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Abstract. A recent trend in distributed computer-controlled systems (DCCS) is to
interconnect the distributed elements by means of a multi-point broadcast network. As
the network bus is shared between a number of network nodes, there is an access
contention, which must be solved by the medium access control (MAC) protocol.
Usually, DCCS impose real-time constraints. In essence, by real-time constraints we
mean that traffic must be sent and received within a bounded interval, otherwise a
timing fault is said to occur. This motivates the use of communication networks with
MAC protocols that guarantee bounded access and response times to message requests.
PROFIBUS is a fieldbus network with a MAC protocol based on a simplified version of
the timed token protocol. In this paper, we analyse PROFIBUS MAC’s cycle time
properties, as they are crucial to guarantee a real-time behaviour of DCCS supported by
this type of fieldbus networks.

Keywords. Real-Time Communication, Timed Token Protocol, Fieldbus Networks,
PROFIBUS

1. Introduction

Local area networks (LANs) are becoming increasingly popular in industrial computer-
-controlled systems. LANs allow field devices like sensors, actuators and controllers to be
interconnected at low cost, using less wiring and requiring less maintenance than point-to-
-point connections [1]. Besides the economical aspects, the use of LANs is also reinforced by
the increasing decentralisation of control and measurement tasks, as well as by the use of
intelligent microprocessor-controlled devices.

Broadcast LANs aimed at the interconnection of sensors, actuators and controllers are
commonly known as fieldbus networks. In the past, the fieldbus scope was dominated by
vendor specific solutions, which were mostly restricted to specific application areas.
Moreover, concepts behind each proposed network were highly dependent on the
manufacturer of the automation system, each one with different technical implementations
and also claiming to fulfil different application requirements, or the same requirements with
different technical solutions [2]. More recently, standardised fieldbuses supporting the open
system concept, thus vendor independent, started to be commonly used. PROcess FIeld BUS
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(PROFIBUS) [3] is one of the most popular fieldbuses, and has recently been granted the
status of a real international standard by CENELEC [4].

In this paper we address the ability of PROFIBUS to cope with the real-time requirements
of distributed computer-controlled systems (DCCS). In essence, by timing requirements we
mean that messages must be sent and received within a bounded interval, otherwise a timing
fault is said to occur. That means, for instance, that a control device must be able to read data
from a remote sensor within a specified interval, whichever the network load.

The PROFIBUS medium access control (MAC) protocol is based on a token passing
procedure, used by master stations to grant the bus access to each one of them, and a master-
-slave procedure used by master stations to communicate with slave stations. The master-
-slave interaction is denoted as a message cycle: the master sends a request frame and the
addressed slave immediately sends a response frame. If the token holding time for that
master has been exceeded or the master has no more pending requests, the token is passed to
the subsequent master. Typically, the process relevant devices (sensors and actuators) will be
interconnected to the network via a slave network interface, whereas the distributed control
algorithms will reside at master stations. Therefore, in PROFIBUS, the end-to-end
communication delay [5] for the master-slave transactions (those that typically deal with
real-time traffic) is composed of the following four major components:

1. generation delay: time elapsed between the release of the sender task and the queuing
of the related message request;

2. queuing delay: time taken by a message request to access the communication medium
after being queued;

3. transmission delay: time taken by a message request to be transmitted on the
communication medium and processed at the slave side, added with the time taken by
the message response to be transmitted back to the master;

4. delivery delay: time taken by the master’s application task to process a message
response.

The generation delay includes the application processing time needed to generate the
contents of the message and the time taken to queue the message. This issue has been
extensively addressed in the literature related with tasks’ worst-case response time analysis
in single-processor systems ([6,7] are just two examples).

The queuing delay is a consequence not only from the contention between message
requests from the same master but also with message requests from other masters. The
impact of the first factor in the overall queuing delay depends on the policy used to queue
message requests, while the second factor depends on the behaviour of the token passing
procedure. Therefore, the evaluation of the worst-case queuing delay of the message requests
is paramount to guarantee the message timing requirements. The aggregate value for the
queuing and transmission delays is termed in this paper as the message request response
time.

In this paper we address the analysis of the worst-case message response time in
PROFIBUS networks. As it will be shown, this analysis depends on the knowledge of the
maximum time interval between two consecutive token arrivals to a master. Thus, the study
of the cycle time properties of the PROFIBUS timed token protocol is fundamental to the
guarantee the message timing requirements in PROFIBUS networks.

