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Fluid Queues with Long-tailed Activity Period Distributions

O.J. Boxma and V. Dumas

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

This is a survey paper on 
uid queues, with a strong emphasis on recent attempts to represent phenomena

like long-range dependence. The central model of the paper is a 
uid queueing system fed byN independent

sources that alternate between silence and activity periods. The distribution of the activity periods of at

least one source is assumed to be long-tailed, which may give rise to long-range dependence. We consider

the e�ect of this tail behaviour on the steady-state distributions of the bu�er content at embedded points in

time and at arbitrary time, and on the busy period distribution. Both exact results and bounds are discussed.

1991 Mathematics Subject Classi�cation: 60K25, 68M20, 90B22.

Keywords & Phrases: Fluid queue, on/o� sources, long-range dependence, long-tailed, subexponential,

regularly varying, bu�er content, busy period, GI=G=1 queue.

Note: This is an invited survey, to appear in the special issue on `Stochastic Analysis and Optimisation

of Communication Systems' of the journal `Computer Communications'. The work is carried out under the

project LRD in PNA2.1.

1. Introduction

In modern communication networks, a hierarchy of time scales can be distinguished

[49]: call scale, burst scale and cell scale. At the call scale, the largest time scale, the

entities are the holding times of arriving calls or service demands. During such holding

times, small units of tra�c called cells are generated by a source. In ATM tra�c, e.g.,

a cell is a 53-byte packet. This cell scale granularity is ignored at the intermediate

burst scale, where one simply characterizes the input process by its rate. Hence 
uid

models are natural on the latter time scale. A burst of consecutive cells, generated by a

source, becomes the amount of 
uid produced by this source during one of its activity

periods. As long as there is 
uid in the bu�er, there is out
ow at a constant rate.

Fluid models have, in the last 15 years, become �rmly established as key models for

capturing the behaviour of a wide range of, in particular ATM-based, communication

networks at the burst scale.

Early studies of 
uid models can be found in the applied probability literature under

the heading of dam models (see for example [16] or [47] and references therein). In the
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early seventies L. Kosten, modelling a class of data communication networks, analysed


uid queues fed by an in�nite number of on/o� sources, viz., sources that alternate

between active (on) and silent (o�) periods. His path-breaking studies were published

in an internal publication series of Delft University of Technology ([34, 35, 37], suc-

cessively discussing the cases of exponential, Erlang and hyperexponential on-period

distributions), and �rst did not reach a large audience. A similar fate was met by other

pioneering studies, of Rubinovitch [51] (busy period results for the case of N identical

sources), Cohen [15] (a very deep and detailed study about the case of identical sources

with generally distributed on-periods) and Kaspi & Rubinovitch [30] (N non-identical

sources). The fundamental paper of Anick, Mitra and Sondhi [2] has generated new in-

terest in 
uid queues. It considers N on/o� sources with exponentially distributed on-

and o�-periods. Similar to Kosten's work, the equilibrium bu�er content distribution

in [2] is described by a set of di�erential equations. All the eigenvalues are obtained

explicitly, and simple expressions are obtained for moments of the distribution and the

asymptotic behaviour of the bu�er content. This paper, and a new paper of Kosten

[36], have contributed much towards establishing the 
uid queue fed by on/o� sources

as a key model for representing tra�c behaviour in modern communication networks.

However, in these studies, and in important successors like [41] and [54], the on- and

o�-periods are exponentially distributed or determined by some Markov process, lead-

ing to an input process that is short-range dependent (see the de�nition in Subsection

2.1), and to exponential behaviour of the tail of the bu�er content distribution.

It came as a shock when tra�c measurements at Bellcore for Ethernet Local Area

Network tra�c clearly demonstrated [55] that short-range dependence assumptions

are violated. The tra�c plots show a striking similarity when one considers a time

period of hours, minutes or milliseconds: bursty subperiods are alternated by less

bursty subperiods on each scale. This scale-invariant or self-similar feature of Ethernet

tra�c, and the related phenomenon of long-range dependence, was also convincingly

demonstrated in [38] using a careful statistical analysis. The presence of long-term

correlations has also been demonstrated for tra�c measurements on communication

systems di�erent from Ethernet, like Wide Area Networks [46] and VBR video [6]; see

[23, 55] for additional information.

As observed in [55], in many cases on- and/or o�-periods of actual tra�c sources

exhibit a tail behaviour that is far from exponential. The observation of long-range

dependence and non-exponential tail behaviour has spurred a strong interest in the

modelling and analysis of tra�c in modern communication networks. Fluid queues

fed by on/o� sources with non-exponential on- and/or o�-periods appear to be among

the most natural models for these purposes, and considerable success has recently

been obtained in their analysis. The present paper is an invited survey paper on 
uid

queues, with a strong emphasis on recent attempts to represent long-range dependence

via non-exponential tails.

While in the classical queueing literature a typical result is that waiting time, work-

load and busy period distributions have an exponential tail whenever the service time
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distribution has an exponential tail, the focus of many of the results surveyed in this pa-

per is: if the activity period of one or more sources has a certain long-tailed behaviour

(for example subexponential or regularly varying) then the bu�er content and busy

period exhibit a similar long-tailed behaviour. In the consideration of bu�er content

distribution, throughout the paper a distinction is being made between steady-state

bu�er content and bu�er content at the end of a silence period.

The remainder of the paper is organized in the following way. In Section 2 we

discuss the concepts of long-range dependence and self-similarity. We study ways to

incorporate these features in 
uid queues, and we mention a physical explanation for

their occurrence in communication networks; their impact on network performance is

also discussed.

Section 3 is devoted to the case of a 
uid queue with an in�nite bu�er fed by a single

source that alternates between silence and activity periods. The relative simplicity

of this system allows us to admit a rather general input process during the activity

periods. The close relation between the 
uid queue and an ordinary GI/G/1 queue is

explained, and subsequently exploited. Detailed analytic results for (the tail behaviour

of) the bu�er content distribution and the busy period distribution are presented.

Section 4 considers a 
uid queue with an in�nite bu�er, fed by an arbitrary �nite

number of independent on/o� sources (i.e., the in
ow rate of each source during an

activity period is constant). We assume that the o�-periods are negative exponentially

distributed. We �rst discuss the - rather scarce - exact analytic results for bu�er content

and busy period distribution, and subsequently we discuss bounds for the bu�er content

distribution.

Section 5 presents results for the same model as Section 4, but with an in�nite

number of on/o� sources. Under additional assumptions, this limiting case allows a

detailed treatment. This holds in particular when all o�-periods are exponentially

distributed, so that the times at which a source becomes active occur according to a

Poisson process.

Section 6 contains conclusions and mentions some of the most challenging open

problems.

Some key results about long-tailed, subexponential and regularly varying distribu-

tions are gathered in the appendices.

We end this introduction by listing some

Notations and conventions: except otherwise stated:

� any random variable X is assumed positive with unbounded support:

8x � 0 : 0 < P[X > x] � P[X > 0] = 1:

� in a sum of random variables, all are assumed independent from each other.
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If E[X] <1, then X� denotes a random variable of distribution:

P[X� > x] =
1

E [X]

Z
+1

x
P[X > y]dy; x � 0:

Other notations:

� X �st Y (resp.X ' Y ) means that P[X > x] � P[Y > x] (resp. P[X > x] =

P[Y > x]) for all x � 0.

� LST for Laplace-Stieltjes transform.

� f(t)
t!1� g(t), or simply f(t) � g(t), means that f(t)=g(t)! 1 as t!1.

� f(t) = o (g(t)) (resp. f(t) = O (g(t))) means that f(t)=g(t)! 0 as t!1 (resp.

lim supt!1 f(t)=g(t) <1).

� [x]+ := max(0; x), x 2 R.

2. Long-range dependence

2.1 The concepts of long-range dependence and self-similarity

Let r(s) denote the arrival rate at time s of tra�c o�ered to a system. T (t) :=
R t
0
r(s)ds

denotes the total amount of tra�c o�ered to that system in the time interval [0; t). We

assume that T (t) has stationary increments and that E[T (t)2 ] < 1. The stationarity

of the increments implies that E [T (t)] = mt for some constant m. Furthermore, the

autocovariance function: c(t) := Cov(r(s); r(s + t)) does not depend on s (weak sta-

tionarity), and: Var(T (t)) = 2
R t
0

R u
0
c(v)dvdu.

If
R1
0
c(t)dt < 1, then the process is called short-range dependent, and Var(T (t)) is

asymptotically linear (e.g., if T (t) is a process with independent increments like a com-

pound Poisson process, then Var(T (t)) is linear in t). Of more interest to us is the

case in which c(t) ! 0 so slowly for t ! 1, that
R1
0
c(t)dt = 1. The process T (t)

is now called long-range dependent (LRD). In particular, assume that c(t) � l(t)t��,

0 < � < 1, for t!1, with l(t) a slowly varying function (cf. Appendix B). Then, cf.

[49] p. 325 or Appendix B, Var(T (t)) � Kl(t)t2�� = Kl(t)t2H for large t, some K and

H = (2� �)=2 2 (1=2; 1). The number H is called the Hurst parameter.

It should be noted that, if Var(T (t)) = t2H , then the time-scaled process T (
t) has

Var(T (
t)) = (
t)2H = 
2HVar(T (t));

hence T (
t) and 
HT (t) have the same correlation structure, i.e., the centered process

T (t) � mt is second-order self-similar. We remind the reader of the recent observa-

tions of both long-range dependence and self-similarity, that were mentioned in the

Introduction.
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De�nition 2.1 A square integrable process G(t) is called second-order self-similar with

self-similarity (or Hurst) parameter H if, for any 
 > 0, the processes G(
t) and


HG(t) have the same second-order characteristics. It is called asymptotically second-

order self-similar if the second-order characteristics of G(
t), suitably normalized, con-

verge to those of a second-order self-similar process when 
 !1.

De�nition 2.2 A process G(t) is called (strictly) self-similar with Hurst parameter H

if, for any 
 > 0, the processes G(
t) and 
HG(t) have the same �nite-dimensional

distributions.

It follows from De�nition 2.1 and the text above it, that asymptotic second-order

self-similarity with H > 1

2
is essentially equivalent with LRD. For Gaussian processes

(processes of which all �nite-dimensional distributions are Gaussian), self-similar and

second-order self-similar are equivalent, since their �nite-dimensional distributions are

fully determined by their �rst and second moments. A very interesting Gaussian pro-

cess is Fractional Brownian Motion (FBM). A normalized FBM fU(t); t 2 (�1;1)g
with Hurst parameter H 2 [1

2
; 1) is a stochastic process characterized by the following

properties.

� U(t) has stationary increments;

� U(0) = 0, and E [U(t)] = 0 for all t;

� E[U(t)2 ] = jtj2H for all t;

� U(t) has continuous sample paths;

� U(t) is Gaussian.

Note that FBM is self-similar and LRD. In the special case H = 1=2, U(t) is the

standard Brownian motion. FBM with H > 1=2 has a long memory; it is typically

proceeding in the same direction for a long time.

2.2 Modelling long-range dependence

In this subsection we discuss three ways to model LRD in an input process.

