the process creates a data message
and sends it to its parent and children in the group tree. In the second action, pro-
cess p receives a data message from one of its neighbors. If the message is received
from a neighbor that is neither a child nor parent, the message is discarded.

8

Otherwise, the message is sent to each neighbor that is either a child or parent, ex-
cept for the neighbor from which the message was received. Also, if p is a member
of the group, the data message is delivered to the application.

In the third action, process p checks whether it should be part of the group tree.
If it should be, p assigns to its parent variable pr the next-hop neighbor to the root,
and it sends a request to this parent, provided it is not waiting for a reply from an
earlier request. In the fourth action, the process receives a request from a neighbor.
Thus, the neighbor is added to the set of children, and a reply is sent to the child.
In the fifth action, the reply is received from the parent.

The final action is a timeout action that models the expiration of a timer. We
simplify the modeling of this action by using a global predicate as the action's
guard, rather than modeling a real-time clock explicitly. In this global predicate,
j.pr stands for the value of variable pr of neighbor j. Although timeout actions are
modeled by a predicate, they can be implemented in practice using a real-time
clock [Gou95].

In the timeout action, if the process has a child j, and it has not received a re-
quest from this neighbor in a certain amount of time (i.e., j.pr ≠ p), it removes the
child from set chl. Furthermore, if the process determines that it should no longer
take part of the group tree, it assigns its own identifier to pr.

Note that once the unicast routing tables and the group tree have achieved
their final values, the periodic exchange of request and reply messages in the pro-
tocol occurs only between neighbors in the group tree. Thus, processes that are not
in the group tree do not incur any processing overhead in maintaining this tree.

4. Protocol Properties

In this section, we present two types of properties needed to described the in-
tended behavior of our group routing protocols, namely, closure and convergence
[Gou93]. After defining the terms closure and convergence, we show which spe-
cific closure and convergence properties are satisfied by the protocol of Section 3.

A computation of a network protocol N is a sequence (state.0, action.0; state.1,
action.1; state.2, action.2; . . .) where each state.i is a state of N, each action.i is an
action of some process in N, and state.(i+1) is obtained from state.i by executing ac-
tion.i. Computations are fair, i.e., every continuously enabled action is eventually
executed. Computations are also maximal, i.e., if state.j is the last state in a compu-
tation, then no action is enabled in state.j.

A state predicate of a network protocol N is a function that yields a boolean
value (true or false) at each state of N . A state of N is an S-state iff the value of
state predicate S is true at that state.

Many of our state predicates make use of universal quantifications of the form:

〈∀ x : R(x) : T(x)〉
This quantification is true iff every possible value of x that satisfies the boolean
function R(x) also satisfies the boolean function T(x). We assume that the values

9

of x are restricted to process identifiers in the network. If R(x) is omitted, x ranges
over all process identifiers.

Let S be a state predicate of N. Predicate S is a closure in N iff at least one state
of N is an S-state, and every computation that starts in an S-state is infinite and all
its states are S-states. Predicate S is a weak-closure in N iff at least one state of N is
an S-state, and every computation that starts in an S-state has an infinite suffix
consisting solely of S-states.

From the above definitions, if S is a closure in N, then any computation start-
ing from an S-sate is guaranteed to continue indefinitely and every state encoun-
tered in the computation will be an S-state. Thus, predicate S defines a non-empty
and closed domain of indefinite execution for protocol N. If S is a weak-closure,
then any computation starting from an S-state also continues indefinitely and en-
counters only S-states, except for a finite prefix of the computation that contains
some non-S-states.

Let S be a closure in N, and S' be a closure or a weak-closure in N. We say that
S converges to S' iff every computation whose initial state is an S-state contains an
S'-state.

From the above definition, if S converges to S' in N, and if the system is in an
S-state, then eventually the computation should reach an S'-state. Furthermore, if
S' is a closure, the computation continues to encounter only S'-states indefinitely.
If S' is a weak-closure, the computation may encounter a finite number of non-S'-
states, but this is followed by an infinite number of S'-states.

We next present the properties of the protocol of Section 3. To begin, we re-
quire the system to have a sensible initial state, which we characterize with predi-
cate C0 below. The notation rqst#ch.p.q denotes the number of messages of type
rqst currently in channel ch.p.q.

S0 ≡ 〈∀ p, q : : (q ∉ p.wr ∧ rqst#ch.p.q + rply#ch.q.p = 0) ∨
 (q ∈ p.wr ∧ rqst#ch.p.q + rply#ch.q.p = 1)〉

S1 ≡ 〈∀ p : p.chl = ∅ ∧ ¬p.mbr : pr = p〉
C0 ≡ S0 ∧ S1

Predicate C0 states that variable wr in each process accurately reflects whether a re-
ply is expected for each neighbor. Also, it states that variable p.pr does not point to
a neighbor if p does not belong in the group tree.

A simple initial state of the protocol that satisfies C0 could be p.pr = p, p.wr = ∅
for all p, and no request or reply messages in any channel. Predicate C0 satisfies the
following property.

Property 0:

C0 is a closure

Thus, if C0 holds in the initial state of a computation, then it holds in all states
of the computation.