The remaining of this paper is organised as follows. In section 2 we give a methodology
for the worst-case message response time analysis in PROFIBUS networks. This section
presents an improved version of the analysis proposed in [8,9], which assumes the worst-case
scenario for the token cycle time. In section 3 we survey some results on the evaluation of
token cycle time in several network protocols based on the timed token protocol [10], as it is
the case of IEEE802.4 [11] and FDDI [12]. As PROFIBUS uses a simplified version of the
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timed token protocol, we discuss the applicability of the surveyed results to the PROFIBUS
case. In section 4, we derive an accurate result for the PROFIBUS token cycle time, which is
the basis for the evaluation of the worst-case message response time. Finally, in section 5 we
show how the methodology and results provided in this paper can be used to set the target
token rotation time (TTR) parameter of a PROFIBUS network, in order to guarantee the real-
time requirements of a DCCS application.

2. Real-Time Analysis for PROFIBUS Networks

2.1. A Brief Description of the PROFIBUS Timed Token Protocol

In PROFIBUS, messages are classified in the two following categories: high priority
messages and low priority (including cyclic, non-cyclic and management) messages. In the
proposed methodology, real-time traffic is supported using PROFIBUS high priority
messages.

The PROFIBUS medium access control (MAC) protocol is, as previously mentioned, a
simplified version of the timed token protocol [10], and behaves as is below explained.

After receiving the token, the measurement of the token rotation time begins. This
measurement expires at the next token arrival and results in the real token rotation time (TRR),
which is a measure of the token cycle time. A target token rotation time (TTR) must be
defined in a PROFIBUS network. The value of this parameter is common to all masters, and
is used as follows. When a station receives the token, the token holding time (TTH) timer is
given the value corresponding to the difference, if positive, between TTR and TRR. If at the
arrival, the token is late, that is, the real token rotation time (TRR) was greater than the target
rotation time (TTR), the master station may execute, at most, one high priority message cycle.
Otherwise, the master station may execute high priority message cycles while TTH > 0. TTH is
always tested at the beginning of the message cycle execution. This means that once a
message cycle is started it is always completed, including any required retries, even if TTH

expires during the execution. We denote this occurrence as a TTH overrun. The low priority
message cycles are executed if there are no high priority messages pending, and while
TTH > 0 (also evaluated at the start of the message cycle execution, thus leading to a possible
TTH overrun).

Below is a description of the PROFIBUS token passing algorithm:

/* initialisation procedure */
At each station k, DO:
TTH ← 0 ;
TRR ← 0 ;
Start TRR ; /* count-up timer */
/* run-time procedure */
At each station k, at the Token arrival, DO:
TTH ← TTR - TRR ;
TRR ← 0 ;
Start TRR ; /* count-up timer */
IF TTH > 0 THEN

Start TTH /* count-down timer */
ENDIF;
IF waiting High priority messages THEN:

Execute one High priority message cycle
ENDIF;
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WHILE TTH > 0 AND pending High priority message cycles DO
Execute High priority message cycles
ENDWHILE;
WHILE TTH > 0 AND pending Low priority message cycles DO

Execute Low priority message cycles
ENDWHILE;
Pass the token to station (k + 1) (modulo n);

Figure 1 illustrates a scenario where the ith real token rotation time, as seen by master 4
(T4

RR), corresponds to the time of the network token rotation (none of the stations used the
token to transmit messages). At that ith token visit, master station 4 uses part of its available
token holding time (T4

TH) to transmit two message cycles.

TTR

Master 1

Master 2

Master 3

Master 4

T4
RR (i) available T4

TH (i)

used T4
TH (i)

Instant of token
arrival

Token passing time and
other network latencies

Two message cycles
performed in the ith token
visit to master 4

Fig. 1. Example of Token Usage in a Master

In PROFIBUS, a message cycle consists on a master’s action frame (request or
send/request frame) and the responder’s immediate acknowledgement or response frame.
User data may be transmitted in the action frame or in the response frame. Note however that
in PROFIBUS a master is allowed to send up to a limited number of retries, if the response
does not come within a predefined time. Thus, the message cycle time length must also
include the time needed to process the allowed retries.

2.2. Worst-Case Response Time for High Priority Messages

We consider a bus topology with n PROFIBUS master stations, where a special frame (the
token) circulates around the masters’ logical ring. The logical ring latency (token walk time,
including node latency delay, media propagation delay, etc.) is denoted as τ.