A �rst possibility is to use deterministic non-linear (chaotic) maps. Consider a

single on/o� source in discrete time. Starting from an x0 2 (0; 1), sequences (xn; yn)

are generated by the iteration rule

xn+1 = f1(xn); yn = 0; if 0 � xn � d;

xn+1 = f2(xn); yn = 1; if d < xn < 1:

yn = 1 (0) corresponds to the source being on (o�) at time n. The linear maps

f1(xn) = xn=d; f2(xn) = (xn � d)=(1 � d) (\Bernoulli shift") lead to geometrically

distributed on- and o�-periods. But now change f1(:) into the non-linear map (see

[24])
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f1(x) = � + x+
1� �� d

dm
xm; (2.1)

with � � d. For m=2, it is remarked in [24] that the distribution of the o�-periods

has a power tail (� k�2) while the on-periods are still approximately geometrically

distributed. In [48] Pruthi considers the case in which both f1(:) and f2(:) are non-

linear:

f1(x) =
x

(1� c1xm1�1)1=(m1�1)
;

f2(x) = 1� 1� x

(1� c2(1� x)m2�1)1=(m2�1)
;

where c1 = d1�m1 � 1; c2 = (1 � d)1�m2 � 1, with d 2 (0; 1), and m1; m2 � 1. The

values mi 2 (3=2; 2) correspond to �nite mean and in�nite variance, thus resulting in

an LRD input process.

Chaotic maps like the above allow a concise description of complex tra�c phenomena.

Much research is to be done concerning the choice of maps that accurately �t actually

observed tra�c, and concerning the performance analysis of the resulting source mod-

els. The latter problem seems very di�cult; in [24] a �rst attempt is made towards a

performance analysis of the model resulting from (2.1).

A second way to introduce LRD in an input process is to take a 
uid queue with

as input process FBM (which is also self-similar). This is proposed in a very original

paper of Norros [42], see also [43]. Norros studies the distribution of the bu�er content

Z for an input process T (t) = mt+
p
amU(t) and out
ow rate C > m. His main result

is:

P(Z > x) � 1� �(
(C �m)Hx1�H

HH(1�H)1�H
p
am

); (2.2)

where �(�) is the standard Normal distribution. Using the approximation 1� �(y) �
exp(�y2=2), he suggests as an approximation:

P(Z > x) � exp(� (C �m)2H

2H2H(1�H)2�2Ham
x2�2H): (2.3)

Using the theory of large deviations, Du�eld and O'Connell [21] (see also [20]) have

shown that the approximation (2.3) is logarithmically accurate for large x. For H =

1=2, FBM reduces to Brownian motion and the Weibull distribution in (2.3) reduces

to an exponential distribution.

A third way to introduce LRD in an input process is to take a 
uid queue fed by a

single on/o� source, and to assume that a typical on-period A has the following tail:

P[A > t]
t!1� hat

�a; (2.4)
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and/or that a typical o�-period S has the following tail:

P[S > t]
t!1� hst

�s; (2.5)

with 1 < a; s < 2 and ha; hs positive constants. Indeed (cf. [49]), in those cases

Var(T (t)) � t2H , where H = (3� a)=2 respectively H = (3� s)=2 if (2.4) respectively

(2.5) holds, or H = 3�min(a;s)

2
if both (2.4) and (2.5) hold. Either way, 2H > 1 and

the input process is LRD. In this paper we mainly concentrate on the latter way to

introduce LRD.

If the tail of a distribution satis�es (2.4) with 1 < a < 2, then one speaks of a heavy-

tailed distribution (although some authors use the term heavy-tailed more generally to

denote a non-exponential tail, giving it a similar meaning as long-tailed, a term de�ned

in Appendix A). Of course, we can allow more sources, some of them having a heavy-

tailed on- and/or o�-period distribution. In fact, the occurrence of heavy-tailed on-

and/or o�-periods of sources seems to provide the most natural explanation of LRD

(and of the related concept of asymptotic second-order self-similarity) in aggregated

packet tra�c. In [56] the 
uid model with N identical independent on/o� sources

is considered, and it is assumed that the on-period distribution satis�es (2.4) with

1 < a < 2 and/or the o�-period distribution satis�es (2.5) with 1 < s < 2. As observed

above, one such source already gives rise to an LRD input process. But in [56] N !1
is taken, and it is shown that the aggregate tra�c, suitably normalized, is FBM. Hence

it is not only LRD but also strictly self-similar. Analysis of Ethernet tra�c from various

sources indeed shows extremely widespread presence of heavy-tailed on/o� periods [56].

More detailed further explanations for such phenomena typically refer to application-

level characteristics, and include: (i) an empirically observed hyperbolic tail behaviour

for �le sizes residing in �le servers; (ii) a Pareto-like tail behaviour for measured CPU

time used by a typical UNIX process; (iii) measurement studies of an ISDN o�ce

automation application, suggesting that human-computer interactions occur over a

wide range of time scales and thus may require models based on distributions with

in�nite variance; (iv) in the case of more recent measurements in local area networks

[19], the observations on the size of documents residing on present-day WWW servers

also suggest an in�nite variance.

In view of all these measurements, an important research issue of course is the study

of the impact of LRD, self-similar tra�c and heavy tails on system performance. In [23],

Ethernet tra�c measurements have been used to demonstrate the very considerable

impact that LRD has on queueing behaviour. The central issue in our paper is the

impact of long tails on system performance.

Remark 2.3 We shall not restrict ourselves to the special class of heavy-tailed distri-

butions. In fact we are interested in all non-negative variables X for which does not

hold that P[X > x] = O (e��x), x ! 1, with � a positive constant; in particular, we

are interested in the class L of long-tailed distributions (see Appendix A), its subclass

S of subexponential distributions (also to be discussed in Appendix A), and the class

R of regularly varying distributions (Appendix B), which is a subclass of S.
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3. A single fluid source

The model of what we call here a \
uid source" is fairly more general than that of

the \on/o� sources" that will be considered in superposition in the next two sections.

One reason for this is that the analysis of a 
uid queue fed by a single source is easier,

and deep results can be obtained in a more general setting, but another reason is that

our general model covers the case of a source obtained as the superposition of such

on/o� sources. Hence the results of the current section �nd applications even in some

situations when several sources coexist.

The next subsection contains the description of the model, and the characterization

of three variables of primary interest for the analysis of the stationary regime: the

bu�er content, �rst at the beginning of an activity period of the source (it is then

denoted W ), then in continuous time (we denote it by Z); and the busy period P of

the 
uid queue. In many aspects the results are related to classical analogs for the

GI/G/1 or M/G/1 queue.

In Subsection 3.2, we show how long-range dependence occurs in the on/o� source,

and give an equivalent for the integrated covariance without any assumption on the

tails of the activity and silence period distributions of the source.

Subsection 3.3 collects (and marginally completes) the results in the literature about

the conditions under which the distributions of the stationary variables W , Z and P

exhibit subexponential or regularly varying tails. Comparison of these results with

the former characterization of LRD clearly shows that LRD may result in a poor

performance of the queue (and how it may propagate in a network); but also that LRD

and long tails of the stationary distributions are quite distinct phenomena, which may

occur independently.

The section is concluded with two remarks that provide key interpretations of the

results presented in the paper.

3.1 Model - Stationary characteristics

Consider a 
uid queue with an in�nite bu�er, and an output rate equal to 1. This

queue is fed by a source that alternates between silence periods Sn, n � 1, during

which it generates no input, and activity periods An, n � 1, during which it generates


uid according to the rate process (rn(t))t�0, n � 1. A crucial assumption will be that:

8n � 1; 8t � 0 : 1 � rn(t) � R (where R is some given constant). (3.1)

In particular, the nth activity period results in a net input equal to:

Bn :=

Z An

0

[rn(t)� 1]dt:

Now we assume that the sequences (Sn)n�1, and (An; rn(t); t � 0)n�1, are respectively

i.i.d., and that they are independent. Then the beginnings of activity and silence

periods form a so-called alternating renewal process. This model is a specialization

of the storage model introduced by Kella and Whitt [31]. If r1(t) � r > 1, we shall
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mention it as an on/o� source (the case r = 1 is trivial, since obviously the 
uid queue

is constantly empty after some time).

Remark 3.1 A generalization of the on/o� source is the 
uid model in which the

sources can be in several (not necessarily two) states, transitions between states occur-

ring according to a Markov chain. Interesting references on this subject are the papers

of Asmussen [4] and Jelenkovic and Lazar [28].

From now on, except otherwise stated, we assume that the �rst period is an activity

period. Then the sequence Tn :=
Pn

k=1(Ak+Sk) (T0 = 0) depicts the successive epochs

when the source starts an activity period. The main parameters are:

� := E [A1 ]; � := E[B1 ]; � := 1=E[S1 ];

all of them assumed �nite and non-null.

The content of the bu�er at time t � 0 will be denoted by Z(t), and we shall �rst

concentrate on: Wn := Z(Tn). Notice that (Wn)n2N satis�es the recurrence equation:

Wn+1 = [Wn +Bn � Sn]
+; (3.2)

which characterizes the successive waiting times of a GI/G/1 queue with service times

Bn and interarrival times Sn, n � 1, of tra�c intensity ��. In consequence, the classical

results about the GI/G/1 queue apply (see for example Feller [25]). For the notation

B�
1
used below, we refer the reader to the end of Section 1.

Theorem 3.2 If �� � 1 then Wn ! 1 in probability as n ! 1. If �� < 1, then

Wn ! W in distribution as n ! 1, where the law of the random variable W may be

characterized by:

P[W > x] = (1� �)
X
n2N

�nP[H1 + :::+Hn > x]: (3.3)

In the above equation, (Hn)n�1 is the i.i.d. sequence of \ascending ladder heights" asso-

ciated with the increments (Bn�Sn)n�1, that is, if � = inffn � 1=
Pn

k=1
(Bk�Sk) > 0g:

� = P[� <1]; P[H1 > x] = P

"
�X

k=1

(Bk � Sk) > xj� <1
#
:

In particular, if the distribution of S1 is exponential: � = �� and H1 ' B�
1 , so that:

P[W > x] = (1� ��)
X
n2N

(��)nP[B�
1 + :::+B�

n > x]: (3.4)

Remark 3.3 Since most of the subsequent results are based on the above characteriza-

tion of W , it is worth emphasizing the importance of Assumption (3.1): if we allowed

rn(t) to be smaller than 1 for some values of t, then we would lose the notion of net

input produced during an activity period, and the subsequent representation (3.2).
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Remark 3.4 Equation (3.4) is the famous Pollaczek-Khintchine formula, which in

the M/G/1 setting relates the stationary waiting time distribution (W here) to the

integrated service time distribution (B�
1
here). Equation (3.3) provides a similar rep-

resentation for the GI/G/1 queue, though B�
1
does not appear explicitly here. But the

proof of Theorem 3.13 will show that in the \subexponential case", H1 has essentially

the same tail behaviour as B�
1
, and W has the same tail behaviour as the right-hand

side of Equation (3.4).

The asymptotic behaviour of Z(t) has been investigated in [31], where the analysis

relies on the arguments used for the virtual waiting time in the classical GI/G/1 queue

(see Asmussen [3], Chapter VIII, 3). When dealing with the continuous time behaviour

of the 
uid queue, we shall often use auxiliary parameters that naturally appear in

formulas: the stationary probability of silence

p :=
1

1 + ��
;

and the tra�c intensity

� :=
�(� + �)

1 + ��
;

that is the long-run average amount of 
uid sent per time unit. As might be expected:

�� < 1, � < 1.

