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Abstract

In this paper, three new dynamic, low delay
multicast routing algorithms based on the greedy tree
technique are proposed; Source Optimised Tree,
Topology Based Tree and Minimum Diameter Tree. A
simulation analysis is presented showing various
performance aspects of the algorithms, in which a
comparison is made with the greedy and core based
tree techniques. The effects of the tree source location
on dynamic membership change are also examined.
The simulations demonstrate that the Source
Optimised Tree algorithm achieves a significant
improvement in terms of delay and link usage when
compared to the Core Based Tree, and greedy
algorithm.

1. Introduction

In recent years, various static [4][17][18] or
dynamic [1-3][6][19-21] multicast routing algorithms
have been proposed. In the situation where the group
membership is continuall y changing and real time
communication is required, complex algorithms are
not well adapted to multicast communications. The
overhead required in rebuilding the tree whenever
new join or leave requests arrive is considered too
expensive. The simple approaches, such as attaching a
new node at a suitable location on an existing tree, are
more feasible because such methods require only
partial knowledge of the network configuration and
less computational overhead, and the routing decision
can be made by each joining node. One category of
these algorithms [1][2][4][6][19-21] are known as the
shortest path based algorithm because they adopt
shortest path tree for multicast data distribution.

When there are many sources in a group
communication, a multicast route by the shortest path
algorithm can be provided by multiples source
specific trees [19][21] or a shared type tree [6][20].
The shared type shortest path tree is simple to
implement and requires less state information than the
former. However the overall performance is sensitive
to the root location [7] and the delay performance is

not good when the source is not located in the root
node. Later in this paper, we wil l present simulation
results showing the extent of the performance
variation associated with the core location.

The other type of simple algorithm is the core-
less, branch attachment method, widely known as the
Greedy algorithm (GRD) [1][2][14]. GRD was
originally known as the Nearest Node [13] algorithm
or Nearest Insertion [3] algorithm, and was developed
as a heuristic to the minimum cost Steiner tree. This
method finds the closest attachment point in tree and
connects the new node to that point via the shortest
path. This heuristic requires a relatively low
computational overhead, scales well and achieves low
cost multicast tree. This method, however, has several
drawbacks:

(a) it does not constrain the maximum path
length, and hence the delay performance can be worse
than other trees, such as the shared shortest path tree.

(b) the performance fluctuates severely as
members are added and deleted, as noted by Waxman
[1] and Dore [5], and confirmed by our simulation
results.

(c) the joining node may need to know the entire
multicast group configuration information in order to
resolve the best attachment point of the branch path.

There have been several proposals to optimize
the delay performance based on greedy algorithm.
[8][9] However these algorithms perform repetitive
computation in order to constraint delay within a
bound, hence they require entire network knowledge
and it is hard to apply to distributed routing.

In this paper, three new algorithms are proposed
which improve the delay performance of GRD. They
are the Source Optimised Tree (SOPT); Topology
based Optimisation Tree (TOPT), which draws upon
an existing unicast distance table in order to reduce
the overhead of nodal weight calculation; and the
Minimum Diameter Tree (MDT), which constraints
the maximum length of the tree. The various
performance aspects of these algorithms have been
compared against GRD and CBT, and we propose the
Source Optimised tree as an eff icient dynamic-shared
multicast tree in terms of delay and bandwidth
consumption.



2. The Greedy tree based algorithms

2.1 Earlier Algorithms

The mechanism of the GRD is to find the closest
attachment point from the new participating node to
the existing tree and to connect to it via the shortest
path. This can be described formall y as following:

(A1) given a tree sub-graph Tn-1 and a member
        node v ∉ Tn-1,

find the best attachment point  a ∈ Tn-1,
such that the new sub-graph
Tn = Tn-1 + p(a-v), (where p(a-v) is the
shortest path) is close to the optimum.

This is a relaxed algorithmic definition of GRD
because the statement does not specify criteria for the
'best attachment point' and the 'optimal' state of the
tree. Depending on the definition of the optimal tree
and the attachment point selection algorithm, different
types of trees can be obtained. In this paper, we have
defined the optimali ty of the multicast tree to include
the minimum usage of the bandwidth, lowest delay,
and stabili ty during changes to the multicast group
membership. Details of the evaluation methods of
these performance factors will be given in section 3.