We also consider nhk high priority message streams in each master k. A message stream
corresponds to a temporal sequence of message cycles related, for instance, with the reading
of a process sensor or the updating of a process actuator.

We denote the ith (i = 1, 2, …, nhk) high priority stream associated to a master k as Shi
k. A

high priority message cycle stream Shi
k is characterised as:

( )k
i

k
i

k
i DhChSh ,= (1)
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Chi
k is the maximum amount of time required to perform a Shi

k message. Dhi
k is the

message cycle relative deadline, which is the maximum admissible end-to-end
communication delay. As we do not mean to guarantee deadlines for the low priority traffic,
a low priority message stream Sli

k is merely characterised as:

( )k
i

k
i ClSl = (2)

where Cli
k is the maximum amount of time required to perform a Sli

k message cycle.
In the PROFIBUS MAC protocol, and as far as there are pending high priority messages,

a master station is guaranteed to transmit, at least, one high priority message per received
token (no matter if there is enough token holding time left). Assuming the worst-case
scenario (token always arriving late), if there are m pending high priority messages, it will
take m token visits to execute all those high priority message cycles. It is obvious that the
queuing delay depends on the high priority outgoing queue policy, which in PROFIBUS is a
First-Come-First-Served (FCFS) policy.

For the queuing delay analysis, it is important to note that the maximum number of
pending messages will be nhk, corresponding to one message per each Shi

k stream. Indeed, if
at any time there are two pending message requests of the same stream, then a deadline for
that message stream was missed.

It is now clear that, assuming that message deadlines are not missed (thus the maximum
number of high priority pending messages is nhk), the upper bound for the message queuing
delay in a master k is:

k
cycle

kk TnhQ ×= (3)

where Tk
cycle is the upper bound for the token inter-arrival time at a station k, hence it is the

worst-case real token rotation time (Tk
RR). Theoretically, TTR can be set to a value smaller

than τ. In the limit it can be set to 0. If this is the case, the token will always arrive late to a
master, as TTR will be at least τ. Note also that under our assumptions the queuing delay for a
message request in one station is independent of the message stream (Qi

k = Qk, ∀i=1,.., nhk). For
obvious reasons this does not applies for the definition of the worst-case message response
time, which is:

k
i

k
cycle

kk
i

kk
i ChTnhChQR +×=+= (4)

Defining the end-to-end communication delay as the aggregation of the g (generation
delay), Q (queuing delay), C (transmission delay) and d (delivery delay) components, then,
the deadline of a high priority message cycle is guaranteed if and only if the following
condition is satisfied:

k
i

k
i Sh

k
i

k
cycle

k

Sh

k
i dChTnhgD   ++×+≥ (5)

The main focus of this paper is on the evaluation of the Tk
cycle parameter, which in the

context of this paper is defined as the worst-case time span between any two consecutive
visits of the token to a PROFIBUS master.

3. Previous Relevant Work

The basic idea of the timed token protocol was presented by Grow [10]. In this protocol,
messages are distinguished in two types. One concerns synchronous messages, which are
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periodic messages that come to the system at regular intervals and have delivery time
constraints. The other concerns asynchronous messages, which typically are non-periodic
messages, and have no time constraints. Equivalence to PROFIBUS message types can be
easily drawn: high priority and low priority are equivalent to, respectively, synchronous and
asynchronous messages.

When a network is initialised, all the stations negotiate a common value for the TTR

parameter, which gives the expected token rotation time. The TTR parameter should be
chosen small enough to meet responsiveness requirements of all stations, i.e., the token must
circulate fast enough to satisfy the most stringent timing requirements. Each station is
assigned a fraction of TTR, known as its synchronous capacity (Hi), which is the maximum
time each station is allowed to transmit its synchronous messages, if any, every time it
receives the token. The asynchronous messages can be transmitted, but only if the token has
rotated fast enough, that is, the token is “ahead of schedule” with respect to its target rotation
time.

In the timed token protocol, the time interval between two consecutive token arrivals at a
specific station is upper bounded by 2×TTR and the average token rotation time is no more
than TTR. An intuitive explanation of these two timing properties can be found in [10] and a
formal proof in [13].

