
Comparing the performance of mobile agent systems: a study
of benchmarking

L.M. Silva* , G. Soares, P. Martins, V. Batista, L. Santos

Departamento Engenharia Informa´tica, Universidade de Coimbra, Polo II, Vila Franca, 3030—Coimbra, Portugal

Abstract

In the past few years there has been an enthusiastic interest in mobile agent technology and several platforms have been developed. Some
of them have only been used for research purposes while others have been deployed as commercial products. The community is now looking
for applications where these platforms can be effectively used. Some comparisons about the functionality of some mobile agent systems have
been presented in the literature. However, to the best of our knowledge, there has been no reported study that compares the real performance
of the platforms.

In this paper, we present the first results of an experimental study that compares the performance of eight Java-based Mobile Agent
systems: Aglets, Concordia, Voyager, Odyssey, Jumping Beans, Grasshopper, Swarm andJames. This study presents some insights about the
performance and the robustness of each platform.q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Mobile agents; Performance; Benchmarking

1. Introduction

Mobile agents is an emerging technology that is gaining
momentum in the field of distributed computing. The use of
mobile agents can bring some interesting advantages when
compared with traditional client/server solutions [1]: it can
reduce the traffic in the network, it can provide more
scalability, it allows the use of disconnected computing
and it provides more flexibility in the development and
maintenance of the applications.

In the latest years, several commercial implementations
of mobile agent systems have been presented in the market,
including Aglets from IBM, Concordia from Mitsubishi,
Voyager from ObjectSpace, Odyssey from General Magic,
Jumping Beans from AdAstra and Grasshopper from IKV.

We have also been developing a Java-based platform,
calledJames, in a cooperating project between the Univer-
sity of Coimbra and Siemens (Eureka ProjectS!1921) [2].
This platform is mainly oriented for telecommunications
and network management. In this target field the perfor-
mance of the applications plays a very important role,
together with fault-tolerance, resource-control and security.
The platform has been developed from scratch and, together

with our industrial partners (Siemens), we are now working
on the implementation of three agent-based applications:
one in the area of performance management, other for
system integration in mobile networks and a third one for
data network management.

However, some assertive questions have been made by
our project partners: what is the performance of the existing
mobile agent platforms? What is their level of dependabil-
ity? How robust will be the applications that use this tech-
nology? What are the benefits of the mechanisms that have
been introduced in theJames platform? How this platform
compares with the other ones?

To answer some of these questions we have conducted an
experimental study of benchmarking. In this paper, we will
present some results that compare the performance of eight
Java-based mobile agent systems and we will take some
conclusions about its run-time behaviour. To the best of
our knowledge this is the first study that has been reported
about the performance of mobile agent systems. Although
performance is not the main issue to decide about a
particular platform it has its relevance when companies
decide to deploy some production codes that make use of
this technology.

The rest of the paper is organized as follows. Section 2
presents a brief overview of the platforms that have been
selected for our study. Section 3 describes the methodology
of our benchmarking study, while Section 4 presents some
of the most relevant results. Section 5 gives some conclusions

Computer Communications 23 (2000) 769–778

0140-3664/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(99)00237-6

www.elsevier.com/locate/comcom

* Corresponding author. Tel:1 351-39-790090; fax:1 351-39-701266.
E-mail addresses:luis@dei.uc.pt (L.M. Silva), fsoares@dei.uc.pt

(G. Soares), pmartins@dei.uc.pt (P. Martins), vbatista@dei.uc.pt
(V. Batista), lsantos@dei.uc.pt (L. Santos).



about the obtained results. Section 6 presents some final
remarks.

2. Brief description of the platforms

In our study we have selected eight different mobile agent
platforms. All of them were written in Java. There are
several reports in the literature about the functionality of
some of these platforms. In Ref. [3] is presented an
extensive comparison between the features of Voyager,
Odyssey, Aglets and Concordia. Kiniry and Zimmerman
[4] have presented a direct comparison between Odyssey,
Aglets and Voyager. In Ref. [5] is presented another
comparison of agent system features that includes Aglets,
Voyager, Odyssey and Kafka. In Ref. [6] is presented a
comprehensive review about three platforms: Aglets,
Voyager and Odyssey. Another extensive evaluation has
been presented in Ref. [7]. This one included more
platforms: D’Agents, April, Aglets, Grasshopper, Odyssey
and Voyager.