10

Before presenting the next two properties, we define the following. The set of
edges in the group tree1 is denoted by GT. Edges in GT are directed, that is, edge (p,
q) differs from edge (q, p). For each pair of neighboring processes, p and q, we de-
fine:

a) (p, q) ∈ GT ⇔ p.pr = q ∨ p ∈ q.chl

b) (p, q) ∈ BE ⇔ p.pr = q ∧ p ∈ q.chl

c) (p, q) ∈ GE ⇔ (p, q) ∈ GT - BE

Thus, edge (p, q) is in GT if either p considers q to be its parent or q considers p to
be its child. The edges in GT are divided into a set of black edges, BE, and a set of
gray edges, GE. An edge (p, q) is black if p and q agree, i.e., p considers q to be its
parent, and q also considers p to be its child. An edge (p, q) is gray if p and q do not
agree. This disagreement is temporary, and it occurs only during a period of transi-
tion in which the group tree is adapting to new changes in the unicast routing ta-
bles.

For the following two properties, we make the assumption that the unicast
routing tables may fluctuate temporarily, but eventually remain fixed and define a
spanning tree for each destination.

Let UT be the edges of the unicast spanning tree whose root equals the root of
GT. Let path(UT, p) be the edges in UT of the path from p to the root, and sub(UT,
p) be the set of nodes of the subtree of UT rooted at p.

Property 1:

For any process p,

C0 ∧ p.mbr

converges to

C0 ∧ p.mbr ∧ 〈∀ r, s : (r, s) ∈ path(UT, p) : (r, s) ∈ BE〉
Property 2:

For any process p,

C0 ∧ 〈∀ r : r ∈ sub(UT, p) : ¬r.mbr〉
converges to

C0 ∧ 〈∀ r : r ∈ sub(UT, p) : ¬r.mbr〉 ∧ 〈∀ r, s : r ∈ sub(UT, p) : (r, s) ∉ GT〉
The first property states that if a node is a group member, then all the edges in

its unicast path to the root will become black, i.e., they will be part of the group
tree. The second property states that if all the nodes in a subtree of UT are not
members of the process group, then the entire subtree will be removed from the

1 The term tree is a misnomer, since the graph of the group tree may temporarily contain loops or
be disconnected. However, the graph will converge to a tree.

11

group tree edges
unicast routing path

p

q

root

r

Figure 3: changing parents

group tree. These two properties combined imply that GT will become the smallest
subgraph of UT that connects all the members of the process group, as desired.

5. First Refinement: Maintaining Connectivity

In this section, we refine the basic protocol of Section 3 by restricting when a
process can change from one parent to another. The purpose of this restriction is
to ensure that a node that has joined the group tree remains connected to the tree
while changes in the unicast routing tables are occurring. Like the basic protocol,
the refinement should satisfy the properties presented in the previous section, or
it should satisfy properties that are very similar to these.

To show how a process becomes disconnected from the tree, consider the fol-
lowing. Assume p.pr = q, ROUTE(p, root) = r, and all edges in the unicast path
from p to the root do not belong to the group tree, as shown in Figure 3. It is possi-
ble that, after p assigns r to p.pr, process q times out and removes p from its set of
children before all the edges in the unicast path from p to the root have been
added to the group tree. If this occurs, process p will be temporarily disconnected
from the group tree.

To prevent being disconnected from the group tree, process p should not
change its parent from q to r until r is connected to the group tree. We say that
process r is connected to the group tree if r is the root, or if the edge between r and
its parent is black and the parent of r is also connected to the group tree.

Recall that process r determines that it should join the group tree if either it is
a member of the process group or if its child set is non-empty. To ensure r's child
set is non-empty, p sends a request to r as if r were its parent. Process r adds p to its
child set, and returns a reply to p. The reply includes a bit indicating if r is con-
nected to the group tree. Process p continues to send requests to r until it receives a
reply with this bit set to true. Then, p chooses r as its parent, i.e., it assigns r to p.pr,
and thus becomes connected to the tree.

12

To perform the above, process p maintains two parent variables: the current
parent pr, which is connected to the group tree, and the tentative parent tpr, which
may not be connected to the tree. If p has no parent that is connected to the tree,
then p.pr = p. When a reply is received from the tentative parent indicating that it
is connected to the group tree, p turns its tentative parent into its current parent by
assigning tpr to pr.

Each process p in the network can be defined as follows.

process p

const
root : integer { root of group tree }

inp
nbr : set of integer, { set of neighboring processes }
mbr : boolean { true iff p is a group member }

var
chl : set of integer, { children of p in group tree }
pr : integer, { current parent of p in group tree}
tpr : integer, { tentative parent of p in group tree}
wr : set of integer, { waiting for replies from these neighbors }
b : boolean { auxiliary variable}

par
j : nbr { j ranges over each element of nbr }

begin

 mbr → for each d in (chl ∪ {pr}) - {p} do
send data to d

rof

[] rcv data from j →
if j ∈ chl ∪ {pr} →

for each d ∈ (chl ∪ {pr}) - {j, p}
send data to d

rof;

if mbr → deliver data

[] ¬mbr → skip
fi

[] j ∉ chl ∪ {pr} → skip
fi

13

[] chl ≠ ∅ ∨ mbr →
tpr := ROUTE(p, root)

if tpr ≠ p ∧ tpr ∉ wr → send rqst to tpr;
wr := wr ∪ tpr

[] tpr = p ∨ tpr ∈ wr → skip
fi;

if pr ≠ p ∧ pr ∉ wr → send rqst to pr;
wr := wr ∪ pr

[] pr = p ∨ pr ∈ wr → skip
fi

[] rcv rqst from j →
chl := chl ∪ j;

b := (pr ≠ p ∨ p = root);
send rply(b) to j

[] rcv rply(b) from j →
wr := wr - j

if j = tpr ∧ b → pr := tpr

[] ¬(j = tpr ∧ b) → skip
fi

[] timeout j ∈ chl ∧ j.pr ≠ p ∧ j.tpr ≠ p ∧ rply#ch.p.j = 0 →
chl := chl - {j};

if chl = ∅ ∧ ¬mbr → pr := p; tpr := p

[] chl ≠ ∅ ∨ mbr → skip
fi

end

This protocol has six actions. The first two actions are the same as in the basic
protocol.