Theorem 3.5 [31]. If �� < 1 and A1 and S1 have non-lattice distributions, then

Z(t)! Z in distribution as t!1, where the random variable Z is related to W by:

P[Z > x] = p��P[W +B�
1
> x] + (1� p)P[W +B1(A

�
1
) > x]: (3.5)

Here B�
1
and B1(A

�
1
) are independent of W , and the latter is de�ned by:

P[B1(A
�
1) > x] =

1

E[A1 ]
E

"Z A1

0

1IfB1(t) > xgdt

#
; with B1(t) =

Z t

0

[r1(u)� 1]du:

In particular, if r1(t) � r > 1 (on/o� source), then: B�
1
' B1(A

�
1
) ' (r � 1)A�

1
, and

� = (r � 1)�, so that:

P[Z > x] = �P[W + (r � 1)A�
1
> x]:

Another variable of interest is the busy period of the 
uid queue, namely the typical

period during which the queue generates an output. Denote by Pn (resp. In) the nth

busy period (resp. the nth idle period), assuming that they are all almost surely �nite.

Notice that the sequence (Pn; In)n�1 is i.i.d., and that during Pn (resp. during In), the

queue generates an output at rate 1 (resp. no output), due to our assumption that the

active source sends input at rate � 1 (see (3.1)). Hence the tra�c on the output line

is as generated by an on/o� source of constant input rate 1, except that Pn and In
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are not independent in general. Independence may be obtained by assuming that the

silence periods Sn are exponentially distributed, and then I1 ' S1. Moreover, it is then

possible to characterize the distribution of P1. In the following theorem, we introduce

the Laplace-Stieltjes transforms:


[!; �] := E [e�!A1��B1 ]; �[!] := E [e�!P1 ]; ! � 0; � � 0:

Theorem 3.6 If the distribution of S1 is exponential, then:

P1 ' A1 +B1 + P1 + ::: + PK; (3.6)

where (Pn)n�1 is independent of (A1; B1; K), and given (A1; B1), the conditional dis-

tribution of K is Poisson of parameter �B1. In terms of Laplace-Stieltjes transforms,

for ! > 0, �[!] is the unique solution in (�1; 1] of:

�[!] = 
[!; ! + �(1� �[!])]: (3.7)

Moreover, P1 is a.s. �nite if and only if � � 1, and then:

E[P1 ] =
�

�(1� �)
(=1 if � = 1): (3.8)

Remark 3.7 Equation (3.7) has already been obtained by Cohen [15] in the special

case when the 
uid source is obtained as the superposition of several on/o� sources

(see Section 4).

In Formula (3.8) we recognize the mean busy period of an M/G/1 queue of tra�c

intensity � and arrival rate � (see [16], Section II.4.4).

Proof:

The arguments are similar to those used for the M/G/1 queue (cf. [16], Section II.4.4).

Assume that the system is empty at time 0 and that it starts an active period A1. Given

that A1 = x and B1 = y, then at time x the bu�er content is y. If no new activity

period starts before time x+ y, then P1 = x+ y. Otherwise, the source starts sending

input again at some time x+y1, with y1 < y. Then we may assume that the processing

of the residual input y�y1 is interrupted, and the queue treats the new input until the

�rst time t > x+ y1 such that Z(t) = y� y1 and the source is silent again. Clearly the

time we have to wait until this event occurs is distributed as a busy period P1. After

that the processing of the residual input y� y1 can be restarted, possible interruptions

being handled as the �rst one. Obviously the successive interruptions form an i.i.d.

sequence (Pn)n�1, and the number of interruptions is an independent Poisson variable

K, of parameter �y. The busy period is hence equal to:

x+ y1 + P1 + y2 + :::+ PK + (y � y1 � :::� yK) = x+ y + P1 + :::+ PK ;
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which is Equation (3.6). Moreover, integration of the above formula with respect to

(x; y) according to the distribution of (A1; B1) yields the right-hand side of (3.7).

The problem of uniqueness may be solved as for the M/G/1 queue, see Cohen [16]

Section II.4.4. Similarly, P1 <1 a.s. if and only if �[0] = 1, which is equivalent to

��@

@�

[0; 0] � 1; that is �� � 1:

Finally (3.8) is obtained either directly from (3.6) or via di�erentiation from (3.7).

�

3.2 Long-range dependence

Here we restrict our attention to the case when rn(t) � r > 1, i.e. to the on/o� source

(in Section 4 our approach is extended to a superposition of on/o� sources). The

problem at hand is: when does such a source exhibit LRD, and how can we relate the

asymptotic dependence to the primitives of the source, that is the activity and silence

period distributions? The main result is Theorem 3.9, which is new to the best of our

knowledge.

Denote by I(t) the indicator function of fsource silent at time tg (take it right-

continuous), and by (I�(t))t�0 the stationary version of this process. It is obtained by

imposing an independent delay T � on the alternating renewal process (An; Sn; n � 1):

with probability p = 1=(1+��), the delay is a silence period S�1 ; with probability 1�p,
the delay is formed of the succession of an activity period A�

1
and an independent silence

period S0 (such that (Sn)n�0 is i.i.d.).

Remark 3.8 This construction can be justi�ed by introducing the Markov process

(I(t); F (t)), where F (t) is the residual time until the end of the current (activity or

silence) period. By Theorem 3.2 of Asmussen [3], VI.3, its stationary distribution is

characterized by: P[I�(0) = 1] = p, and:

P[F �(0) � tjI�(0) = 1] = P[S�
1
� t]; P[F �(0) � tjI�(0) = 0] = P[A�

1
� t];

which is equivalent to our formulation.

The stationary input rate process is simply: r�(t) = r1IfI�(t) = 0g. Long-range depen-

dence is analyzed in the following theorem.

Theorem 3.9 Assume that the distribution of A1 or S1 is non-lattice. If E[A2

1
] < 1

and E [S2

1
] <1, then the stationary process (r�(t))t�0 is short-range dependent, and:

Z 1

0

Cov(r�(0); r�(u))du =
r2p2(1� p)2

2
E [A1 + S1]E

2
4
 

A1

E[A1 ]
� S1

E[S1 ]

!2
3
5 :



3. A single 
uid source 13

If E [A2

1
] =1 or E[S2

1
] =1, then the process is long-range dependent, and:

Z t

0

Cov(r�(0); r�(u))du

t!1� r2p(1� p)

�
p

Z t

0

P[A�
1
> u]du+ (1� p)

Z t

0

P[S�
1
> u]du

�
: (3.9)

The proof relies on the following lemmas, which are proven in Appendix C.

Lemma 3.10

1

r2p(1� p)

Z t

0

Cov(r�(0); r�(u))du

=

Z t

0

(P[I�(u) = 0jI�(0) = 0]� P[I�(u) = 0jI�(0) = 1])du (3.10)

=

Z t

0

P[A�
1
> u]du+

Z t

0

(P[S�
1
> u]� P[A�

1
+ S0 > u])P[I(t� u) = 0]du: (3.11)

Remark 3.11 Expression (3.10) may be rewritten as:

Z t

0

(P[I�(u) = 1jI�(0) = 1]� P[I�(u) = 1jI�(0) = 0])du;

which shows that the roles of A1 and S1 are strictly equivalent in terms of long-range

dependence (a phenomenon already noticed by Brichet et al. [10] and Heath et al. [27]).

This is the main di�erence with the problem of the long-tailed stationary bu�er content

distribution, which depends only on the tail of A1 (see Subsection 3.3).

Lemma 3.12 Assume that the distribution of A1 or S1 is non-lattice. Then for any

measurable, non-null function f : R+ ! R
+ , such that f(t)! 0 as t!1:

Z t

0

f(u)P[I(t� u) = 0]du
t!1� (1� p)

Z t

0

f(u)du:

Proof of Theorem 3.9:

For any non-negative random variable X such that 0 < E[X] <1, we have: E[X� ] =

E[X2 ]=(2E[X]). The �rst part of the theorem follows easily in view of Lemmas 3.10

and 3.12.

For the second part, write: P[A�
1
+ S0 > u] = P[A�

1
> u] + P[A�

1
+ S0 > u � A�

1
], and

notice that: Z 1

0

P[A�
1
+ S0 > u � A�

1
]dt = E[S0 ] <1:

Now apply Lemmas 3.10 and 3.12 once again, thus obtaining Formula (3.9), which

proves long-range dependence. �
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Formula (3.9) suggests the stronger result:

Cov(r�(0); r�(u))
u!1� r2p(1� p)(pP[A�

1
> u] + (1� p)P[S�

1
> u]):

It has actually been proved by Heath et al. ([27], Theorem 4.3) in the special case when

P[A1 > t] is of the form l(t)=t1+�, where l(t) is a slowly varying function and � 2 (0; 1),

and P[S1 > t] = o (P[A1 > t]). The classical results of Karamata on functions of regular

variation (see Lemma 7.7 or [7]) then yield: Cov(r�(0); r�(u)) � r2p2(1�p)l(u)=(��u�).
Repeated applications of Karamata's Theorem also yield explicit equivalents ofR t

0
Cov(r�(0); r�(u))du and

R t
0

R u
0
Cov(r�(0); r�(v))dvdu (= 1

2
Var(T (t)), as pointed out in

Subsection 2.1), which have already been obtained by Brichet et al. ([10], Appendix 5)

and Willinger et al. ([56], Appendix).

3.3 Bu�er contents with subexponential tails

In order to get precise results on long tails in the context of queues, it seems appropriate

to work inside the class S of distributions with subexponential tails, or even inside the

subclass R of distributions with regularly varying tails (see Appendices A and B). We

are especially interested in expressions for the tails of the stationary variables (bu�er

content, busy period) in terms of those of the primitive variables (activity period, net

input).

By applying a beautiful result on the stationary waiting time of the GI/G/1 queue,

mainly due to Cohen [14] and Pakes [44], we obtain the following theorem.

Theorem 3.13 Assume that �� < 1. Still denoting byW the stationary bu�er content

at the beginning of activity periods, we have P[W > x] 2 S if and only if P[B�
1
> x] 2 S,

and if either is the case then:

P[W > x]
x!1� ��

1� ��
P[B�

1 > x]: (3.12)

Conversely, if the distribution of S1 is exponential and relation (3.12) holds, then both

P[W > x] and P[B�
1 > x] belong to S.

Proof:

This result is a pure copy of Theorem 1 in [44] (which partly relies on the results of

[14], later improved by Smith [53]). We only sketch the proof of the \easy part", that

is P[B�
1 > x] 2 S implies Formula (3.12) (hence P[W > x] 2 S, by Corollary 7.6). The

starting point is a formula observed by Cohen [14], and related to the Wiener-Hopf

factorization (see also XII.3, Formula (3:7a) in Feller [25]):

�

1� �
P[H1 > x+D�

1] =
��

1� ��
P[B�

1 > x + S1];



3. A single 
uid source 15

where D�
1
is independent of H1, and D1 is the �rst ascending ladder height associated

with the increments (Sn � Bn)n�1 (see Theorem 3.2). By Lemma 7.2, P[B�
1
> x] 2 S

implies that P[B�
1
> x] 2 L, which from the above formula easily yields:

�

1� �
P[H1 > x]

x!1� ��

1� ��
P[B�

1
> x]:

In particular, by Corollary 7.6: P[H1 > x] 2 S. Now consider Formula (3.3). In view

of Lemma 7.4, applying the criterion of dominated convergence, we obtain:

lim
x!1

P[W > x]

P[H1 > x]
= (1� �)

X
n2N

�nn =
�

1� �
:

The proof of the \easy part" is complete. �

Remark 3.14 Without any assumption on the distributions, it is not di�cult to check

that: lim infx!1 P[H1 + ::: + Hn > x]=P[H1 > x] � n for all n. Consequently, by

applying Fatou's lemma, we obtain: lim infx!1 P[W > x]=P[H1 > x] � �=(1 � �).