In the definition of (A1), the branch path p(a-v)
can be chosen via the shortest delay route, the
maximum available bandwidth route or the minimum
cost route, according to the required QoS. The simple
and practical method is to use the shortest path
according to the same routing metric used by unicast
routing, such as hop count or delay.

Provided that the shortest path is used for
grafting the branch path, different shapes of trees can
be built , with different performance characteristics,
depending upon the attachment point selection
algorithm.  When the attachment point a is chosen to
minimise the length of the path to the root node, a
shortest path tree is established. When the closest
attachment node in the tree is selected, the GRD tree
is established. The cost performance of the dynamic
greedy tree is better than the shared shortest path tree
[1][2], and has an upper bound of ½ log n times that
of the optimal Steiner tree, where n is the number of
members [14]. However the delay performance of
GRD is worse than shared shortest path trees [3].  The
GRD mechanism only considers the length of the new
branch path connecting the joining member, not the
extended length of the tree after grafting. Therefore
consecutive join operations at the end of the leaf
nodes may result in trees with extended maximum
length.

Waxman has suggested a weighted greedy tree
[2] as an improvement of GRD. In his proposal, an
owner node o of a group is selected and the node
remains in the tree throughout the session. A weighted

greedy tree is established by choosing the attachment
node a, which minimises the weight function:

(A2) W(a,v) = (1-ωω)*d(v-a) + ωω*d(a-o),
         where  0 <= ωω <= 0.5

The ωω factor is a weight constant which controls
the ratio of the branch length and the distance from
the attachment point a to the owner node o. When ωω
decreases towards zero, the tree shape approaches a
GRD tree and when ωω increases toward 0.5, the tree
approaches the shortest path tree rooted at the owner
node o. Therefore, the weighted greedy tree has a
performance characteristic which lies between the
GRD and the shared shortest path tree (or CBT).
From an empirical study, Waxman suggested 0.3 as
an optimal value for ωω.

2.2 Proposed New Algorithms

Waxman’s method is viewed as an improvement
of CBT, although it was proposed earlier. Indeed, the
weighted greedy tree has the same defects as CBT.
For example;

(a) the performance of the weighted greedy
algorithm is affected by the location of the owner
node o and it leaves open the question of how to
choose the owner node o in order to achieve the best
performance.

(b) while Waxman's weighted greedy algorithm
performs well when the owner node o becomes the
only source node, the performance can degrade as
multiple sources share the tree.

(c) the owner node o can be the centre of a
region of congestion and the failure of the owner node
is critical.

Therefore the weighted greedy algorithm does
not overcome the problems related to the location of
the core node. However, Waxman’s approach with the
weighted greedy function provides a mechanism for
improving the performance of GRD.

The first algorithm is the Source Optimised Tree
(SOPT) algorithm, which minimises the delay from
the most distant source to the joining node. The
algorithm is described as following:

(A3) Given a tree sub-graph T and a joining
node v ∉ T, let S be the
set of all sources sharing the tree T.
A source optimised tree is built
by grafting the shortest path p(v-a) on the
node a ∈ T, such that
the following function is minimised.

W(a,v)= d(v-a) + ωω * Max{d(s-a) | for
all (s ∈∈ S), }, where ωω > 0



In above function, the weight of each of the
candidate attachment points of the tree T is computed
by measuring the maximum distance from the node to
all sources via the tree T, e.g, by monitoring the
packet delay from all sources. The joining node is
connected via the path that minimises the length (or
delay) of the branch path plus the weighted maximum
delay of the attachment point, thus minimising the
maximum data reception delay.

In function (A3), the weight constant ωω is
assigned only to the second term and must have a
value greater than zero. When ωω decreases to zero, the
tree shape approaches the GRD tree. For one source
and ωω approaching unity, SOPT produces a shortest
path tree rooted at the source node. Therefore the
performance of the SOPT algorithm lies between that
of the GRD and the CBT in the presence of single
source. However, significant performance
improvements can be seen when multiple sources
share the SOPT tree. (See. section 4)

The second algorithm is the Topology based
Optimisation Tree (TOPT), which utili ses the distance
information of the underlying unicast system, and
thereby reduces the computational overhead. In this
algorithm, the multicast-capable nodes in the network
compute the average distance to all known
destinations in advance, using the distance
information in the unicast routing table. When a new
member requests to join the existing tree, the
algorithm finds the attachment node which makes the
length of the branch path plus the weighted average
distance a minimum. This algorithm applies concepts
from the optimum transportation network design
problem [15][16], in which the node with a small
average distance to all other nodes can serve as a low
delay distribution centre in the network. Therefore,
when the candidate attachment points of a tree are
evaluated for grafting a new branch, the node located
near the topological centre of the network is preferred.
The TOPT algorithm is described as following;