These reports only focus in the list of features of each
platform and present some conclusions about the overall
functionality of the platforms. However, no performance
results have been reported so far. Next, we will present a
short description about each platform.

2.1. Aglets SDK

The Aglets Software Developer Kit (ASDK) was devel-
oped at the IBM Research Laboratory in Japan. The first
version was released in 1996. ASDK requires the JDK 1.1
or higher to be installed. The migration of Aglets is based on
a proprietary Agent Transfer Protocol (ATP). The ASDK
run-time consists of the Aglets server and a visual agent
manager, called Tahiti. There is an additional module of
software, called Fiji, that allows the installation of an Aglets
server on a HTTP-browser. The ASDK provides a modular
structure and an easy-to-use API for the programming of
Aglets. This platform has extensive support for security and
agent communication and provides an excellent package of
documentation. In our experiments we have used ASDK
1.0.3. More details about Aglets SDK can be obtained in:
http://www.trl.ibm.co.jp/aglets/

2.2. Concordia

Concordia has been developed by Mitsubishi Electric. It
requires the JDK 1.1 or higher to be installed. This platform
provides a rich set of features, like support for security,
reliable transmission of agents, access to legacy applica-
tions, inter-agent communication, support for disconnected
computing, remote administration and agent debugging.
This system also provides good documentation. In our
experiments we have used version 1.1.2 of Concordia.
More details about Concordia can be obtained in: http://
www.meitca.com/HSL/Projects/Concordia/

2.3. Voyager

Voyager is an object request broker with support for
mobile objects and autonomous agents. It was developed
by ObjectSpace. It requires the JDK 1.1 or higher to be
installed. The agent transport and communication is based
on a proprietary ORB on top of TCP/IP. Voyager has a
comprehensive set of features, including support for agent
communication and agent security. Voyager provides
support for Corba and RMI. Due to its dynamic proxy
generation these technologies can be used without the
need for stub generators. Thereby, Voyager objects can be
used as Corba objects. In our experiments we have used
version 3.0 beta of Voyager. More details about Voyager
can be obtained in: http://www.objectspace.com/products/
voyager/

2.4. Odyssey

Odyssey is a Java-based mobile agent system from
General Magic. It requires JDK1.1 or higher to execute.
The platform has a transport-independent API that work
with Java RMI, IIOP and DCOM. Odyssey provides the
basic functionality and a small set of features. Currently, it
is not clear if General Magic will continue the efforts in this
platform. In our experiments we have used version 1.0 beta
2 of Odyssey. More details about Odyssey can be obtained
in: http://www.genmagic.com/technology/odyssey.html

2.5. Jumping Beans

The Jumping Beans platform is commercially distributed
by AdAstra, a Silicon Valley company. It requires JDK
1.1.2 or higher to execute. The main strengths of this
platform include the support for security, agent manage-
ment, easy integration with existing environments and a
small footprint. However, this platform uses a client/server
approach for the agent migration: if an agent wants to
migrate between two Agencies it has to go first to the
Agent Manager. This approach may represent a point of
bottleneck in large-scale applications. In our experiments
we have used version 1.0.4 of Jumping Beans. More
details about this platform can be obtained in: http://
www.JumpingBeans.com/

2.6. Grasshopper

Grasshopper is the first mobile agent platform that is
MASIF-compliant. It is distributed commercially by
IKV 11, a company from Berlin. The entire platform is
implemented in Java and requires JDK 1.1 or higher to be
installed. Grasshopper supports several transport protocols
by the use of an internal ORB: a proprietary protocol based
on TCP/IP, Java RMI, Corba IIOP, MAF IIOP, TCP/IP with
SSL and RMI with SSL. The platform support comprehen-
sive support for security, agent communication and agent
persistency. In our experiments we have used the release 1.2

L.M. Silva et al. / Computer Communications 23 (2000) 769–778770



of the light edition of Grasshopper. More details about this
platform can be obtained in: http://www.ikv.de/products/
grasshopper/

2.7. Swarm

The Swarm platform is being developed by one research
centre of Siemens A.G. (ZT SW 2, Munich). It is based on
version alpha 1.0 of the Mole platform, from the University
of Stuttgart, Germany. Swarm is not a commercial product;
it is being mainly used by the ACTS AMASE Project to
provide a middleware for mobile applications in wireless
networks. Swarm provides an extensive support for inter-
agent communication and agent management. In our experi-
ments we have used version 1.0 of Swarm. More details
about this platform can be obtained in Ref. [8].