Hence the equivalent in (3.12) is, at least when S1 is exponential (hence H1 ' B�
1
), a

natural bound for the tail of W , reached only in the subexponential case.

Thanks to the results of Kella and Whitt ([31], also exposed in Theorem 3.5), it is

not di�cult to obtain similar results for the stationary bu�er content.

Theorem 3.15 Assume that �� < 1, and A1 and S1 have non-lattice distributions. If

P[B�
1
> x] 2 S and P[B1(A

�
1
) > x] 2 S, then P[Z > x] 2 S and:

P[Z > x]
x!1� ��

1� ��
P[B�

1 > x] + (1� p)P[B1(A
�
1) > x]: (3.13)

In particular, if r1(t) � r > 1 and P[A�
1
> x] 2 S:

P[Z > x]
x!1� p

�

1� �
P[(r� 1)A�

1
> x]: (3.14)

Proof:

Formulas (3.5) and (3.12) yield (3.13), if we prove that: P[W +B�
1
> x] � P[W > x] +

P[B�
1
> x], and: P[W + B1(A

�
1
) > x] � P[W > x] + P[B1(A

�
1
) > x]. The �rst relation

is a direct consequence of Theorems 3.13 and 7.5; the second one follows similarly, but

we must check that: supx P[B
�
1
> x]=P[B1(A

�
1
) > x] <1. By de�nition:

P[B1(A
�
1) > x] =

1

E[A1 ]
E

"Z A1

0

1IfB1(t) > xgdt

#
=

1

E[A1 ]
E

"Z A1

0

1IfB1(A1 � u) > xgdu

#
:
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In view of Condition (3.1), we have: B1(A1�u) � B1�(R�1)u, and A1 � B1=(R�1).

So we get:

P[B1(A
�
1
) > x] � 1

E[A1 ]
E

"Z B1=(R�1)

0

1IfB1 � (R� 1)u > xgdu

#

=
1

(R� 1)E[A1 ]
E

"Z B1

0

1Ifv > xgdv

#

=
E [B1 ]

(R� 1)E[A1 ]
P[B�

1
> x];

which completes the proof of Formula (3.13). That P[Z > x] 2 S now follows from

Theorem 7.5 and Corollary 7.6. �

Remark 3.16 If P[A1 > t] � l(t)=t1+� (where l(t) is a slowly varying function, and

� > 0), then P[A�
1 > t] � l(t)=(��t�) (see Lemma 7.8). So in case r1(t) � r > 1, we get:

P[Z > x]
x!1� p

�

1� �

l(x=(r � 1))

��[x=(r � 1)]�
x!1� p

�

1� �

(r � 1)�l(x)

��x�
:

This result has already been proved independently by Choudhury and Whitt ([12], The-

orem 2) and Heath et al. ([27], last formula). Actually, the general, subexponential

case with a constant input rate has later been treated by Jelenkovic and Lazar ([29],

Theorem 9).

Remark 3.17 In the above proof, we checked that P[B�
1
> x] = O (P[B1(A

�
1
) > x]) in

full generality. The converse is not necessarily true, which may lead to very di�erent

tail behaviours for W and Z. For example, take:

r1(t) = 1 +
1

1 + t
and P[A1 > t] =

1

(1 + t)[1 + ln(1 + t)]1+�
; t � 0;

with � > 0. Then standard calculations yield � = 1=� and:

8>>><
>>>:

P[B1 > x] = P[A1 > ex � 1] =
e�x

(1 + x)1+�
; x � 0

P[B1(A
�
1
) > x] = P[A�

1
> ex � 1] =

1

(1 + x)�
; x � 0:

The distribution of B1 thus belongs to the class S(1) (see Kl�uppelberg, [33] Theorem

2.1 and [32] Theorem 3.2). If moreover we assume that S1 is an exponential variable

and �� < 1, then Theorem 2 of Pakes [44] shows that:

P[W > x]
x!1� MP[B1 > x] (with M a positive constant):
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On the other hand: E[B1 ]P[B
�
1
> x] � P[B1 > x] ([44], Lemma 5), and we deduce from

Formula (3.5) and Theorem 7.5 that:

P[Z > x]
x!1� (1� p)P[B1(A

�
1
) > x]:

Thus W has an exponential tail, whereas the tail of Z is polynomial.

Let us now assume that S1 has an exponential distribution, and consider the busy

period P1. If in addition: r1(t) � r > 1, then, using the notations of Theorem 3.6, we

have: 
[!; �] = �[!+ (r� 1)�] (where �[:] is the Laplace-Stieltjes transform of A1). In

consequence, �[!] is the solution of:

�[!] = �[! + (r � 1)(! + �(1� �[!]))] = �[r! + (r � 1)�(1� �[!])]:

This equation characterizes the busy period of an M/G/1 queue with Poisson rate

�(r � 1)=r and typical service time rA1 (see for example [16] Section II.4.4). Hence

the following result is a straightforward consequence of a theorem proved by De Meyer

and Teugels [40].

Theorem 3.18 Assume that �� (= �(r � 1)�) < 1. Then P[P1 > t] is regularly

varying if and only if P[A1 > t] is regularly varying, and if either is the case:

(1� ��)P[P1 > t]
t!1� P[rA1 > (1� ��)t]:

Proof:

The proof is based on the characterization of regularly varying tails in terms of the

series expansion of the associated Laplace-Stieltjes transforms in the neighbourhood of

0 (see Lemma 7.8). The case of R�� with integral � is especially di�cult to address.

�

Notice that the generalization of Theorem 3.18 to the subexponential case is still an

open problem.

The following two remarks express views that are to a certain extent opposing, but

nevertheless both true.

Remark 3.19 The results for bu�er content and busy period distribution in Theorems

3.13, 3.15 and 3.18 (and their extensions to multiple sources in the next two sections)

provide vital insight into the e�ect of long-tailed activity period distributions on the

performance of modern communication networks. It appears that a long-tailed activity

period distribution gives rise to an even worse tail behaviour of the bu�er content (e.g.,

if E[A1 ] <1, E[A2

1 ] =1 then the mean bu�er content is not even �nite). And the tail

behaviour of the busy period is of the same nature as that of the activity period. Since
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the output process of the bu�er (that may feed into another bu�er) is an on/o� process

with on-periods the busy periods, this suggests that heavy tails, and hence long-range

dependence, propagate through a network. This matches conclusions drawn in Section

IV.C of [23].

Remark 3.20 The direct applicability of results like Theorems 3.13, 3.15 and 3.18 is

limited. In practice bu�ers are not in�nite. Moreover, tra�c control will be exercised:

sources may not be admitted, and in
ow rates may be reduced. A warning is also in

order when one would use, e.g., (3.12) as an approximation. It has been observed by

Abate et al. [1] that such approximations typically yield much less accurate results than

approximations based on the dominating exponential term in a model with exponential

tails. Therefore [1], and also [18], propose particular classes of regularly varying service

time distributions for which the LST is so manageable that one can obtain a series

representation of the corresponding M/G/1 waiting time distribution.

4. Superposition of on/off sources

In this section, we study the behaviour of a 
uid queue with an in�nite bu�er and

out
ow rate equal to one, fed by N > 1 independent on/o� sources. For 1 � i � N ,

we assume that source i, when active, has an input rate ri � 1. For all the other values

(parameters, variables or processes) related to source i, 1 � i � N , we also add an

index i to the notations introduced in Section 3.

First we derive the conditions for the long-range dependence of the cumulate input

tra�c. They may be easily deduced from Theorem 3.9. The stationary regime is

obtained by superposing independent versions of the stationary on/o� sources (see

Subsection 3.2 for the construction of the stationary sources and the speci�c notations

introduced there). Hence the global tra�c is characterized by the input rate process:

r�(t) :=
PN

i=1
r�i (t).

Theorem 4.1 Assume that for all i, the distribution of Ai1 or Si1 is non-lattice. Then

the stationary process (r�(t))t�0 is long-range dependent if and only if E[A2

i1 ] = 1 or

E[S2

i1 ] =1 for some i, and then:

Z t

0

Cov(r�(0); r�(u))du

t!1�
NX
i=1

r2i pi(1� pi)

�
pi

Z t

0

P[A�i1 > u]du+ (1� pi)

Z t

0

P[S�i1 > u]du

�
:

Proof:

Since all the sources are independent: Cov(r�(0); r�(t)) =
PN

i=1Cov(r
�
i (0); r

�
i (t)) for all

t � 0. Hence the result is a direct consequence of Theorem 3.9. �

From now on, we assume that for 1 � i � N , the silence periods Sin of source i are

exponential variables, of parameter �i. Then obviously the periods Sn of total silence
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are themselves i.i.d. exponential variables, of parameter � :=
PN

i=1
�i. Proceeding, the

periods An of \global activity" (when at least one on/o� source is active), and the

associated input processes rn(t), t � 0, are i.i.d. too. Finally, we have:

8n � 1; 8t � 0 : 1 � rn(t) � R :=
NX
i=1

ri:

Hence the superposition of these on/o� sources gives rise to a global, 
uid source in

the sense of the de�nition given in Section 3. The notations introduced there will here

refer to this global source. In particular, Bn will denote the total, net input produced

during the global activity period An.

The parameters � = E[A1 ] and � = E[B1 ] of the global source can be easily calcu-

lated via the auxiliary parameters p (stationary probability of silence) and � (tra�c

intensity). Since p is the stationary probability that all the sources are silent, then:

p =
NY
i=1

pi =
NY
i=1

1

1 + �i�i
:

But p is also equal to 1=(1 + ��) (with � as de�ned above), which yields the value of

�. Moreover, the global tra�c intensity � is obviously the sum of the tra�c intensities

generated by the various sources, that is:

� =
NX
i=1

ri(1� pi) =
NX
i=1

ri
�i�i

1 + �i�i
:

But we also have: � = �(� + �)=(1 + ��), which now yields the value of �.

In view of Theorems 3.2 and 3.5, the stability condition of the 
uid queue is � < 1.

Our goal will now be to relate the stationary behaviour of the bu�er to the character-

istics of the on/o� sources, and especially to study the e�ect of one or several sources

with long-tailed active periods. A natural approach consists in trying to apply the

results exposed in Section 3, but �rst we must derive the characteristics of the global

source (in particular the laws of A1 and B1). They are studied in Subsection 4.1. As

we shall see, this approach may work for the analysis of W , but concerning the laws of

Z and P1, more direct approaches may be preferable. Subsection 4.2 contains a speci�c

characterization of the busy period distribution. Then a detailed discussion of the tail

behaviour of the bu�er content is presented in Subsection 4.3, in case only one source

does not have exponentially tailed activity periods. It is currently impossible to make

a complete analysis of the model in the general case; partial results and bounds are

mentioned in Subsection 4.4 for the case of several sources with long-tailed on-period

distributions.

4.1 Characteristics of the global, 
uid source

The description of the global source is originally due to Cohen [15], and has been

recently completed by the same author [17]. Here we adopt the convention that all the

sources are initially silent.
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If Ii(t) denotes the indicator function of fsource i silent at time tg, then I(t) :=QN
i=1

Ii(t) is the analogous indicator for the global source. Now set:

hi(t) := ri

Z t

0

[1� Ii(u)]du:

It is the total amount of 
uid generated by source i between 0 and t; hence the global

source generates: h(t) :=
PN

i=1
hi(t).