In the third action, process p checks whether it should be part of the group tree.
If it should be, the next-hop neighbor to the root is chosen as the tentative parent,
and a request is sent to this neighbor. The request is sent only if the neighbor has
replied the last request sent to it. Similarly, a request is sent to the current parent,
also provided no reply is outstanding for this parent.

In the fourth action, a request is received from a neighbor. The neighbor is
added to the child set as in the basic protocol. A reply is sent to the child indicating
whether p is connected to the tree or not. Process p is connected to the tree if p has
a parent that is also connected to the tree, i.e., if pr ≠ p, or if p is the root. In the
fifth action, a reply is received from a neighbor. If the reply is from the tentative

14

parent, and the tentative parent is connected to the tree, then process p makes the
tentative parent its current parent.

In the last action, a neighbor is removed from the child set after a timeout. If a
neighboring process j does not consider p to be either its current or tentative par-
ent (i.e., it has not sent a request to p for some time) and the last reply from p to j
has been received by j, then j is removed from the child set. Furthermore, pr and
tpr are set to p if p no longer needs to take part in the group tree.

The reason we require the timeout period to be long enough to ensure j has
received the last reply is as follows. Assume the reply indicates that p is connected
to the tree. However, after removing j from the child set, p no longer needs to be
on the group tree, and sets tpr and pr to p. If later j decides to rejoin the tree using
p as a tentative parent, and j receives the old reply from p, it will erroneously con-
clude that p is connected to the tree, and prematurely choose p as its current par-
ent.

We next present the properties of the protocol presented in this section. We
begin by noting that if a process has a current parent, and the process is a member
of the process group, then the process will continue to have a current parent indef-
initely.

Property 3:

For all processes p,

 p.pr ≠ p ∧ p.mbr ∧ p ≠ root is a closure

This property is satisfied without making any assumptions about the behavior
of the unicast routing tables. Thus, for Property 3, we may assume the unicast
routing tables are free to change at any point along the computation.

Let q be the current parent of p. To prevent p from being disconnected from
the group tree, it must be the case that q also has a current parent or q is the root.
We express this in predicate C1 below. We require this predicate to hold at the ini-
tial state of the system. It is somewhat stronger that C0, because it involves the
new variables introduced in the refinement, such as p.tpr and the bit in the rply
message, and it also involves the aforementioned requirement on connectivity.

S2 ≡ 〈∀ p, q : p.pr = q ∧ p ≠ q : (p, q) ∈ BE ∧ (q.pr ≠ q ∨ q = root)〉
S3 ≡ 〈∀ p, q : rply(true) ∈ ch.p.q : q ∈ p.chl ∧ (p.pr ≠ p ∨ p = root)〉
S4 ≡ 〈∀ p : p.chl = ∅ ∧ ¬p.mbr : p.tpr = p〉
C1 ≡ C0 ∧ S2 ∧ S3 ∧ S4

A simple initial state of the protocol that satisfies C1 could be p.pr = p, p.tpr = p,

p.wr = ∅ for all p, and no request or reply messages in any channel.

The refinement in this section satisfies Properties 0, 1 and 2 of Section 4, with
the exception that each occurrence of C0 in these properties is replaced by C1.
Hence, C1 is a closure, and the group tree eventually converges to the smallest

15

black group tree edges
unicast spanning tree

p

q

root

r

Figure 4: Temporary loops in group tree

ts

subgraph of the unicast spanning tree that maintains all the group members con-
nected.

Predicate C1 states that if a process p has a current parent, then the edge from p
to its parent is black, and the current parent of p also has a current parent or is the
root. Hence, either the group tree has a path of black edges from p to the root, or
the path of black edges starting from p leads to a loop. The obvious shortcoming is
that if a loop exists, then p is temporarily unreachable from the root of the tree.

To see this, consider the system state depicted in Figure 4. In this state, p
chooses r as its tentative parent, and sends a request to r. Process r receives the re-
quest, and adds p to its child set. Then, r chooses s as its tentative parent, r sends a
request to s, and s adds r to its child set. Thus, all the edges in the path from p to s
become gray. Then, because s is connected to the tree, process r chooses s as its cur-
rent parent, making the edge (r, s) black. Subsequently, edge (p, r) also becomes
black, forming a loop.

Note that this loop is possible even if the unicast routing tables themselves are
loop-less, as shown in the figure. Therefore, restricting the group routing protocol
to work only in conjunction with a loop-less unicast routing protocol will not
solve the problem. The problem must be solved by further refining the protocol,
which is the subject of the next section.

6. Second Refinement: Maintaining Loop-freedom

We next present the second and final refinement of the group routing proto-
col. The purpose of this refinement is to avoid loops in the group tree when
changes occur in the unicast routing tables. This loop-freedom must be achieved
while still maintaining all the properties presented for the basic protocol and for
the first refinement of the previous section.