2.8. James

TheJames platform has been developed by the University
of Coimbra (Portugal) in cooperation with Siemens S.A.
This platform is mainly oriented for telecommunications
and network management.James is not a commercial
product. It requires JDK 1.1.1 or higher to execute. The
main strengths of this platform include the following
features: efficient code migration, support for fault-
tolerance, integration with SNMP, mechanisms for resource
control, flexible code upgrading, disconnected computing
and agent management. TheJames platform has been
enhanced with a set of mechanisms to optimize the migra-
tion of mobile agents, including caching techniques, code
prefetching, protocol optimizations, recycling of threads
and sockets. More details about these techniques can be
found in Ref. [9]. In our experiments we have used version
1.0.3 of James. More details about our platform can be
obtained in Ref. [2] or in the following web site: http://
james.dei.uc.pt/james

In the next section we present the methodology of the
benchmarking study, a description of the test environment,
the test parameters and the benchmark application.

3. Conditions for the benchmarking study

3.1. Test environment

In our experiments we have used a dedicated cluster of six
machines connected through a 10 Mb/s switched Ethernet.
All the results were taken when the machines were fully
dedicated. Every machine has a Pentium II (300 MHz)
processor and 128 Mb of RAM. These machines were
running Microsoft Windows NT 4.0 and all the mobile
agent platforms have used JDK 1.1.6 with the JIT option.

3.2. Application benchmark

In all the experiments that will be presented in this paper
we have used eight variations of the same benchmark appli-

cation. The benchmark application is composed by a single
agent. The agent’s mission is to run across the network
through a closed itinerary, which we call a “lap”, to produce
a report about the current memory usage of each machine in
the network.

In all the experiments that will be presented in this paper
we have used a simple benchmark application, composed by
a migratory agent that roams the network to get a report
about the current memory usage of each machine. This
application has been written in eight different versions for
all those platforms.

3.3. Test parameters

In our experiments we have changed some of the applica-
tion and platform parameters, namely the number of
Agencies, the number of laps performed by the agent, the
agent size and the use of caching and prefetching techni-
ques. This way, we have made tests with 1, 3 and 5
Agencies. The number of itinerary laps performed by the
agent has been changed between 1, 10 and 100. The size of
additional data that was carried by the mobile agent has
been set to none, 100 Kb and 1 Mb. The size of the serial-
ised object with no additional data was around 1 Kb. When
the agent’s code was unknown at the destination it must be
downloaded from the code server of the platform. Thejar
file with all the agent code was around 3.66 Kb.

3.4. Methodology of the benchmarking

All the platforms have been tested in the same conditions,
using the same application, the same test parameters, the
same agent itinerary and the same configuration. Before
every set of tests all the machines of the cluster were
rebooted for operating system rejuvenation. The Agencies
were also restarted before each experiment, except for those
cases where we wanted to measure the effect of code
caching. We tried to make all the tests with the Agent
Manager running uninterruptedly. Some platforms were
not able to survive to some situations of stress-testing and
the Agent Manager had to be restarted when failed. All the
experiments were repeated at least four times and the
standard deviation was within 5% of the average values.

4. Experimental results

The benchmark application was executed in all those
eight platforms by changing all the test parameters (number
of Agencies; number of laps; agent data size; caching
mode). We have measured two main metrics: performance
of the application and network traffic. For lack of space we
will only present the most relevant results, corresponding to
12 experiments. During this study we were also able to
evaluate some robustness level of the platforms in some
situations of stress testing. We will present some insights
about this issue in section of conclusions.