Cohen's formulas rely on the following lemma. It is valid for any 
uid source with

exponential o�-periods.

Lemma 4.2 For Re (!) > 0, Re (�) � 0:

Z 1

0

e�!tE[e��h(t) ; I(t) = 1]dt =
1

! + �(1� E [e�!A1��(A1+B1)])
: (4.1)

A similar formula applies to each source i, 1 � i � N . Since Bi1 = (ri� 1)Ai1, we get:Z 1

0

e�!tE[e��hi (t); Ii(t) = 1]dt =
1

! + �i(1� �i[! + ri�])
; (4.2)

where �i[!] := E [e�!Ai1 ].

Proof:

If t belongs to the nth silence period, then: e��h(t)1IfI(t) = 1g = e��(A1+B1+:::+An�1+Bn�1).

The result follows easily from the decomposition over all the silence periods. �

Now if we remark that for all t � 0:

E [e��h(t) ; I(t) = 1] =
NY
i=1

E[e��hi (t); Ii(t) = 1];

then we can relate the law of (A1; B1) to those of Ai1, 1 � i � N , thanks to an inversion

formula for Laplace-Stieltjes transforms.

Proposition 4.3 For Re (!) > 0, Re (�) � 0, and any choice of x > 0:

1

! + �(1� E[e�!A1��(A1+B1)])

=

Z 1

0

e�!t

8<
:

NY
j=1

1

2�i

Z x+i1

x�i1

eytdy

y + �j(1� �j[y + rj�])

9=
; dt: (4.3)
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A key issue consists in extending the validity of (4.3) to a domain Re (�) � 0,

Re (!) > �� � Re (�), for some � > 0, so that we can take ! = �� and thus obtain

the Laplace-Stieltjes transform of B1. Actually, this would directly yield the Laplace-

Stieltjes transform of W , since the Pollaczek-Khintchine Formula (3.4) is equivalent

to:

E[e��W ] =
1� ��

1� ��E[e��B
�

1 ]
=

��(1� ��)

�� + �(1� E[e��B1 ])
:

Such an extension is justi�ed by Cohen in the case when all the Laplace-Stieltjes

transforms �i[!], 1 � i � N , have negative abscissae of convergence [17]; but this

means that all the active periods Ai1, 1 � i � N , have exponential moments, which we

will precisely not assume in the sequel. (We will later see however that the extension

can still be justi�ed when all the sources but one have exponentially tailed active

periods.) Also notice the absence of a formula for E [e��B1 (A
�

1
)], which prevents us from

investigating the distribution of Z via Theorem 3.5.

4.2 Characterization of the busy period

The characterization obtained for the busy period in Theorem 3.6 is still valid, but is not

adapted to the superposition of on/o� sources. A speci�c system of equations, explicitly

involving the Laplace-Stieltjes transforms �i[!], 1 � i � N , has been obtained by Kaspi

and Rubinovitch [30]. This subsection is devoted to the presentation of their results.

Again we shall denote by (Pn)n�1 the i.i.d. sequence of the successive busy periods

of the 
uid queue; for 1 � i � N , we will denote by (Pin)n�1 an i.i.d. sequence of

busy periods starting with an activity period of source i. We introduce the associated

Laplace-Stieltjes transforms:

�[!] := E[e�!P1 ]; �i[!] := E[e�!Pi1 ]; 1 � i � N; ! � 0:

Obviously, since silence periods are exponentially distributed, we have:

�[!] =
NX
i=1

�i

�
�i[!]:

In the following theorem, a restrictive assumption is made on the input rates of the

on/o� sources. At the end of the subsection, we discuss how this assumption might be

removed.

Theorem 4.4 If ri = 1, 1 � i � N , then for all i:

Pi1 ' Ai1 +
X
j 6=i

(Pj1 + :::+ PjKij
); (4.4)

where sequences (Pjn)n�1, j 6= i, are independent of each other and of (Ai1; Kij; j 6= i),

and given Ai1, the conditional distribution of (Kij; j 6= i) is that of independent Poisson

variables of parameters �jAi1, j 6= i.

In terms of Laplace-Stieltjes transforms, for ! > 0, the vector (�i[!])1�i�N is the

unique solution in (�1; 1]N of the system of equations:
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�i[!] = �i[! +
X
j 6=i

�j(1� �j[!])]; 1 � i � N: (4.5)

Furthermore, P1 is a.s. �nite if and only if � � 1, and then:

E[Pi1 ] =
�i

�i(1� �)
(=1 if � = 1); 1 � i � N; E[P1 ] =

�

�(1� �)
: (4.6)

Remark 4.5 The tra�c intensities �i of the various sources, and the global tra�c

intensity � =
P

i �i, have been calculated at the beginning of this section.

Proof:

The argument bears some analogy with that used in the proof of Theorem 3.6, but

it is more subtle. Assume that at time 0 the queue is empty, and an active period

Ai1 = x of source i is initiated, whereas all the other sources are silent. If these sources

do not start an activity period before time x, then Pi1 = x (remember that ri = 1).

Otherwise, a source j 6= i starts sending input at some time x1 < x. Then imagine

that we stop the activity of source i at this time, and set the remaining input x � x1
temporarily aside: source i thus enters a silence period, and later behaves according

to its usual alternating structure. Hence everything works as if at time x1 a busy

period of type Pj1 were initiated, and at the end of this busy period all the sources

are silent. At this time, imagine that source i immediately starts a (residual) activity

period of length x � x1, and that possible interruptions are handled as the �rst one.

Kaspi and Rubinovitch [30] argue that this procedure will not a�ect the distribution of

the total busy period Pi1. Since the successive interruptions by source j, j 6= i, form an

i.i.d. sequence (Pjn)n�1, and the number of interruptions is clearly a Poisson variable

Kij of parameter �jx, then: Pi1 = x +
P

j 6=i(Pj1 + ::: + PjKij
); this is Equation (4.4).

The right-hand side of (4.5) is obtained by integrating this formula with respect to x

according to the distribution of Ai1.

For the question of uniqueness, as well as the �niteness of P1 and the values of E [Pi1 ],

1 � i � N , see the (quite technical) proof in [30]. In [30], a complicated expression is

given for E [Pi1 ], where the numerator actually amounts to
Q
j 6=i(1 + �j) (following the

authors' notations), which yields (4.6).

�

It might be asked whether the general case ri � 1, 1 � i � N , could be treated with a

similar argument. Then it is necessary to take into account two kinds of interruptions:

those occurring during the �rst activity period Ai1 = x (only due to sources j 6= i),

and those occurring during the processing of the net input Bi1 = (ri � 1)x (for which

all the sources may be responsible). Actually it seems that the problem can be solved

by combining the arguments of Theorems 3.6 and 4.4. A paper is in preparation on

the subject; the results will be used to study the tail behaviour of P1 in case at least

one source has a regularly varying activity period distribution.
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4.3 Heavy-tailed bu�er content with N � 1 exponential sources

In this subsection, we show the dominating in
uence of one source, with regularly

varying activity periods, on the stationary bu�er content, when all the other sources

have exponentially distributed activity periods. This is the only case in which a quite

complete analysis of tail behaviours has been achieved. Three di�erent works were

independently devoted to this issue, each of them based on a speci�c approach (Boxma

[9], Jelenkovic and Lazar [29], Rolski, Schlegel and Schmidt [50]). For the sake of

clarity, the following theorem has not been formulated under the weakest assumptions;

re�nements in [9, 29, 50] are exposed below, along with a sketch of their methods of

proof. We emphasize the singularity of the result on P[Z > x], which does not require

that r1 � 1, nor even that sources have exponential silence periods.

Theorem 4.6 Assume that for 2 � i � N , the activity periods Ain of source i are

exponentially distributed, whereas P[A11 > x] is regularly varying. Suppose that � < 1,

and set: c := 1 � PN
i=2

�i. Then P[B1 > x], P[W > x] and P[Z > x] are regularly

varying too, and we have:

P[B1 > x]
x!1� �1p1

�p
P[(r1 � c)A11 > x]; (4.7)

P[W > x]
x!1� �1(r1 � c)�1

c� �1(r1 � c)�1

P[(r1 � c)A�
11
> x]; (4.8)

P[Z > x]
x!1� p1

�1

c� �1
P[(r1 � c)A�

11
> x]: (4.9)

The latter formula is valid for r1 > c and general distributions of the variables Si1,

1 � i � N .

Corollary 4.7 Under the conditions of Theorem 4.6, if P[A11 > x] � l(x)=x1+� as

x!1 (where l(x) is a slowly varying function, and � > 0), then:

P[B1 > x]
x!1� �1p1

�p

(r1 � c)1+�l(x)

x1+�
; (4.10)

P[W > x]
x!1� �1

c� �1(r1 � c)�1

(r1 � c)1+�l(x)

�x�
; (4.11)

P[Z > x]
x!1� p1

�1

c� �1

(r1 � c)�l(x)

�1�x�
: (4.12)

Proof of Corollary 4.7:

The corollary is a direct consequence of Theorem 4.6, in view of Lemma 7.7 (Appendix

B). �

For a superposition of sources, Theorem 4.6 is the only complete result available

about the tail behaviour of the bu�er content. That is why we are going to spend
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some time commenting it. Before sketching the approaches of the di�erent authors, it

is worth giving an interpretation of the formulas. First notice that
PN

i=2
�i is the tra�c

intensity generated by the exponential sources, that is the average portion of capacity

that the 
uid queue devotes to these sources. Hence, c is the average capacity available

for source 1.

Now imagine that the capacity of the queue is c instead of 1, and that it is only fed

by source 1. The net input produced during the activity period A11 is now:

B11 = (r1 � c)A11;

and consequently we get: �1 = (r1 � c)�1, and: B�
11 ' B11(A

�
11) ' (r1 � c)A�11.

Moreover, by a time-scaling argument, it is not di�cult to see that Formulas (3.12)

(from Theorem 3.13) and (3.14) (from Theorem 3.15) must be adapted by putting c

instead of 1 in the denominators. In particular, when P[A11 > x] is regularly varying,

then P[A�
11
> x] is regularly varying too, hence subexponential, and we �nd:

P[W > x]
x!1� �1(r1 � c)�1

c� �1(r1 � c)�1

P[(r1 � c)A�11 > x];

P[Z > x]
x!1� p1

�1

c� �1
P[(r1 � c)A�

11
> x]:

These are precisely Formulas (4.8) and (4.9). The conclusion is clear: as far as the

tails of the bu�er content (at the beginning of activity periods, or in continuous time)

are considered, the contribution of the exponential sources is equivalent to a simple

reduction of the queue capacity according to their tra�c intensities. This remark is

due to Jelenkovic and Lazar [29]; dealing with the asymptotics of P[Z > x], they also

remark that the exponential sources might equivalently be replaced by sources with

constant input rates �i, 2 � i � N .

Proof of Boxma [9]:

In this paper, the results are formulated as in Corollary 4.7, and only the asymptotics

of P[W > x] are described, though the approach would yield the tail of B1 as well. A

restrictive assumption is that the exponent � is assumed non-integer. On the other

hand, the results are improved in the following way: �rst, it is only assumed that the

Laplace-Stieltjes transforms �i[!] = E[e�!Ai1 ], 2 � i � N , are rational, thus allowing

for more general distributions than the exponential one (like hyperexponential or Erlang

distributions); second, a partial converse of Theorem 4.7 is established: if W satis�es

property (4.11), then P[A11 > x] � l(x)=x1+�.