16

The refinement consists of introducing a diffusing computation as a method
for avoiding loops. Each node maintains a timestamp variable ts. The root incre-
ments its timestamp periodically. A non-root node may not increment its times-
tamp on its own. Instead, it receives the value of its parent timestamp in each re-
ply message from its parent. If the received timestamp is larger than the node's
own timestamp, the node adopts the value received as its new timestamp.

When the routing tables indicate that the process should choose a different
parent, i.e., when the tentative parent is not the current parent, the process ignores
the timestamps received from the current parent, and waits to receive a reply from
the tentative parent with a timestamp larger than its own. When this occurs, and
the reply indicates that the tentative parent is connected to the group tree, the pro-
cess chooses the tentative parent as its current parent.

The reason no loops are created is the following. All processes in the group
subtree rooted at p always have a timestamp no greater than the timestamp of p.
Thus, when the tentative parent provides to p a timestamp greater than p's times-
tamp, this indicates to p that the tentative parent is not part of the subtree of pro-
cess p, and choosing this neighbor as the new current parent cannot introduce a
loop.

The changes required for the refinement are as follows. A new integer vari-
able, ts, stores the timestamp of the process. The first three actions and the timeout
action of the protocol of the previous section remain unchanged. The actions to
receive a request and to receive a reply, plus a new action to increase the times-
tamp, are given below.

 p = root → ts := ts + 1

[] rcv rqst from j →
chl := chl ∪ j;

b := (pr ≠ p ∨ p = root);
send rply(b, ts) to j

[] rcv rply(b, t) from j →
wr := wr - j

if j = tpr ∧ b ∧ t > ts → pr, ts := tpr, t

[] ¬(j = tpr ∧ b ∧ t > ts) → skip
fi

In the first action above, process p increments its timestamp provided it is the
root of the tree. When process p receives a request, it returns to its child the cur-
rent value of its timestamp in the reply message. When process p receives a reply
message, it checks the timestamp and the sender of the message. If the sender is
the tentative parent, the sender is connected to the tree, and the timestamp is
larger than p's timestamp, then p chooses this neighbor as its current parent, and
sets its timestamp to the received value.

17

Note that process p only accepts timestamps from the tentative parent tpr and
not from its current parent pr. However, if p is not in the process of changing par-
ents, then pr = tpr, and p will accept new timestamps from its current parent.
Thus, p always has one parent from which it accepts new timestamps, whether it
is in the process of changing parents or not.

We next present the properties of the protocol described in this section. Since
we have introduced a new variable ts in each process, we need to strengthen the
initial state of the system to reflect an appropriate value for these variables. The
new initial state predicate C2 is defined next.

S5 ≡ 〈∀ p, q : p.pr = q ∧ p ≠ q : (p, q) ∈ BE ∧ (q.pr ≠ q ∨ q = root) ∧ q.ts ≥ p.ts〉
S6 ≡ 〈∀ p, q, t : rply(true, t) ∈ ch.p.q : q ∈ p.chl ∧ (p.pr ≠ p ∨ p = root) ∧ p.ts ≥ t〉
S7 ≡ 〈∀ p : : p.ts ≤ root.ts〉
C2 ≡ C0 ∧ S4 ∧ S5 ∧ S6 ∧ S7

An initial state of the protocol that satisfies C2 could be p.pr = p, p.tpr = p, p.ts =

0, and p.wr = ∅ for all p, and no request or reply messages in any channel.

The refinement in this section satisfies Properties 0, 1 and 2 of Section 4, with
the exception that each occurrence of C0 in these properties is replaced by C2.
Hence, C2 is a closure, and the group tree eventually converges to the smallest
subgraph of the unicast spanning tree that maintains all the group members con-
nected. Furthermore, the refinement in this section also satisfies Property 3 of the
previous section, that is, a group member that has a current parent will continue
to have a current parent indefinitely.

Predicate C2 indicates that the timestamp of each process is not greater than
that of its current parent. This alone does not guarantee loop freedom, since all the
process in a loop could have identical timestamps. Loop freedom is guaranteed by
the additional property below. This property is satisfied without making any as-
sumption about the unicast routing tables, i.e., they are free to change throughout
the computation.

Let pr_path(p) be the set of nodes in the network path obtained by following
the pr variables beginning with p.pr.

Property 4:

C2 ∧ 〈∀ p : p.pr ≠ p : root ∈ pr_path(p)〉 is a closure

Property 4 states that if a process p chooses a neighbor as its current parent,
then there is a path from this neighbor to the root obtained by following the pr
variables beginning with p.pr. From C2, this path consists entirely of black edges,
that is, each parent and its child in the path are in agreement with each other.
Also, from Property 3, once a process has a current parent, it continues to have a
current parent throughout the computation. Finally, from Property 1, every mem-
ber of the group eventually has a current parent, provided the unicast routing ta-
bles become stable.

18

In summary, every group member is guaranteed to have a current parent lead-
ing to the root once the unicast routing tables become stable. While the unicast
routing tables are changing, any process that already has a current parent contin-
ues to have a current parent and also has a path to the root. Thus, the group tree
adapts to the new unicast spanning tree, and in the process it continues to be loop-
less and maintains all the group members connected, as desired.

7. Further Refinements

There are several other refinements that are possible for the group routing
protocol. We mention a few of these briefly in this section.