In order to guarantee synchronous message deadlines, an upper bound to the token
rotation time is a necessary but not sufficient condition. A node with inadequate synchronous
capacity may be unable to guarantee message deadlines, and, on the other hand, allocating
excess amount of synchronous capacities to the nodes increases TTR, which may also cause
message deadlines to be missed. Therefore, synchronous capacities must be properly
allocated to individual nodes. As a consequence, synchronous capacities allocated to the
nodes must satisfy two constraints [15,16]: a protocol constraint and a deadline constraint.

The protocol constraint states that the total sum of the allocated synchronous capacities
should not be greater that the available portion of TTR, i.e.,

τ−≤∑
=

TR

n

i
i TH

1

(6)

Theoretically, the total available time to transmit synchronous messages, during a
complete token rotation, can be as much as TTR. However, factors such as ring latency and
other protocol or network overheads reduce the total available time and are denoted as τ.

The deadline constraint states that the allocation of synchronous capacities to the nodes
should be such that synchronous messages are always transmitted before their deadlines.

As a result, a message set can be guaranteed by an allocation scheme once the protocol
and the deadline constraints are satisfied. Several allocation schemes have been proposed in
the literature [17-19].

Both FDDI and IEEE802.4 are examples of network protocols based on the timed token
protocol. Upper bounds for the time elapsed between two consecutive token arrivals can be
found in [13] and [14]. These results cannot however be applied to PROFIBUS, as
significant differences to the timed token protocol exist. We consider the following two as
the most relevant ones:

1. In PROFIBUS there is no synchronous bandwidth allocation (Hi). If a station receives
a late token (TRR greater than TTR), only one high priority message may be transmitted.
Contrarily, in the timed token protocol the station can transmit synchronous (high
priority) messages during Hi, even if the token is late.

2. In PROFIBUS, both high priority and low priority message cycles may overrun the
TTH timer. As previously stressed, in PROFIBUS a message cycle can be initiated
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with a residual TTH value and the message cycle will be performed until the end. In
the timed token protocol this only happens with asynchronous (low priority)
messages, as synchronous messages transmission can only be started if they fit within
the time allocated for synchronous transmission.

Concerning the PROFIBUS protocol, in [20] the authors propose the use of the cyclic
services to support real-time communication. In their approach these cyclic services support
the polling of slaves and message deadlines are guaranteed since the token cycle time is
bounded.

The major drawback of their approach is that, in order to evaluate the token cycle time,
nor high priority traffic neither low priority traffic (other than cyclic traffic) are allowed.
This prevents the transfer of event-driven messages of high priority, such as alarms.
Furthermore, remote management services (which in PROFIBUS are mapped into low
priority non-cyclic services) are also not covered by their approach.

In our approach, we propose the use of high priority services to support the real-time
communication, instead of the cyclic low priority services. The major advantage is that the
high priority traffic can be guaranteed, whichever the load of low priority messages.

In the following section, an accurate upper bound for the token cycle time in a
PROFIBUS network supporting all types of traffic is given.

4. PROFIBUS Token Cycle Time Analysis

In PROFIBUS, the real token rotation time (Tk
RR) will always be smaller than TTR, except

when one or more masters in the logical ring induce the token to be late. Two reasons justify
a late token at a master k:

1. As once a message cycle is started, it is always completed, even if Tk
TH has expired

during its execution, a late token may be transmitted to the following stations. We
define this occurrence as a Tk

TH overrun.
2. If a master receives a late token, it will still be able to send one high priority message,

which may further increase the token lateness. This case is not considered to be a Tk
TH

overrun since the Tk
TH timer is only released if the token arrives to the master in

advance.

4.1. Analysis of Token Lateness

In this sub-section, we analyse causes and consequences of the token lateness. We will
introduce and prove three theorems. Theorem 1 states that the token is never late unless a
Tk

TH overrun occurs in one of the masters that form the logical token passing ring. Theorem 2
states that even if more than one master overruns its Tk

TH in a token cycle, only the last one
(as seen from the master for which TRR is being measured) will contribute to the token delay.
Finally, theorem 3 states that, in a specific situation, all masters may contribute to the token
lateness. These three theorems are the basis for the evaluation of Tk

cycle (which represents the
Tk

RR upper bound), later on addressed in sub-section 4.2.