The approach is based on Cohen's Formula (4.3). Thanks to applications of the

residue theorem to the integrals:

Z x+i1

x�i1

eytdy

y + �j(1� �j[y + rj�])
; 2 � j � N; (4.13)
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the following expression is eventually obtained: for Re (!) > 0, Re (�) � 0:

1

! + �(1� E[e�!A1��(A1+B1)])

=
X

k2;:::;kN

QN
j=2

1=(1� �j�
0
j[�rj + ujkj ])

(! � u2k2 � :::� uNkN ) + �1(1� �1[�r1 + (! � u2k2 � :::� uNkN )])
;

where ujk = ujk(�) is the kth pole of the integrand in (4.13), and the sum is over all

the poles.

After multiplication of both sides by ��(1� ��), it is then shown that the relation

may be continued analytically so that we can take ! = ��. As already mentioned,

we thus obtain E [e��W ], and the rest of the proof consists in expanding it in a Taylor

series in terms of the corresponding expansion of �1[�]. The forms of these expansions

are directly related to tail behaviours in case of regular variation (see Lemma 7.8), so

the conclusion is easy.

Proof of Jelenkovic and Lazar [29]:

Here the authors concentrate on the tail of Z, and the result is formulated as in

Theorem 4.6. The assumptions are weakened in the following way. First, sources i,

2 � i � N , need not have activity periods of exponential distribution: it is only

required that they give rise to an exponential-tailed bu�er content Z 0, when they are

fed into a 
uid queue of capacity c0 >
PN

i=2
�i, in the absence of source 1 (actually, the

relevant hypothesis is that P[Z 0 > x] = o (P[A�11 > x])). Second, P[A11 > x] need not

be regularly varying, but only of intermediate regular variation, that is:

lim
�#1

lim inf
x!1

P[A11 > �x]

P[A11 > x]
= lim

�#1
lim sup
x!1

P[A11 > �x]

P[A11 > x]
= 1:

This property propagates to A�11, and implies that P[A�11 > x] 2 S.
The proof of Jelenkovic and Lazar is in two parts, one for the upper bound, one for

the lower bound. It is based on the following characterization of Z:

Z ' sup
t�0

Z t

0

[r�(u)� 1]du:

Their treatment of the upper bound may be interpreted as follows.

First choose � > 0 such that: �1 < c� := 1�(1+�)PN
i=2 �i, and modify the 
uid queue

such that a portion c� of its capacity is reserved for source 1, and a portion c0� := 1� c�
is reserved for the other sources. This actually gives rise to two independent and stable

queues, of stationary bu�er contents Z� (for the queue fed by source 1 only) and Z 0�
(for the queue fed by the other sources), and a sample-path argument easily shows

that: Z �st Z�+Z 0�, due to the loss of e�ciency induced by this system. Moreover, we

know from Theorem 3.15 (Theorem 9 of [29]) that: P[Z� > x]=P[(r1 � c�)A
�
11
> x] !
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p1�1=(c� � �1), hence P[Z 0� > x] = o (P[Z� > x]) by initial hypothesis. In consequence

(see Theorem 7.5 and Corollary 7.6): P[Z� + Z 0� > x] � P[Z� > x]. Finally, we obtain:

lim supx!1 P[Z > x]=P[(r1 � c�)A
�
11
> x] � p1�1=(c� � �1), and thanks to intermediate

regular variation, the upper bound comes by letting � tend to 0.

The proof for the lower bound in [29] does not bear a similar interpretation. In the

below remark, we rather present new heuristics in the same spirit.

Remark 4.8 Imagine that the 
uid from source 1 (say, 
uid 1) and the 
uids from

the other sources (say, 
uid 2) go to two di�erent bu�ers (say resp. bu�ers 1 and 2),

and 
uid 1 is processed only when bu�er 2 is empty (thus we give \priority" to 
uid 2).

The total amount of 
uid in the bu�ers is not a�ected by this procedure; in particular,

if Z1 denotes the stationary bu�er 1 content, then: Z �st Z1. Now add a second queue

of capacity c�� (� 2 (0; 1)), fed by an on/o� source that emits at rate 1 during the

periods when bu�er 2 is empty. Denote by Z 00� its stationary bu�er content (stability

can be easily checked). It is not di�cult to see that at any time t, Z1(t) + Z 00� (t) is

larger than Z��(t), the bu�er content of a single queue of capacity c��, fed by source

1. Finally we obtain: Z1 �st Z�� � Z 00� , hence P[Z > x] � P[Z�� � Z 00� > x], where Z��
and Z 00� are independent. To conclude, notice that P[Z�� � Z 00� > x] � P[Z�� > x] (see

Lemma 7.3), and let � tend to 0.

Proof of Rolski, Schlegel and Schmidt [50]:

In this work, the authors focus their attention on the tail of B1, from which they later

deduce the form of P[W > x]. They assume that all the activity periods of sources

2; : : : ; N follow an exponential law. Like in [29], they assume that P[A11 > x] is of

intermediate regular variation.

The proof is based on an accurate account of the activity periods A1n of source 1

that are contained in the global activity period A1, and of their contribution to B1. For

this, the Markov structure of the \background" process I 0(t) = (Ii(t))2�i�N is strongly

exploited (remember that Ii(t) = 1Ifsource i silent at time tg).

An important step of the proof consists in establishing the following result. Set

n(t) = r1 � 1 +
PN

i=2
ri1IfIi(t) = 0g: it is the net input rate at time t if t belongs to an

activity period of source 1. Consider a typical period A11 starting at time 0, I 0(0)

being arbitrarily distributed. Then thanks to the intermediate regular variation of

P[A11 > x], it is shown that:

P

"Z A11

0

n(t)dt > x; I 0(A11) = eI

#
x!1�

 Y
i2I

pi

!
P[(r1 � c)A11 > x];

where I is a given subset of f2; :::; Ng, and eI = (1Ifi 2 Ig)2�i�N . Hence only the

stationary characteristics of I 0(t) (relating to sources 2; : : : ; N) appear in the limit.

For N = 2, an interesting interpretation of Formula (4.7) is obtained:
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P[B1 > x]
x!1� �1

1X
n=1

(1� �2)�
n�1

2
P[(r1 � c)(A11 + ::: + A1n) > x]; (4.14)

where �1 is the probability that A1 contains at least one activity period A11 of source

1, and �2 is the stationary probability that the gap between two consecutive periods

A1n and A1n+1 be bridged by an activity period of source 2. Assuming that P[A11 > x]

is subexponential, it is not di�cult to show that the right-hand term in (4.14) is

equivalent to (�1=(1� �2))P[(r1 � c)A11 > x], with �1=(1� �2) = (�1p1)=(�p).

4.4 Several long-tailed on-period distributions - Lower bounds

Very little is known about the superposition of several sources with long-tailed on-

period distributions. So far, the only precise asymptotics that we found in the literature

were obtained by Jelenkovic and Lazar [29]. As a preliminary stage of their work,

they obtain the speed of convergence of P[I(t) = 1] to p in the subexponential case

(Theorem 1 of [29]): if pi > 1=2 and P[A�i1 > t] 2 S for 1 � i � N , then:

P[I(t) = 1]� p
t!1� p

NX
i=1

(1� pi)P[A
�
i1 > t]:

Then, under more constraining assumptions which we will not present here, they

show (Theorem 3 of [29]) for N identical sources:

P[A�
1
> t]

t!1� N
1� p1

1� pN1
P[A�

11
> t]:

This formula might be a starting point for further research on the superposition

of several sources with subexponential on-period distributions. Nothing similar is yet

available for the tails of the bu�er content distributions, which of course are of primary

interest. This seems to be currently one of the most challenging issues in the modelling

of 
uid queues.

Nevertheless, an interesting insight into the tail behaviour of the bu�er content may

be obtained via lower bounds for P[Z > x], which do not even require that the silence

periods be exponentially distributed. The most obvious method is based on the remark

that for all x and i: P[Z > x] � P[Zi > x], where Zi is the bu�er content of the 
uid

queue fed by source i alone; then in case P[A�i1 > t] 2 S and ri > 1 for some i,

Theorem 3.15 provides a subexponential lower bound for P[Z > x]. Jelenkovic and

Lazar's approach in [29] (or the equivalent arguments of Remark 4.8) yields the more

accurate (asymptotic) lower bound: P[Zi
�� > x], where Zi

�� di�ers from Zi in that the

capacity of the queue is reduced to c i
�� := 1 � (1 � �)

P
j 6=i �j (� > 0), and it is only

required that ri > 1�Pj 6=i �j; if not only P[A�i1 > t] 2 S but it is of intermediate regular

variation, then � can be taken equal to 0.

However, even this �ner method fails to provide long-tailed lower bounds if, whenever

P[A�i1 > t] 2 L, we have: ri � 1 �P
j 6=i �j. For this case, Choudhury and Whitt [12]

propose an interesting argument, which does not provide sharp, lower bounds, but at
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least can be used to detect conditions leading to subexponential tails. Their result may

be formulated as follows.

Proposition 4.9 Let I � f1; :::; Ng such that rI :=
P

i2I ri > 1. Then:

P[Z > x] �Y
i2I

(1� pi)P[(rI � 1)A�i1 > x]:

Proof:

Consider the on/o� sources in stationary regime, and denote by T �i the remaining

activity time of source i at time 0 (with T �i = 0 if I�i (0) = 1). Set T �I = mini2I T
�
i .

Then by means of elementary theory of point processes, the authors show that for all

x: P[Z > x] � P[(rI � 1)T �I > x], which yields the announced lower bound. �

Corollary 4.10 If rI > 1 and P[A�i1 > t] 2 L for all i 2 I, then for all � > 0:

e�xP[Z > x]!1 as x!1. Moreover, if P[Ai1 > t] 2 R for all i 2 I, then the lower

bound of the former Proposition is regularly varying.

Proof:

The �rst statement is a direct consequence of Lemma 7.3. The second one is a con-

sequence of Lemma 7.7, since obviously a product of regularly varying functions is

regularly varying too. �

5. An infinite number of sources

Consider the case of N independent identical on/o� sources. The o�-periods are nega-

tive exponentially distributed with mean 1=�i = N=�, i = 1; : : : ; N ; the on-periods Aij

of each source i have the same yet unspeci�ed distribution with mean �1 and LST �1[�],
and the in
ow rate is r. Now let N !1 and �i ! 0, such that � is kept �xed. Then

activations of sources (i.e., arrivals of messages) occur according to a Poisson process

with rate �, and the number of simultaneously active sources is distributed as the num-

ber of customers in anM=G=1 system with service time distribution being the activity

period distribution of the sources. The superposition of on/o� sources again gives rise

to one global 
uid source, with exp(�) distributed silence periods and with periods of

\global activity" which we denote by An. The bu�er content at the beginning of global

activity periods is again distributed as the waiting time in an M/G/1 queue, with ar-

rival rate � and with service times the net increments Bn during An, n = 1; 2; : : :. It is

easily seen that E [A1 ] = (e��1 � 1)=� and that E[B1 ] = r�1e
��1 � (e��1 � 1)=� (use the

reasoning that in Section 4 led to E [A1 ] and E [B1 ], or let N !1 in those expressions).