The basic protocol and its refinements assume that the membership of a pro-
cess in the process group is constant. That is, whether a process is a member of the
group or not remains constant throughout the computation. The protocols in this
paper can be easily enhanced to allow the a process to join or leave the process
group at will.

Another possible refinement is to allow a process to send data messages to the
process group, even though the process is not a member of the group. In this case,
the process would not receive any data messages addressed to the group, but it
would be able to send data messages to all group members. To accomplish this, the
message sent by a non-member is routed through the network as if it were a uni-
cast message to the root of the group tree. If the message arrives first to the root,
the root forwards the message down the group tree. If the message arrives first to a
non-root node p before it reaches the root node, then node p forwards the message
to all its children and its parent, as if it were a regular data message originated by p.

It is also possible to modify the group routing protocol to become more fault-
tolerant. In particular, the protocol could begin from an arbitrary initial state, and
converge to the desired state where the group tree is the required subset of the uni-
cast spanning tree. To achieve fault-tolerance, the unicast routing protocol must be
fault-tolerant, and also the communication protocol to exchange messages be-
tween neighbors must be fault-tolerant. Fault-tolerant protocols for these tasks are
referenced in [Gou95a].

The main adjustment of the protocol to become fault-tolerant is to ensure that
the timestamp of the root eventually becomes larger that the timestamp of all
other processes in the network. This will eventually happen, since the root in-
creases its timestamp periodically. However, if the root's timestamp is much
smaller than that of other processes, it might take a significant amount of time for
the root's timestamp to become larger. There are two possible approaches to rem-
edy this.

One approach is for the processes to use additional messages to propagate to-
wards the root the largest timestamp they have learned from their neighbors. In
this manner, the root process will learn from its neighbors the value of the largest
timestamp in the network. Then, the next timestamp the root generates should be
larger than this value.

19

Another approach is for the root to derive its timestamp from a real-time
clock, and have all processes synchronize their clocks using algorithms like those
in [Mil91]. Each process periodically checks its timestamp against its real-time
clock. If its timestamp is larger than its clock plus the upper bound on the clock's
skew, then the process resets its timestamp to the value of the clock. Since no pro-
cess can have a timestamp significantly larger than the real-time clock, and all
clocks are synchronized, the root will quickly have a timestamp larger than that of
any other process.

Another refinement to increase fault-tolerance is to have multiple choices for
a root node. These choices are ordered. Assume the unicast routing tables in a pro-
cess indicate that the highest ordered choice cannot be reached. This could occur
because the chosen node is down or the faulty links have partitioned the network.
If this is the case, the process chooses as a root the first process in the order of
choices which is reachable according to its routing tables, and chooses its new par-
ent accordingly.

8. Summary and Concluding Remarks

We defined a protocol for routing data messages to every member of a process
group. This is accomplished by building a tree of processes, where each group
member is included in the tree, and forwarding each data message along the entire
tree. We assume that a unicast routing protocol exists in the network, which pro-
vides each process with its local unicast routing table. The group routing protocol
takes advantage of the unicast routing tables as a guide in the construction of an
efficient group tree. To maintain the efficiency of the group tree, when the unicast
routing tables change, the tree is restructured to reflect these changes.
Furthermore, the changes to the tree occur in a controlled manner, preserving the
integrity of the tree at all times.

The design of the group routing protocol is based on protocol composition.
That is, it is assumed that an underlying unicast routing protocol exists. However,
no specific details are assumed about this protocol, other than the basic require-
ment of converging to a stable and sensible assignment of values to the routing ta-
bles.

The design of the group routing protocol is also based on protocol refinement.
First, we present a basic version of the protocol, and prove some correctness prop-
erties for this version. Then, we present two refined versions of the basic protocol.
Each refined version improves upon the previous version by satisfying all of the
properties of the previous version, and also satisfying additional stronger proper-
ties.

The technique of propagating timestamps has been used previously in unicast
routing protocols [AGH90]. The purpose of the timestamp in these protocols is to
quickly break routing loops that form in networks whose topology quickly
changes, such as mobile networks [Per94]. In our protocol, we use the technique
somewhat differently. The timestamps are used to ensure that the group tree al-
ways remains loopless.

20

There has been some debate on whether a single "core" group tree should be
used to multicast data messages to a process group, or multiple group trees should
be used, one per source of data messages [De94]. Regardless of which of these two
approaches is taken, the techniques presented in this paper may be used to ensure
that each tree is responsive to the changes in the unicast routing tables without
compromising the integrity of the tree.

References

[AGH90] Arora A., Gouda M., Herman T., ``Composite Routing Protocols'',
Proceedings of the Second IEEE Symposium on Parallel and Distributed
Processing, 1990.

[AS92] Alaettinoglu C, Shankar U., ``Stepwise Design of Distance-Vector
Algorithms'', 12th Symposiumm on Protocol Specification, Testing and
Verification, 1992.

[Bal95] Ballardie T., ``Core Based Tree Multicast'', Internet RFC, work in
progress.

[BFC93] Ballardie T., Francis P., Crowcroft J, ``Core Based Trees: An Architecture
for Scalable Inter-Domain Multicast Routing'', ACM SIGCOMM
Conference, 1993.

[DC90] Deering S., Cheriton D., ``Multicast Routing in Datagram Networks and
Extended LANs'', ACM Transactions on Computer Systems, Vol 8., No
2., May 1990.