(A4) Given a tree sub-graph T and a member
node v ∉ T, let N be the
set of all nodes in the network.
A Topology based Optimisation Tree is
built by grafting the shortest path p(v-a)
on the node a ∈∈ T, such that the
following weight function is minimised;

    W(a,v)= d(v-a) + 2ωω*( ∑∑ n ∈∈ N d(a-n) ) / |N|
 where ωω > 0

The second term in the function (A4) is the
calculation of the weighted average distance of the
node a. The average distance is evaluated each time
the unicast routing tables are updated. Since the
average distance is associated with the node and is
independent of the formation of the multicast group,
the same average distance value can be applied for

different groups served by a node, unless the network
configuration changes significantly.

The shape of the TOPT tree is similar to Wall 's
centre based tree [4] when the population of the group
is evenly distributed in the network. (See Figure 4).
However the centre based tree becomes ineff icient
when many of the members are concentrated in a
locali ty and located some distance from the centre
node, because every group member has to include the
centre node as a root. In contrast, TOPT constructs an
efficient tree which serves only the locally
concentrated nodes.

The third algorithm is the Minimum Diameter
Tree (MDT) algorithm, which constructs the tree by
grafting the new branch path at the point where the
distance from the joining node to the most distant leaf
node is a minimum. Thus MDT attempts to constrain
the maximum length (or diameter) of the tree. The
algorithm is described as:

(A5) Given a tree sub-graph T and a joining
node v ∉ T, let E be the set of
all l eaf nodes of the tree T. A minimum
diameter tree is built by grafting
the shortest path p(v-a) on the point
a ∈∈ T, such that it minimises
the weight function;

W(a,v)= d(v-a) + ωω * Max{d(e-a) | for all
(e ∈∈ E)} , where ωω > 0

The weight function of (A5) is similar to that in
(A3) except that the distance to the most distant leaf
nodes is calculated instead of the distance to the
source nodes. The diameter of a tree is defined as the
longest distance between any two leaf-nodes of the
tree. According to the lemma proven by Wall [4], the
most distant node from any node in the tree is at one
end of the diameter. This algorithm, therefore,
requires a diameter update mechanism. One possible
mechanism is that all l eaf nodes report the distance
information to other leaf nodes periodically. The
intermediate nodes can filter the packets except the
one with the longest distance value. As a result, only
the two packets issued from both ends of the
diameter, and containing the longest distance
information, completely propagate through the tree
and update the node weight.

The detailed mechanism for the implementation
of the three algorithms is beyond the scope of the
paper.

3. The Network Model and
    Evaluation Criteria

The simulations reported in this paper were
performed using a randomly generated network model
proposed by Waxman. For each simulated network,



200 network nodes, representing the network routers,
are scattered on a 1000 by 1000 grid.

Each simulation was carried out on networks of
average degree 2.5, 3, 3.5, 4, 4.5 and 5, and the effect
of the network complexity was observed. For
modelling the activity of applications, two scenarios
are defined;

(a) a static source model in which the source
locations are fixed throughout the session, however
the receiving nodes are free to change membership.
The simulation covered cases with 1, 2, 3 and 5
source nodes, with the source node locations being
varied in each run.

(b)  a dynamic source model where the 10%,
50%, and 90% of the member nodes act as a source
and receiver.

The purpose of this simulation is to observe the
performance efficiency of different tree models as the
tree size is expanding or contracting. Therefore the
group size is varied at random between 5 to 90,  and
the performance is measured when the group size
reaches the target size of 10, 20,40 and 80.

Each of the 5 algorithms; CBT, GRD, SOPT,
TOPT and MDT, was applied to establishing a tree
for the same multicast group, and the average and
maximum delay, and link usage performance was
evaluated. For the CBT algorithm, the arbitrarily
selected initial source node becomes the core node.
Figures 1~5  show examples of the trees generated by
the 5 algorithms in the case of 4 fixed sources and 50
receivers.

In this simulation, the length of the link
represents the delay of the link. Therefore the shortest
path equates to the shortest delay route. The average
delay of a multicast tree is calculated by the mean of
the transmission delay from all sources to all
receivers. The maximum delay is the longest delay
observed from a source to receiver via the shared tree.