The stability condition of the 
uid queue is � = r��1 < 1.

In the present section we survey the literature for such an M=G=1-related 
uid

model of on/o� sources. Like in Section 4, a key reference for this section is a paper
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of J.W. Cohen [15], presenting a detailed analysis of the superposition of a �nite,

as well as in�nite, number of on/o� sources. He assumes that the in
ow rate r of

each source equals the out
ow rate 1 of the bu�er, but most of his results are easily

extended to the case r � 1. Cohen [15] does not pay special attention to long-tailed

distributions, but his results can be used to obtain insight into the e�ect of long-

tailed (in particular, regular varying) activity period distributions on the steady-state

distributions of the bu�er content W at embedded points in time and Z at arbitrary

time, and on the steady-state distribution of the busy period P . This is the topic

of Subsection 5.1. In that subsection we assume that r > 1. In Subsection 5.2 this

assumption is dropped, and lower and upper bounds are presented for the steady-state

bu�er content distribution.

5.1 Explicit results for the bu�er content and busy period distributions

The central question in this subsection is: if the activity period distributions of the

(identical) sources are long-tailed, what can then be said about the tail behaviour of

the distributions ofW;Z and P ? In the case of regularly varying tails of activity period

distributions, a useful starting point for studying P[W > x] is the following result of

Cohen ([15], Formula (2.2.7)) for the joint LST of A1 and B1 (he takes in
ow rate

r = 1):

Proposition 5.1 For Re(�) � 0, Re(!) > 0,

1

! + �(1� E[e�!A1��(A1+B1)])
=

Z 1

t=0

e�!te��I(�r;t)dt; (5.1)

with (cf. [15], Formula (2.2.9)): for Re(�) � 0, t � 0, and any choice of y > 0,

I(�; t) :=
1

2�i

Z y+i1

y�i1
eut

1� �1[� + u]

u2
du

= t(1� �1[�]) + E[A11e
��A11 ]� E[(A11 � t)e��A111IfA11 � tg]: (5.2)

Formula (5.1) is obtained by considering a superposition of independent alternating

renewal processes. The proposition can be seen as a limiting form of Proposition 4.3

with �j = �=N . We successively show how (5.1) yields the tail behaviour of the

distribution of A1, of B1 and (via the M/G/1 relation) ofW . In [8] the following result

is proved:

Theorem 5.2 Assume that � < 1, and that P[A11 > x] � l(x)=x1+� when x ! 1
(where l(x) is a slowly varying function, and � 2 (0; 1)), then, with p := e���1 the

probability of total silence:

P[A1 > x]
x!1� 1

p
P[A11 > x]: (5.3)
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Proof:

Take � = 0 in (5.1) and multiply by !. Using (5.2) yields (apply partial integration in

the last step):

!

! + �(1� E[e�!A1 ])
=

Z 1

t=0

!e�!texpf���1 + �

Z 1

x=t
P[A11 > x]dxgdt

= 1 + e���1
Z 1

t=0

e�!tdfe�
R
1

x=t
P[A11>x]dxg: (5.4)

After some scaling, an LST of a proper probability distribution appears in the RHS of

(5.4). Application of Lemma 7.8 now yields the behaviour of the lefthand side of (5.4)

for ! ! 0, and subsequently the behaviour of E[e�!A1 ] for ! ! 0. Another application

of Lemma 7.8 gives the statement of the theorem. �

Remark 5.3 One can easily check that the reverse statement of the theorem also holds;

a regularly varying behaviour of P[A1 > x] implies a regularly varying behaviour of

P[A11 > x]. Furthermore, at the expense of additional calculations one can also handle

the case of a (non-integer) � > 1.

Remark 5.4 The distribution of A1 equals the busy period distribution of an M/G/1
queue, as has been observed in Remark 2.4 of [15]. Indeed, it is the distribution of an

uninterrupted period in which at least one source is active, active sources \emerging"

according to a Poisson process with rate �. A by-product of Theorem 5.2 (plus Remark

5.3) is hence that the busy period of an M/G/1 queue has a regularly varying tail

of index �� i� the tail of the service time distribution is regularly varying of index

��. Jelenkovic and Lazar [29] prove that this statement remains true when \regularly

varying" is replaced by \subexponential".

The study of the tail behaviour of B1 is more important, and more di�cult, than that

of A1. It is undertaken in [8, 29, 52]; in all three papers the restrictive assumption

is made that P[A11 > x] is regularly varying, and the last paper considers the Pareto

distribution within the class of regularly varying functions. In each of these papers,

starting-point is Formula (2.2.19) of [15], that follows from (5.1) and (5.2) after some

manipulations (take r = 1 for simplicity):

� � �(1� �1[�])

� � �(1� E [e��B1 ])

= 1� �

Z 1

t=0

f
Z 1

x=t
e��(x�t)dP[A11 < x]g e��I(�;t) dt; Re � � 0: (5.5)

A careful analysis of the behaviour of the right-hand side of (5.5) for � ! 0 allows yet

another application of Lemma 7.8, leading to the conclusion that P[B1 > x] is regularly
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varying of index �� and hence that P[W > x] is regularly varying of index 1��. Below
we cite the resulting precise statement for P[B1 > x] and P[W > x] from Theorem 6

respectively Theorem 12 of Jelenkovic and Lazar [29].

Theorem 5.5 Assume that � < 1, and that P[A11 > x] � l(x)=x1+� when x ! 1
(where l(x) is a slowly varying function) then (with again p = e���1 the probability of

total silence):

P[B1 > x]
x!1� 1

p
P[(r � 1 + �)A11 > x]; (5.6)

P[W > x]
x!1� �(

1

1� �
� 1

r
)P[(r� 1 + �)A�

11
> x]: (5.7)

Note that (5.7) immediately follows from (5.6) using (3.12).

Remark 5.6 Jelenkovic and Lazar [29] formulate a result for P[Z > x] that is very

similar to (5.7). They can prove that result under the assumption that a certain con-

jecture is true.

Remark 5.7 Via a renewal-theoretic approach, Cohen [15] derives the LST of the

busy-period distribution, for the case r = 1. He shows that this distribution coincides

with the busy-period distribution of an M/G/1 queue with arrival rate � and service

times A1j. This result could also have been obtained by starting from the busy-period

results of Rubinovitch [51] for N < 1, and then letting N ! 1 (cf. our Section 4,

Formula (4.5)).

We have seen that Proposition 4.3, resp. Proposition 5.1, are key results for the anal-

ysis of a 
uid queue fed by a �nite, resp. an in�nite number of sources. Following the

approach that led Cohen in [15, 17] to those propositions, one arrives at the following

generalization.

Proposition 5.8 Consider a 
uid queue fed by a superposition of N independent sets

of sources, with:

(i) N1 sets of in�nite numbers of sources as described in this section, the j-th set

(1 � j � N1) having silence rate �j, activity period distribution with LST �j[�] and
in
ow rate rj; and:

(ii) N � N1 sets of identical sources, the j-th set (N1 < j � N) containing nj < 1
on/o� sources with exp(�j) distributed silence periods, activity periods of LST �j[�] and
in
ow rate rj.

Let � be the silence rate for this superposition of sources. For Re(�) � 0, Re(!) > 0,

and any choice of y > 0:
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1

! + �(1� E[e�!A1��(A1+B1)])
=

Z 1

t=0

e�!t

2
4 NY
j=1

	j(�; t)

3
5 dt; (5.8)

with

	j(�; t) :=

8>>>><
>>>>:

exp

 
��j 1

2�i

Z y+i1

y�i1
eut

1� �j[�rj + u]

u2
du

!
; 1 � j � N1;"

1

2�i

Z y+i1

y�i1

eut

u+ �j(1� �j[�rj + u])
du

#nj
; N1 < j � N:

Note that, when all the sets of in�nite numbers of sources have the same in
ow rate,

one can immediately aggregate those N1 sets into one set of an in�nite number of

sources.

By allowing just one set of sources to have activity period distributions with a non-

exponential tail, one may use Proposition 5.8 combined with the method exposed in

[8, 9], to study the tail behaviour of B1 and W .

5.2 Bounds

So far we have almost always assumed that the in
ow rate of each source exceeds the

out
ow rate of the bu�er. If this assumption does not hold, then the bu�er content

may decrease, and even become zero, during a global activity period. For the case

of a single source this leads to a trivial model, but for multiple sources it may lead

to serious analytical complications regarding the net increment B1 (see also Remark

3.3). In this subsection we discuss results for which the above 
ow assumption does

not necessarily hold.

Brichet et al. [10] derive lower and upper bounds for P[Z > x] in the case of a 
uid

queue fed by an in�nite number of identical on/o� sources with in
ow rate equal to

one. Their starting point is a set of known lower and upper bounds for P[Z > x] for

N < 1. They specify the limits of these bounds for N ! 1, when the out
ow rate

C = N� + 

p
N (this represents a heavy tra�c condition, as � denotes the fraction of

time a source is on). Note that the in
ow rate of each source is here much smaller than

the out
ow rate of the bu�er. Brichet et al. prove that, if either one of the silence and

activity period distributions is regularly varying, then the determining factor in both

limiting bounds for P[Z > �
p
N ], for �xed � > 0, is exp(�R�2(1�H)); i.e., both bounds

are Weibullian. Here R is a constant and H is determined by the power laws of the

silence and activity period distributions, in exactly the same way as below (2.4) and

(2.5) in this paper. The Weibullian nature of the bounds for this heavy-tra�c case with

in
ow rates much smaller than the out
ow rate contrasts with the regularly varying

behaviour that was proven for P[W > x] in Theorem 5.5 and that was conjectured for

P[Z > x] in Theorem 13 of [29] (see Remark 5.6). The Weibullian nature of the bounds

does agree with the tail behaviour obtained by Norros [42] for the 
uid queue fed by

Fractional Brownian Motion: see (2.2) and (2.3). Brichet et al. show via some scalings

and a limiting operation, how the FBM model of Norros is related to their 
uid queue,

thus providing a further physical motivation for the FBM model.
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Du�eld [20] studies the workload of a bu�er fed by N sources which may be of a

very general nature (not necessarily on/o� 
uid) and which may display long-range

dependence. More speci�cally, he assumes that the input process of each source has a

power-law large-deviation scaling (as is the case in FBM). Letting N approach in�nity

while keeping the o�ered load constant, he proves under very general conditions that

limN!1

1

N
logP[Z > Nx] = �M(x); (5.9)

where the shape function M(x) is expressed in terms of the cumulant generating func-

tions of the input tra�c. He studies the asymptotics of M(x) for x ! 1, and he

discusses the economies of scale which are available through the statistical multiplex-

ing of large numbers of sources with large deviations scalings. For FBM with Hurst

parameter H, he shows that M(x) = �Hx
2(1�H), with �H some constant, con�rming

the logarithmic accuracy of (2.3).

Remark 5.9 In case the in
ow rate r is less than 1 in our 
uid queue fed by an

in�nite number of on/o� sources, it is important to determine the distribution of the

time periods during which the number of active sources exceeds c = 1=r. Guillemin et

al. [26] do exactly that, for exp(1) distributed activity periods (hence, for an M=M=1
system). They use the Markovian nature of the system and a uniformization technique.

They also present several asymptotic results.