Theorem 1 In PROFIBUS networks, if the master holding the token releases it before the
Tk

TH expiration, then, the following master in the logical ring will receive an
early token.
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Proof:
We denote Ak(l) as the instant when the token arrives to the master k for its lth visit, and

Rk(l) as the instant when master k releases the token that had just made its lth visit to that
master. If master k releases the token before the expiration of Tk

TH then, Rk(l)–Ak(l–1)≤TTR.
Note that the real token rotation time is measured between token arrivals. If the successor of
master k is denoted as k+1 (with k+1=(k+1) mod n), we want to prove that Ak+1(l)–
–Ak+1(l–1)≤TTR, that is, the successor of k will receive an early token. As Ak+1(l–1)=
=Rk(l–1)+τ/n (as τ is the total logical ring latency, k+1 will receive the token τ/n time after the
release of the token in k) and Ak+1(l)=Rk(l)+τ/n then, combining these two expressions, it
gives Ak+1(l)–Ak+1(l–1)=Rk(l–1)–Rk(l). As Rk(l–1)≥Ak(l–1), and as Rk(l)–Ak(l–1)≤TTR (starting
assumption that there is no overrun of the Tk

TH), then Ak+1(l)–Ak+1(l–1)≤TTR stands, i.e., the
successor of k receives an early token.
oo

Figure 2 illustrates theorem 1, where master 2 releases the token before the expiration of
T2

TH(l), and so master 3 receives an early token.
TTR

R2(l-1)A2(l-1)

A3(l-1) R3(l-1) A3(l)

…A2(l)

Master 1

Master 2

Master 3

Master 4

R2(l)

τ/4

message cycles within available TTH token passing and other network latencies

Fig. 2. Illustrative Example for Theorem 1

From theorem 1, two lemmas result.
Lemma 1.1: in PROFIBUS, master k receives an early token, if master k–1 releases it

before the Tk-1
TH expiration, no matter if there were any TTH overrun in masters k–2, k–3, …

Lemma 1.2: in PROFIBUS, if none of the k master stations overrun Tk
TH, the token will

never be late.

Theorem 2 In a PROFIBUS network, in a specific token cycle, only one overrun
contributes to the token lateness.

Proof:
Assume that a token delay is induced in the lth token cycle. Hence the token arrives late in

the next token cycle. Consider the analysis focused on master k, and the measurement of the
time elapsed between Ak(l) and Ak(l+1), that is, between two consecutive token arrivals to
master k (Tk

RR). The masters that may induce a delay in the token are, in sequence of token
holding, the masters k itself until n, in the lth rotation, and masters 1 until k–1 in the (l+1)th

rotation, if k<>1, or simply masters k until n in the lth rotation, if k=1. For simplification of
this proof we assume that k =1. In this case, the last master, before the (l+1)th visit of the
token to master 1, which may produce an overrun of the TTH, is master n, hence an overrun in
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Tn
TH. If in the lth visit to master n a Tn

TH overrun occurs, then An(l)–An(l–1)≤TTR, that is, the
token arrived early to master n. If we denote βn(l) as the time instant when Tn

TH expires
during the lth visit to master n, then, as An(l)>An(l–1), β n(l)–Ak(l)≤TTR, no matter if other
overruns have occurred in the lth rotation of the token in any of the predecessors of master n.
Thus, only one overrun may contribute to the token lateness.
oo

Figure 3 illustrates theorem 2, where n is set to 4 and k is set to 1. In this illustrative
example, two overruns occurred in the lth token rotation (both in masters 1 and 4). Only the
last one before A1(l+1) contributes to the token lateness in master 1, that is, the one occurred
in master 4.

TTR

Master 1

Master 2

Master 3

Master 4

≤ TTR

TTR

A2(l-1) A2(l)

A1(l-1) A1(l) A1(l+1)

A4(l-1) A4(l)

β4(l)

τ/4

overrun of TTH high priority message sent with a delayed token

message cycles within available TTH token passing and other network latencies

Fig. 3. Illustrative Example for Theorem 2

Theorem 3 If a PROFIBUS master k holds the token for an interval greater than TTR – τ,
all the following masters up to master k–1 will receive a late token.