[De94] Deering S. et. al., ``An Architecture for Wide-Area Multicast Routing'',
ACM SIGCOMM Conference, 1994.

[DM78] Dalal, Y. K., Metcalfe, R. M., ``Reverse Path Forwarding of Broadcast
Packets'', Communications of the ACM, Vol. 21, No. 12, Dec. 1978.

[Gou93] Gouda M., ``Protocol Verification Made Simple'', Computer Networks
and ISDN Systems, Vol. 25, 1993, pp. 969-980.

[Gou95] Gouda M., The Elements of Network Protocols, textbook in preparation.

[Gou95a] Gouda M., ``The Triumph and Tribulation of System Stabilization'',
International Workshop on Distributed Algorithms, 1995.

[GS94] Gouda M., Schneider M., ``Maximum Flow Routing'', Joint Conference
on Information Sciences, 1994.

[KG89] Cheng C., Riley R., Kumar S, Garcia-Luna-Aceves J., ``A Loop-free
Bellman-Ford Routing Protocol without Bouncing Effect'', ACM
SIGCOMM Conference, 1989.

[KS92] Kahle B., Schwartz M., Emtage A., Neuman B., ``A Comparison of
Internet Resource Discovery Approaches'', Computing Systems, Vol. 5
No. 4., Fall 1992.

21

[Mil91] Mills D., ``Internet Time Synchronization: The Network Time
Protocol'', IEEE Transactions on Communications, Vol. 39, No. 10, Oct
1991, p. 1482.

[Per94] Perkins, C. et. al., ``Ad Hoc Networking in Mobile Computing'', ACM
SIGCOMM Conference, 1994.

[PWD88] Partridge C., Waitzman D., Deering S., ``Distance Vector Multicast
Routing Protocol'', Internet Request for Comments, RFC 1075.

[RF89] Rajagopalan B., Faiman M., ``A New Responsive Distributed Shortest
Path Routing Algorith'', ACM SIGCOMM Conference, 1989.

[SC87] Shin K. G., Chen M., ``Performance Analysis of Distributed Routing
Strategies Free of Ping-Pong-Type Looping'', IEEE Transactions on
Computers, 1987.

[WH92] Wilbur S., Handley M., ``Multimedia Coferencing: from Prototype to
National Pilot'', INET' 92 International Networking Conference.

Appendix

Proofs of Properties

Notation: For a quantification of the form

〈∀ x : R(x) : T(x)〉
R is known as the range of the quantification, and T is know as the body of the
quantification.

1. Basic Protocol

1.1. Property 0

We are required to show that if C0 holds before the execution of any action in
the protocol, then it holds after the action's execution.

The first two actions do not alter any variables mentioned in C0. Thus, we con-
centrate in the remaining four actions.

The third action sends a request to neighbor pr and adds pr to wr, but only if it
is not currently a member of wr. Thus, the action cannot invalidate S0. The action

cannot invalidate S1, since it only changes pr provided chl ≠ ∅ ∨ mbr.

The fourth action affects only S0. If a request is received from j then a reply is
sent to j. Hence, if the second disjunct of S0 is true before execution, it remains
true after execution of the action. Similarly, the fifth action affects only S0. If it exe-
cutes, the second disjunct of S0 is true before execution, and the first disjunct is
true after execution.

22

The sixth action affects only S1. If the timeout removes a child from the set

chl, then pr is assigned p, provided chl = ∅ ∧ ¬mbr holds. Thus S1 remains true
after executing the action.

Since all actions preserve the truthfulness of C0, then C0 is a closure.

1.2. Property 1

Since we assume the unicast routing tables will eventually achieve a stable
value, we begin our computations from a state in which these tables have already
stabilized.

First note that if the unicast routing tables are stable, and p.pr = ROUTE(p,
root), then p.pr will no longer change value. Furthermore, if the edge (p, p.pr) is
black, it continues to be black, because p.pr does not change value, and the timeout
of neighbor p.pr is not enabled.

Let the sequence of processes in path(UT, p) be p, r1, ... , rn, root. Edge (p, r1) be-
comes black as follows. If there is a request in ch.p.r1 or a reply in ch.r1.p, then, by
fairness during execution, r1 eventually receives the request, sends back a reply,
and p receives the reply, removing r1 from p.wr. Again, by fairness during execu-
tion, and p.mbr = true, the third action in p is eventually executed, assigning r1 to
p.pr, and a request is sent to r1. Note that, as argued above, p.pr will no longer
change value. When r1 receives the request, it adds p to its child set, making the
edge black. Again, as argued above, this edge will continuously remain black.

A simple inductive argument along the path p, r1, ... , rn, using the above as a
base, shows that all the edges in the path become black and remain black.

1.3. Property 2

We again begin our computations from a state in which the unicast routing
tables have achieved a stable value.

Consider any network edge (s, t), where (s, t) ∉ UT. If this edge is in GT, then it
is eventually removed from GT as follows.

If there is a request from s to t, then by fairness t receives it and returns a reply
to s. If there is a reply from t to s, s eventually receives it, and removes t from s.wr.

If the third action of s executes, then s.pr = ROUTE(s, root), and since (s, t) ∉ UT,
s.pr ≠ t. Hence, s.pr never again equals t, and never sends a new request to t. If the
third action of s cannot execute, then, by closure C0, s.pr = p. If s.pr ever changes
again, its new value will be ROUTE(s, root), which is different from t. Thus, even-
tually t times-out and removes s from its child set. Since s never again sends a re-
quest to t, edge (s, t) will never rejoin the tree.