Remark 5.10 Parulekar and Makowski [45] consider the distribution of the number

of busy servers bn at time n in a discrete-time M=G=1 system. They remark that

the stationary version fb�n; n = 0; 1; : : :g is short-range (long-range) dependent i� the

second moment of the service time distribution is �nite (in�nite). Subsequently they

consider a discrete-time single server queue with constant release rate c cells per slot,

and feed it with the tra�c stream fbn; n = 0; 1; : : :g; i.e., bn cells of unit length arrive

at time n. They consider the tail probability of the bu�er content of the latter single

server queue. They show that the appropriate large deviations scaling is related to the

forward recurrence time of the service time distribution.

For the case of subexponential service time distribution of the M=G=1 system, Liu et

al. [39] derive asymptotic upper and lower bounds for the queue length distribution in

the single server queue fed by the M=G=1 system; they show that these bounds are

tight in some instances.

6. Conclusions and suggestions for further research

In this survey we have discussed 
uid queues fed by a number of on/o� sources. We

have mainly concentrated on the relation between the tail behaviour of the activity

periods of the sources and the tail behaviour of the bu�er content and busy period,

exposing among other things how heavy-tailed (and long-range dependent) behaviour

of the former quantities gives rise to heavy-tailed behaviour of the latter quantities.
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The subject matter of this paper is in the midst of its development. Presently several

directions are open for further research. One direction is to weaken the distributional

restrictions: e.g., extension of regular variation results to results for intermediate reg-

ularly varying or subexponential distributions; admittance of non-exponential silence

periods. A second direction concerns the study of the restriction that the in
ow rate of

each source is at least equal to the out
ow rate of the bu�er; see the beginning of Sub-

section 5.2. In [9] a conjecture is formulated concerning conditions under which regular

variation of one or more activity period distributions does (not) propagate to regular

variation of the bu�er content process, when in
ow rates do not necessarily exceed the

out
ow rate; see also the results in [29]. A third direction is a study of the interplay

of multiple sources with long-tailed activity period distributions. Section 5 presents

results for an in�nite number of identical sources; in the case of heterogeneous sources,

one may expect the source with the heaviest tail to dominate. A fourth direction is to

obtain a much better quantitative insight into the tail behaviour of W and Z. In this

respect, numerical results and series developments for P[W > x] and P[Z > x] would

be most useful (cf. [1, 18]).

Other major issues are: extension of the results for more general sources (see [28]

for a study of a source that alternates between various states according to a Markov

process); extension of the results to networks (here busy period results will be useful,

as indicated in Remark 3.19); admission control and transmission rate control.

In our survey we have put an emphasis on 
uid queues, fed by on/o� sources. An

advantage of these models is that, to a considerable extent, one can make use of classical

queueing results. However, as we have seen above, this approach also has its limitations.

Hence the possibilities of quite di�erent models, like FBM and non-linear deterministic

maps (see Subsection 2.2), deserve a careful further study.

7. Appendix

Appendix A: Subexponentiality

The literature contains various notions of non-exponential tail behaviour of probabil-

ity distributions. An important class is the class of subexponential distributions, which

contains, a.o., the Pareto, Weibull and lognormal distributions. The introduction of

subexponentiality is due to Chistyakov [11]. A related notion is the \moderate growth"

of a distribution tail, introduced by Smith [53]; we use the term \long-tailed" that is

presently more common. We keep a formulation based on random variables rather than

distribution functions.

De�nition 7.1 X has a subexponential tail, denoted by P[X > t] 2 S, if
P[X +X 0 > t]

P[X > t]
! 2 as t!1,

where X and X 0 are i.i.d.
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X is long-tailed, to be denoted by P[X > t] 2 L, if for all real u:
P[X > t+ u]

P[X > t]
! 1 as t!1.

Lemma 7.2 If P[X > t] is subexponential, then it is long-tailed.

Proof:

See Chistyakov [11], or Athreya and Ney [5], or Embrechts et al. [22] (Lemma 1). �

The following properties of long-tailed distributions thus hold for subexponential

tails.

Lemma 7.3 If P[X > t] 2 L, then:
(i) for all � > 0, e�tP[X > t]!1 as t!1;

(ii) for any non-negative random variable Y independent of X:

P[X � Y > t]=P[X > t]! 1 as t!1.

Proof:

See Chistyakov [11] or Embrechts et al. [22] (Lemma 1) for property (i) ((ii) is easy to

prove). �

The introduction of subexponential distributions was motivated by the tail-analysis

of convolutions. Their nice properties are presented below.

Lemma 7.4 Let (Xn)n�1 be an i.i.d. sequence. If P[X1 > t] 2 S, then:
(i) for n � 1: P[X1 + :::+Xn > t]=P[X1 > t]! n as t!1;

(ii) 8� > 0; 9K > 0=8t � 0; 8n � 1 : P[X1 + :::+Xn > t]=P[X1 > t] � K(1 + �)n.

Proof:

See Athreya and Ney ([5], IV.4). �

The above property (i) may be partially extended to the convolution of di�erent

distributions.

Theorem 7.5 Assume that P[X > t] 2 S, and P[Y > t] = O (P[X > t]).
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(i) If P[Y > t] 2 L or P[Y > t] = o (P[X > t]), then:

P[X + Y > t]
t!1� P[X > t] + P[Y > t]:

Moreover, P[X + Y > t] 2 S, and (�P[X > t] + (1 � �)P[Y > t]) 2 S for all

� 2 (0; 1).

(ii) If P[Y > t] 2 L and P[Y > t] 6= o (P[X > t]), then P[Y > t] 2 S.

Proof:

See Embrechts et al. [22] (Proposition 1) and Cline [13] (Corollary 3.2 and Theo-

rem 3.4). �

Corollary 7.6 If P[X > t] 2 S and P[Y > t] � KP[X > t] as t ! 1 (where K is a

positive constant), then P[Y > t] 2 S.

Proof:

Since P[X > t] 2 L and P[Y > t] � KP[X > t], then obviously P[Y > t] 2 L and

P[Y > t] 6= o (P[X > t]). The conclusion is easy. (See also the direct proof of Pakes in

[44] (Lemma 2).)

�

Unfortunately, it is not known how to conclude from its LST that a distribution is

subexponential. A very useful relation between the tail behaviour of a distribution

and the behaviour of its LST near the origin exists for the class of regularly varying

distributions, which forms a subclass of the class of subexponential distributions. The

next appendix is devoted to regular variation.

Appendix B: Regular variation

Regular variation is an important concept in probability theory and various other

�elds. The main reference text is the book [7]. A measurable positive function f is

called regularly varying of index � if, for all x > 0,

f(xt)=f(t)! x� ; t!1;

(cf. [7], p. 18). One writes f 2 R� . When � = 0, one speaks of a slowly varying function;

this could for instance be a constant, or a logarithmic function. In this paper, a slowly

varying function is denoted by l(�). We shall say that a stochastic variable X � 0

has a regularly varying tail when P[X > t] is a regularly varying function; an example

is provided by the Pareto distribution. Of particular interest to us is the case that

an activity period distribution has a regularly varying tail of index � 2 (�2;�1). In
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that case the �rst moment of the distribution exists, but the variance is in�nite. As

observed in Subsection 2.2, X is now called heavy-tailed. This case is known to give

rise to long-range dependence, see below (2.5).

The �rst lemma shows the equivalence between the regular variation of P[X > t] and

that of P[X� > t] (when E[X] < 1); it also shows that the set of distributions with

regularly varying tails is closed under convolutions.

Lemma 7.7 (i) For all � > 0, P[X� > t] 2 R�� if and only if P[X > t] 2 R���1, and

if either is the case then:

P[X� > t]
t!1� t

�E [X]
P[X > t]:

(ii) If X1 and X2 are two independent, nonnegative random variables such that

P[X1 > t] 2 R��1 and P[X2 > t] 2 R��2, then P[X1 + X2 > t] 2 R�min(�1;�2), and

moreover:

P[X1 +X2 > t]
t!1� P[X1 > t] + P[X2 > t]:

Proof:

(i) See [7], Sections 1.5.6 and 1.7.3, as part of the Karamata theorem and the Monotone

Density Theorem.

(ii) See [25], VIII.8, Proposition. �

The next lemma links the behaviour of P[X > t] for t ! 1 to the behaviour of its

LST �(s) for s! 0. This is part of Theorem 8.1.6 on p. 333/334 of [7], originally due

to Bingham and Doney. Assume that the �rst n moments �1; : : : ; �n of X are �nite.

De�ne

�n(s) := (�1)n+1[�(s)�
nX
j=0

�j
(�s)j
j!

]:

Lemma 7.8 Let � = n+  with 0 <  < 1. The following are equivalent:

�n(s) � s�l(1=s); s! 0; (7.1)

P[X > t] � (�1)n
�(1� �)

t��l(t); t!1: (7.2)

In Theorem 8.1.6 of [7] the somewhat more complicated cases  = 0; 1 are also dis-

cussed.

Appendix C: Proofs

Proof of Lemma 3.10:
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By de�nition:

1

r2
Cov(r�(0); r�(u)) = P[I�(0) = I�(u) = 0]� P[I�(0) = 0]P[I�(u) = 0]

= P[I�(0) = 0]P[I�(0) = 1](P[I�(u) = 0jI�(0) = 0]� P[I�(u) = 0jI�(0) = 1]);

which yields Formula (3.10). By a renewal argument, we get:

P[I�(u) = 0jI�(0) = 0]

= P[I�(u) = 0; T � > ujI�(0) = 0] + P[I�(u) = 0; T � � ujI�(0) = 0]

= P[A�
1
> u] +

Z u

0

P[A�
1
+ S0 2 dv]P[I(u� v) = 0]:

Hence:Z t

0

P[I�(u) = 0jI�(0) = 0]du

=

Z t

0

P[A�1 > u]du+

Z t

0

Z u

0

P[A�1 + S0 2 dv]P[I(u� v) = 0] du

=

Z t

0

P[A�
1
> u]du+

Z t

0

P[A�
1
+ S0 � w]P[I(t� w) = 0]dw:

Similarly:

P[I�(u) = 0jI�(0) = 1]

= P[I�(u) = 0; T � > ujI�(0) = 1] + P[I�(u) = 0; T � � ujI�(0) = 1]

= 0 +

Z u

0

P[S�
1
2 dv]P[I(u� v) = 0]:

Hence: Z t

0

P[I�(u) = 0jI�(0) = 1]du =

Z t

0

P[S�
1
� w]P[I(t� w) = 0]dw:

Finally, since:

P[A�
1
+ S0 � w]� P[S�

1
� w] = P[S�

1
> w]� P[A�

1
+ S0 > w];

we thus obtain (3.11). �

Proof of Lemma 3.12:

By the basic theory of regenerative processes (see e.g. Theorem 1.2, Chapter V of

Asmussen [3]), we have: P[I(t) = 0]! 1� p as t!1. Given some � > 0, we can �nd

some t0 such that: jP[I(t) = 0] � (1 � p)j � �(1 � p) for all t � t0. Consequently, for
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t � t0:����
Z t

0

f(u)P[I(t� u) = 0]du� (1� p)

Z t

0

f(u)du

����
�
Z t�t0

0

f(u)jP[I(t� u) = 0]� (1� p)jdu+ (2� p)

Z t

t�t0

f(u)du

� �(1� p)

Z t

0

f(u)du+ t0(2� p) sup
u�t�t0

f(u)

� 2�(1� p)

Z t

0

f(u)du if t � t1, for some t1 > t0.

The proof is complete.

�
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