Proof:
Due to the token passing time and other network latencies, it results that

Ak(l)–Ak+1(l–1)≥((n–1)/n)×τ. That is the difference between the token arrival to a master k
and the token arrival to its successor in the previous token cycle is at least (n–1)/n×τ
(corresponding to n-1 token passing times). Ak(l)–Ak+1(l–1)≥((n–1)/n)×τ can be re-written as
Ak+1(l–1)≤Ak(l)–((n–1)/n)×τ. As master k holds the token for an interval greater than TTR–τ,
then Rk(l)>Ak(l)+TTR–τ. It is also evident that the arrival of the token to station k+1 occur at
Ak+1(l)=Rk(l)+τ/n, that is at the time the token is released in k added with the time to pass the
token to k+1. Thus, if we replace Rk(l) in the equation (Ak+1(l)=Rk(l)+τ/n) with the inequality
Rk(l)>Ak(l)+TTR–τ, it results that Ak+1(l)>Ak(l)+TTR–((n–1)/n)×τ. Hence, using this last
inequality and knowing that Ak(l)–Ak+1(l–1)≥((n–1)/n)×τ ⇔ Ak+1(l–1)≤Ak(l)–((n–1)/n)×τ, it
results that Ak+1(l)–Ak+1(l–1)>Ak(l)+TTR–((n–1)/n)×τ–Ak(l)+((n–1)/n)×τ=TTR.
oo

Figure 4 illustrates theorem 3, where k is set to 1.
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TTR

Master 1

Master 2

Master 3

Master 4

Token Lateness (T1
del)

A1(l-1)
A1(l) R1(l)

A2(l-1) A2(l)

τ/4

overrun of TTH high priority message sent with a delayed token

message cycles within available TTH token passing and other network latencies

Fig. 4. Illustrative Example for Theorem 3

4.2. Tk
cycle as an Upper Bound for Tk

RR

Using theorem 3, we can define the token lateness in a master k (Tk
del) as the maximum

excess to TTR of a token arrival to the master k. The maximum time elapsed between two
consecutive token arrivals to a master k (Tk

cycle) is then given by:

k
delTR

k
cycle TTT += (7)

Assuming for simplification that all the message cycle durations are equal to Cσ then, the
worst-case token lateness in a master k would result from the simultaneous occurrence of the
three following conditions:

1. the actual token holding time is greater than TTR – τ.
2. master k itself causes an overrun, starting  with a residual value of Tk

TH.
3. all following masters (until the master k–1) transmit, each one, one high priority

message cycle, having received a late token.
Observed these three conditions, in the next token cycle, Tk

RR reaches its upper bound,
which is Tk

cycle. In the case of equal length for all the message stream cycles, Tk
del=n×Cσ, and

thus:

kmasterTR
k

cycle CnTT    , ∀×+= σ
(8)

In the general case (message cycles with different length), the worst-case token lateness
may result not from an overrun in the master k but from one occurring in one of the
following masters (k+1 until k–1).

Using figure 5 as an illustrative example, assume that master 1 do not overruns its T1
TH.

Then, master 2 may use its available token holding time and produce a T2
TH overrun. If this

T2
TH overrun is longer than the sum of the maximum T1

TH overrun in station 1 with the
longest Ch2

i, then this would led to a higher value for T1
del (figure 5). Similarly, if the

maximum T3
TH overrun is longer than the sum of the maximum T2

TH overrun and the longest
Ch3

i, then this would led to a higher value for T1
del. Note that by theorems 2 and 3, for the
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token lateness evaluation in master k, one must only consider one overrun in station j (from k
to k–1) and one high priority message cycle per each station whose address is between j and
station k–1.

TTR

Master 1

Master 2

Master 3

Master 4

Token Lateness (T1
del)

A1(l-1) A1(l) R1(l)

A2(l-1) A2(l)

TTR

Master 1

Master 2

Master 3

Master 4

Token Lateness (T1
del)

A1(l-1) A1(l) R1(l)

A2(l-1) A2(l)

TTR

R2(l)

τ/4

overrun of TTH high priority message sent with a delayed token

message cycles within available TTH token passing and other network latencies

Fig. 5. Comparison between Two Overrun Situations

Basically, we can conclude that Tk
cycle depends on which master produces the worst-

-case overrun and on its relative position in the logical ring.
For the Tk

del evaluation, we introduce the following parameters: Hk, Lk and Ak. Hk is the
longest high priority message cycle transfer requested by a station k:

{ }k
i

nhi

k ChH
k,..,1

max
=

= (9)

Lk is the longest low priority message cycle transfer requested by a station k:

{ }k
i

nli

k ClL
k,..,1

max
=

= (10)
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Finally, Ak is the longest message cycle transfer requested by a station k (including both
types of message cycles):