Thus, there is a point in the computation where GT is a subset of UT. Consider
now the subtree sub(UT, p), and an edge (r, s) where r is a leaf in the subtree. Since
r is a leaf, it has no children, and since it is in sub(UT, p), r.mbr is false. Hence, the
third action in r never executes, and by closure C0, r.pr = r remains true forever.
Furthermore, any request from r to s is eventually received, and any reply from s
to r is also eventually received. Also, since r.pr = r holds indefinitely, no request is

23

ever sent again by r. Thus, s times-out and removes r from its child set, perma-
nently removing edge (r, s) from GT.

A simple inductive argument on the height of the tree using the above as a
base shows that all edges in sub(UT, p) are removed permanently from GT.

2. First Refinement

Recall that Properties 0, 1 and 2 in the first refinement are identical to the re-
spective properties of the basic protocol, except that C0 is replaced by C1.

2.1. Property 0

It can be proven that C0 is a closure of this protocol in a very similar way to the
proof of Property 0 in the basic protocol, which we do not repeat here. Thus, we as-
sume C0 holds at every state of the computation, and concentrate only on S2
through S4.

For each of the three predicates, S2, S3, and S4, we assume they are true before
execution of each action, and show they are true after executing the action. Each of
these predicates can be falsified if the range changes to true while leaving the body
false, or if the body changes to false while leaving the range true.

The range of S2 can be made true in the fifth action by changing p.pr. If p.tpr is
assigned to p.pr it implies that the bit received in the reply is true, which by S3
(instantiating p with p.tpr and q with p) implies that neighbor p.tpr considers p to
be its child (i.e. edge (p, p.tpr) is black after the assignment) and the neighbor is the
root or the neighbor has a current parent. This preserves S2. On the other hand,
the body of S2 can be falsified by removing p from q.chl or assigning q to q.pr.
Neither of these is possible while p.pr = q, because the timeout in q is not enabled.
Thus, S2 is preserved by action execution.

The range of S3 is made true by sending a reply to a neighbor. The code in the
fourth action ensures that if the bit in the message is true, then the body is true.
The body can be made false by removing q from p.chl or setting p.pr to p. This only
happens in the timeout action, which is not enabled if a reply to q has not been re-
ceived. Thus, S3 is preserved by action execution.

Finally, the range of S4 can be made true by removing an element of p.chl in
the timeout action. The timeout though will set p.tpr to p, thus preserving S4. The
body of S4 is made false by assigning a value other than p to p.tpr. This can only
happen in action 3, whose guard ensures the range is false. Thus, S4 is preserved
by action execution.

Since S2 through S4 are preserved through action execution, and C0 is a clo-
sure, then C1 is a closure.

2.2. Property 1

Due to Property 0, we assume predicate C1 holds in all states of the computa-
tion.

24

Since for this property we assume that the routing tables achieve a stable state,
we begin our computation after the tables become stable.

Note that the first refinement treats variable tpr in a very similar way to the
way variable pr is treated in the first protocol, with the exception that the timeout
is stronger since it refers to both variables. Thus, a very similar argument to that of
Property 1 of the basic protocol shows that, eventually, any edge (r, s) in path(UT,

p) has r ∈ s.chl and r.tpr = s. Furthermore, the argument shows that this remain
continuously true.

We next need to show that after the above holds, for any edge (r, s) in path(UT,
p), r.pr is assigned s. This is done by induction on the path p, r1, ... , rn, root, with
the edge (rn, root) as the base. For the base case, the next request from rn to root
adds rn to root.chl. The next reply that the root sends to rn contains the bit true,
because the root always returns replies with true bits. When this is received by rn,
rn assigns root to rn.pr, because rn.tpr = root. Since rn.tpr no longer changes val-
ues, rn.pr will continuously have the value root. The inductive case is similar.
Thus, all edges in path(UT, p) become black and remain black continuously.

2.3. Property 2

Due to Property 0, we assume predicate C1 holds in all states of the computa-
tion.

Since for this property we assume that the routing tables achieve a stable state,
we begin our computation after the tables become stable.

What we need to show is that eventually, for all nodes r in sub(UT, p), each of
r.tpr and r.pr are equal to either ROUTE(r, root) or r. Furthermore, this should
continue to be true for the remainder of the computation. If this is shown, then an
inductive argument on the subtree sub(UT, p) similar to the one used for Property
2 of the basic protocol can be applied.

Assume first that r.chl = ∅ and ∧ ¬r.mbr. Because C1 holds, r.tpr = r and r.pr =

r. Furthermore, if eventually r.chl = ∅ and ∧ ¬r.mbr does not hold, when action
three is executed, r.tpr is assigned ROUTE(r, root). Since the routing table is con-
stant, r.tpr can only have this value or r from this point on. Similarly, since r.pr
receives its value from r.tpr, from this point on, r.pr can only be assigned
ROUTE(r, root) or be assigned r.

Assume now that r.chl ≠ ∅ ∨ r.mbr. When action three is executed, r.tpr is as-
signed ROUTE(r, root), and since the routing tables are constant, r.tpr remains

constant as long as r.chl ≠ ∅ ∨ r.mbr. Regarding r.pr, using an argument similar to

that of Property 1, if r.chl ≠ ∅ ∨ r.mbr remained constant, then all the edges from r
to the root become black and remain black, i.e., eventually r.pr = ROUTE(r, root)

and does not change value. On the other hand if r.chl ≠ ∅ ∨ r.mbr fails to hold
along the computation, then we have the case of the previous paragraph.