Figure 1 CBT tree (4 srcs, 50 rcvers)

Figure 2 GRD tree (4 srces, 50 rcvers)

Figure 3 SOPT tree (4 srcs, 50 rcvers)

Figure 4 TOPT tree (4 srces, 50 rcvers)

Figure 5 MDT tree (4 srces, 50 rcvers)
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The link usage, which is estimated by the
number of links, is considered. This measure also can
be applied to evaluating the bandwidth consumption
by the multicast tree. The bandwidth consumed at
each link is equal to or less then the output rate of the
source. Therefore, an estimate of the total bandwidth
usage of a route is given by the product of number of
links and the source output transmission rate.

4. Simulation Results

4.1 Selection of optimal weightings

The eff iciency of SOPT, TOPT and MDT is
affected by the ωω value (weight). Figure 6 shows an
example of the efficiency of these trees compared
with CBT as the ωω value increases, using 3 sources
and variable number of receivers in a degree 3
network. Repeated simulation using different source
numbers and network degrees showed a similar
pattern, with little variation in the location of the
optimal ωω value, and only differing in the curvature
and height. It is clear from inspection of the graphs
that there is an optimal ωω value for each algorithm.
Table 1 is the summary of the optimal ωω values
extracted from over 20,000 runs.  As a result, we
propose 0.6, 0.8 and 0.4 as appropriate optimal ωω
values for using in the SOPT, TOPT and MDT
respectively. The simulation results, which follow in
this paper, are carried out using these optimal values.

Figure 6 Maximum path delay with
       Varying ωω  (3 srces in degree 3 network)

SOPT TOPT MDT
Optimum for
Average Delays

0.6 0.8 0.2

Optimum for
Maximum Delays

0.8 0.8 0.4

Proposed ωω values 0.6 0.8 0.4

Table 1 summary of the optimalωω values

4.2 Delay variation stability

An important issue in the stabili ty of multicast
routing algorithms is whether their performance is
stable when they are subject to repeated join and
departure operations. For this reason, each algorithm
was subjected to simulation runs of 200,000
membership changes. Figures 7~10 show examples of
the maximum delay variation during these runs, and
depict the multicast tree performance for groups of 40
receivers and 5 fixed sources. Each simulation was
repeated 200 times and the worst-case and best-case
graphs are presented to contrast the extent of the
performance difference. The five algorithms exhibited
different patterns as multiple sources share the tree.

Figure 7 Maximum delay pattern of CBT
and SOPT (5 sources, degree 5)

Figure 8 Maximum delay pattern of GRD
(single source, degree 5)

CBT and SOPT show a similarly stable pattern
over time. For CBT the gap between the worst case
and the best case increases as more sources share the
tree, whereas the gap for SOPT only increases
marginally. The performance patterns of the other 3
algorithms: GRD, TOPT and MDT showed more
severe fluctuations. However the fluctuation is
stabili sed as more static sources share the tree.
Generally, the initial configuration of the tree is
important in determining the shape and performance

1000

1500

2000

2500

3000

3500

4000

4500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

D
el

ay

Simulation Time

Greedy worst case
Greedy best case

CBT average worst case
CBT average best case

1000

1500

2000

2500

3000

3500

4000

4500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

D
E
L
A
Y

Simulation Time

CBT worst case

SOPT worst case

CBT best case

SOPT best case

70

80

90

100

110

120

130

140

0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
at

io
 t

o 
C

B
T 

(%
)

Omega Value

CBT
Source Optimized

Topology Based
Minimum Diameter



of the greedy type trees. Once the main stem of a tree
route is in place, subsequent modification of branch
paths only causes minor changes to the overall
performance. This explains why the patterns of
greedy type trees stabili se when many sources share
the tree. As long as the source locations are static
throughout the connection, the main stem of the tree
is fixed and the performance is stable.

Figure 9 Maximum delay pattern of TOPT
(single source, degree 5)

Figure 10 Maximum delay pattern of MDT
(single source, degree 5)

Two horizontal lines are drawn in Figures 8~10
for comparison with the CBT average worst cases and
average best cases. The worst case performance of
TOPT and MDT stays below than CBT when multiple
sources share the tree.