{ }kkk LHA ,max= (11)

Using the analysis outlined in this section, we can thus define the maximum token
lateness in a PROFIBUS master station k (Tk

del) as being:
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where φ1 is defined as
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Finnaly, the worst-case token cycle time in a PROFIBUS fieldbus network is:
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We can now re-write the deadline condition (5) as follows:
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Therefore, the following condition for setting the TTR parameter can be used:

k
i

k
i

Shstreamkmaster

k
delk

Sh

k
i

k
i

TR T
nh

ChDh
T

   , 
 ,0 ∀−

−−
≤≤

δ (17)

where δ aggregates both the generation and delivery delays of message stream.

5. Numerical Examples

Consider a PROFIBUS network scenario with 3 masters, each one with the following
message streams:

Table 1. Numerical Example

Master Station 1 Master Station 2 Master Station 3
Ch1

1=8 ms Ch1
2=8 ms Ch1

3=8 ms
Ch2

1=6 ms Ch2
2=15 ms Ch2

3=18 ms
Ch3

1=7 ms - -
Cl1

1=10 ms Cl1
2=30 ms -

- Cl2
2=18 ms -
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For this numerical example, the results for each Tk
del are (using 12):

Table 2. Tk
del Evaluation for the Numerical Example

Master Station 1 Master Station 2 Master Station 3
H1=8 ms H2 = 15 ms H3 = 18 ms
A1=10 ms A2 = 30 ms A3 = 18 ms

T1
del=A2+H3=48 ms T2

del=A2+H3+H1=58 ms T3
del=A3+H1+H2=41 ms

For simplification, assume that the generation and delivery delays correspond to 10% of
the message cycle length. Consider also that τ = 1 ms. If we assume that the minimum value
for TTR should be marginally greater than τ (otherwise low priority traffic would not be
transferred at all and, as it will be clarified later, hence the Tk

cycle evaluation would be
different), then (17) can be re-written as:
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Then, to evaluate the shortest value for each message's deadline we have:
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which can be re-written as:
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Using (20), the minimum deadline supported for each high priority stream of table 1
scenario is as shown in table 3.

Table 3. Minimum Admissible Deadlines for TTR = τ

Master Station 1 Master Station 2 Master Station 3
Dh1

1>155.8 ms Dh1
2>126.8 ms Dh1

3>103.8 ms
Dh2

1>153.6 ms Dh2
2>134.5 ms Dh2

3>103.8 ms
Dh3

1>154.7 ms - -

From (16), it is obvious that TTR can be set as small as 0. Note however, as previously
mentioned, that if this is the case, the low priority traffic would not be transferred at all.
Notably, in this non-realistic situation, low priority traffic would not be considered for the
evaluation of Tk

del. If TTR is smaller than τ, then (21) must be used to evaluate each Tk
cycle,

instead of (12):

∑
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which means that all Tk
cycle would have the same value in all masters. Using the same table 1

scenario, each Tk
cycle would then be:
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Table 4. Tdel Computations for the Numerical Example, with TTR = 0

Master Station 1 Master Station 2 Master Station 3
H1=8 ms H2=15 ms H3=18 ms

T1
del=41 ms T2

del=41 ms T3
del=41 ms

and the minimum deadline supported for each high priority stream, would be as shown in
table 5.

Table 5. Minimum Admissible Deadlines for TTR = 0

Master Station 1 Master Station 2 Master Station 3
Dh1

1>134.8 ms Dh1
2>92.8 ms Dh1

3>103.8 ms
Dh2

1>132.6 ms Dh2
2>100.5 ms Dh2

3>103.8 ms
Dh3

1>133.7 ms - -

6. Conclusions

In this paper, we have drawn a comprehensive study on how to use PROFIBUS to support
real-time communications in distributed computer-controlled systems. The major
contribution is to provide an accurate evaluation of the maximum PROFIBUS token cycle
time, considering that all types of traffic are allowed, whereas in previous related works
relevant traffic types were not considered. The relevance of this result is paramount as it is
the basis for the setting of the TTR parameter in PROFIBUS networks in order to guarantee
messages’ timing requirements.

We have shown that the maximum token cycle time is a consequence of the overrun of the
token holding timer in a mater station and how such overrunning impacts the cycle time
properties of the PROFIBUS timed token protocol.
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