2.4. Property 3

25

The predicate has only one variable, p.pr, and only two actions in the code of
process p affect this variable: the fifth action and the sixth action. In the fifth ac-
tion, p.pr is set to the identifier of a neighbor, and thus p.pr ≠ p is maintained. In
the sixth action, since p.mbr is true, p.pr is not updated. Thus, no action can falsify
the predicate, and it is thus a closure.

3. Second Refinement

Recall that Properties 0, 1 and 2 in the first refinement are identical to the re-
spective properties of the basic protocol, except that C0 is replaced by C2.

3.1. Property 0

Predicate C2 is very similar to C1 except that it has the additional restrictions
on the values of the timestamps. Thus we concentrate only on satisfying the con-
straints involving the timestamps in each of S5, S6, and S7. The remaining part of
the proof is very similar to Property 0 in the first refinement.

For S5, the range could become true in action 5, by assigning p.tpr to p.pr. This
happens if you receive a message from p.tpr, which the guard of the if ensures has
a timestamp grater than p.ts. From S6, the value of the message's timestamp is no
grater than the sender's timestamp, and thus the timestamp of neighbor p.tpr is at
least p.pr, as required in the body. The body of S5 could become false if p increases
its timestamp beyond that of its p.pr neighbor. The timestamp increases only
when a reply is received, and the statement of the action, in combination with S6,
ensures that after execution, p.ts is no grater than the timestamp of neighbor p.pr.
Thus, S5 is preserved by action execution.

For S6, the range becomes true when a reply is sent by p after receiving a re-
quest. Since the timestamp in the message is that of p, the body is true. The body
could become false by decreasing p.ts, but no action can decrease p.ts, so this is
moot. Hence, S6 is preserved by action execution.

For S7, note that no process, including the root, ever decreases its timestamp,
so S7 cannot be falsified by decreasing root.ts. Furthermore, any change to p.ts
comes from the timestamp of a reply message, which from S6, is at most the
timestamp of the sender, which from S7 is at most root.ts. Thus, p.ts is never as-
signed a value larger than root.ts.

Hence, C2 is a closure.

3.2. Property 1

Due to Property 0, we assume predicate C1 holds in all states of the computa-
tion.

Since for this property we assume that the routing tables achieve a stable state,
we begin our computation after the tables become stable.

The proof is similar to that of Property 1 of the first refinement. That is, it can

be shown in a similar way that, eventually, any edge (r, s) in path(UT, p) has r ∈

26

s.chl and r.tpr = s. Furthermore, the argument shows that this remain continu-
ously true.

We next need to show that after the above holds, for any edge (r, s) in path(UT,
p), r.pr is assigned s. This is done by induction on the path p, r1, ... , rn, root, with
the edge (rn, root) as the base. For the base case, the next request from rn to root
adds rn to root.chl. Note that rn is never removed from root.chl because the time-
out of the root is not enabled since rn.tpr = root. Next, either root.ts > rn.ts, or this
will hold when root increases its timestamp. Thus, the next reply that the root
sends to rn contains the bit true and a timestamp greater than rn.ts. When this is
received by rn, rn assigns root to rn.pr. Since rn.tpr no longer changes values,
rn.pr will continuously have the value root.

The inductive case assumes that all nodes ri, ..., root have a timestamp larger
than nodes p, r1, ..., r(i-1). Showing that edge (r(i-1), ri) becomes and remains black
is similar to the base case.

Thus, all edges in path(UT, p) become black and remain black continuously.

3.3. Property 2

The proof is similar to that of Property 2 in the first refinement and is not re-
peated here.

3.4. Property 3

The proof is similar to that of Property 3 in the first refinement and is not re-
peated here.

3.5. Property 4

From Property 0 we know that C2 is a closure, so we assume C2 holds in all
states of the computation.

Let us denote by P the quantification in Property 4. This quantification could
become false if the range becomes true and the body becomes false. The range be-
comes true when a reply is received and p.pr is assigned p.tpr. From C2, neighbor
p.tpr has a current parent, and thus, assuming P holds before the execution of the

action, root ∈ pr_path(p.tpr). Furthermore, also from C2, neighbor p.tpr cannot be
a descendant of p in the group tree, since its timestamp is larger than p.ts. Hence,

assigning p.tpr to p.pr maintains root ∈ pr_path(p).

Predicate P could also becomes false by making the body false while leaving the
range true. The body becomes false by removing root from pr_path(p). This can
only be done if some node r in pr_path(p) changes its r.pr variable. The argument

of the previous paragraph shows that if after the change, r.pr ≠ r, then root ∈
pr_path(r), so the root cannot be removed from pr_path(p) in this case. On the
other hand, if r assigns r to r.pr, it can only be done in a timeout. Note that r.chl
cannot be empty because of the following. Let s be the previous node to r in

pr_path(p). Hence, s.pr = r, and from C2, s ∈ r.chl. Furthermore, r cannot remove s
from r.chl because the timeout for s is not enabled (because s.pr = r). Thus, r.chl

27

can never be empty, and no execution of any of the timeout actions in r can set r.pr
to r.

Thus, Property 4 holds.