4.3 Effect of group size

Another factor in the performance of multicast
trees is the efficiency for different numbers of sources
and receivers. Figures 11~12 ill ustrate the changes in
the average delay and number of links as the number
of members in the group increases. The graphs
presented are for cases where 5 sources share the tree
in networks of degree 5. Other cases for different
number of sources and different network degree
showed a similar pattern, and only differed in the
scale of the curves.  As can be seen from the graphs,

the delay in most of the algorithms grows slowly with
increasing receivers, and is relatively stable above
30~40 receivers. Note that the total number of nodes
in network is 200. Only GRD exhibits steady
increase. There is littl e difference between the
algorithms for link usage although GRD is always
best and CBT is always worst. Generally the
performance curves of delay by number of members
fits the graph of the exponential function;

  y = h - a * exp( -x / b)  , where h, a, b are the
characteristic constants

More rigorous mathematical analysis is left for
the future study issues.

Figure 11 Average delay by group size
(5 sources in degree 5)

Figure 12 Link usage by group size

4.4 Effect of network degree

It is expected that the performance measures will
display an improvement as the degree of the network
increases. This is confirmed in this study as shown in
Figures 13~14. This is a typical result with multicast
trees, as has been reported elsewhere [2] [5] [7]. It is
of note that the performance curves for the algorithms
run in parallel, and the gap between them is consistent
as the degree of connectivity increases. This means
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that an increase of network degree does not change
the relative performance of the algorithms.

Figure 13 Average delay by network degree

Figure 14 Link usage by network degree

4.5 Effect of multiple, static sources
(fixed location)

Figures 15~16 compare the performance for an
increasing number of static sources transmitting to
variable number of receivers. The delay performance
of CBT is best when the core node becomes the
unique source node. However as many sources share
the tree, the delay of CBT increases quickly and
becomes worse than all the other algorithms except
GRD. As was discussed in section 2, GRD does not
constrain the maximum length.

SOPT is as good as CBT in single source
multicast and it maintains a low delay as the number
of sources increase. Delay of CBT is good when the
core node becomes the only source node. In the
presence of multiple sources, SOPT is significantly
better than CBT. In general, SOPT exhibits up to 15%
lower delay than CBT.

Figure 15 Average delay by number of
sources (fixed sources)

Figure 16 Link usage by number of  sources

4.6 Effect of multiple sources
(dynamic participation)

Figure 17 is the average delay performance
graph of the dynamic source model, where the sources
as well as receivers are exhibiting dynamic group
membership, and a high proportion of nodes are
sources. The pattern of the curves is basically same as
the graphs of fixed sources, except that TOPT and
MDT show lower delay than other algorithms. In
particular, TOPT performs slightly better than SOPT
when the proportion of the sources increases. This
means that those two algorithms are relatively stable
and efficient in applications where the source nodes
are frequently changing.

Figure 17 Average delay by number of sources
(variable sources)
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5. Conclusion

The delay and link usage performance
characteristics of several new greedy based
improvement algorithms are presented and discussed
in this paper. More comprehensive simulation results
can be found in [22] It is considered that SOPT is an
efficient, dynamic, shared multicast tree in terms of
delay and link usage. TOPT performs well when the
participation of source nodes is dynamic, and in
particular, builds well-balanced, efficient distribution
trees when the members of group are densely
populated. MDT did not show a satisfactory delay
performance. Note that MDT does not construct a
minimum diameter tree. (The solution to the problem
of constructing a minimum diameter tree has been
proven to be NP-Complete by Wall . [4]) Instead,
MDT attempts to reduce the longest distance of the
tree, and hence MDT may be worthwhile as a
heuristic algorithm for producing an approximation to
the minimum diameter tree.

On the whole, the improved greedy algorithms
perform better than CBT in terms of delay and link
usage. The algorithms are a new approach to share
based multicast routing, and can be further improved
to accommodate other performance criteria such as
maximum throughput, low nodal overhead and low
concentration of connections.

The greedy type algorithms may require more
computational overhead and protocol complexity than
shortest path algorithms. Modern flood routing
methods [11] [12] enable the group information to be
broadcast with low overhead. The algorithms
proposed and evaluated in this paper have been
developed primarily in the context of finding an
efficient multicast algorithm utili sing the specific
features of flood routing. The development of
multicast flood routing algorithm and protocol is part
of on-going project at Monash University. Flood
routing method for point-to-point connection has
successfully been developed and implemented on the
experimental Caroline ATM LAN network [10]. The
design of a multicast flood routing protocol based on
the SOPT algorithms is in progress.
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