L.M. Silva et al. / Computer Communications 23 (2000) 769–778 771



4.1. Results of performance

4.1.1. Experiment #1
In this experiment we have measured the execution time

of all the eight platforms when using the following
parameters for the system and the application: (1 Agency;

1 lap; data size� none; no caching). The results are
presented in Fig. 1.James, Odyssey and Swarm present
the best results for this small size agent. Jumping Beans is
the slower platform: for instance, in this case it executed 5
times slower thanJames. When using the caching mechan-
ism the difference was even higher: Jumping Beans was 48

L.M. Silva et al. / Computer Communications 23 (2000) 769–778772

Number of Agencies: 1

Laps: 1 (No Cache)

Agent Data Size: None

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

S
e
c
o
n
d
s

James

Sw arm

Odyssey

Grashopper

Voyager

Concordia

Aglets

Jumping Beans

James 0.64

Sw arm 0.78

Odyssey 0.85

Grashopper 1.25

Voyager 1.28

Concordia 1.33

Aglets 1.49

Jumping Beans 3.53

Execution Time

Fig. 1. Execution time with 1 Agency, 1 lap, no data size, and no caching.

Number of Agencies: 1
Laps: 1 (No Cache)
Agent Size: 100 Kb

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

S
e
c
o
n
d
s

James

Odyssey

Sw arm

Grashopper

Voyager

Aglets

Concordia

Jumping Beans

James 0,70

Odyssey 0,89

Sw arm 1,01

Grashopper 1,47

Voyager 1,67

Aglets 1,73

Concordia 2,56

Jumping Beans 5,90

Execution Time

Fig. 2. Execution time with 1 Agency, 1 lap, data size� 100 Kb, and no
caching.

Number of Agencies: 1
Laps: 1 (No Cache)
Agent Size: 1 Mb

0,00

0,50

1,00

1,50

2,00

2,50

S
e
c
o
n
d
s

Odyssey

James

Sw arm

Grashopper

Aglets

Voyager

Concordia

Jumping Beans

Odyssey 1,17

James 1,22

Sw arm 1,88

Grashopper 2,19

Aglets 2,35

Voyager 2,37

Concordia

Jumping Beans

Execution Time

Fig. 3. Execution time with 1 Agency, 1 lap, data size� 1 Mb, and no
caching.



times slower thanJames. The results with caching are not
presented in Fig. 1.

4.1.2. Experiment #2
In this experiment we have increased the size of the agent

to 100 Kb. The results are presented in Fig. 2. The results
were quite similar:James, Odyssey and Swarm present the
best results while Jumping Beans presented the worst
results, being 8 times slower thanJames.

4.1.3. Experiment #3
In this third experiment we have increased the size of the

agent to 1 Mb. The results are presented in Fig. 3. In this
case, it was interesting to observe that Odyssey andJames
presented the best results. However, the most important
result was the fact that two of the platforms crashed in
this test: Jumping Beans and Concordia.

4.1.4. Experiment #4
In this experiment we have used 5 Agencies and we only

have results for seven platforms since the evaluation copy
we had from Jumping Beans only executed in three platform
servers. This test was done without using the caching
mechanisms of the platforms and measured the impact of
using the code prefetching techniques that we have imple-
mented in theJames platform. The results are presented in
Fig. 4.

As can be seen in Fig. 4, the version that uses code
prefetching achieved the best results: it was 2 times faster
than the version ofJames without prefetching and it was 4
times faster than the Aglets SDK.

4.1.5. Experiment #5
In this experiment we executed the benchmark applica-

tion in 5 Agencies of the dedicated network. We exploited
the caching mechanisms of the platforms by running
previously the application into those Agencies. The results
are presented in Fig. 5. Odyssey, Voyager,James and
Swarm were faster than the other three platforms.

4.1.6. Experiment #6
In this experiment we did not use caching and the size of

the agent was increased by 1 Mb. With this agent size the
Concordia system always crashed. The best results were
achieved with theJames platform and using the code
prefetching scheme. As can be seen in Fig. 6, this version
was 3 times faster than Aglets SDK and the Grasshopper
platform.

4.1.7. Experiment #7
This experiment was similar to the previous, but this time

we exploited the use of memory caching by the platforms.
When there is caching the use of code prefetching makes no
sense. Once again, the Concordia system was not able to
execute the application with a mobile agent of (,) 1 Mb.
The results are presented in Fig. 7 and show that Odyssey
and James achieved the best results. In this experiment,
Grasshopper was the slowest platform.

4.1.8. Experiment #8
This experiment departs from the previous ones: this time

L.M. Silva et al. / Computer Communications 23 (2000) 769–778 773

Number of Agencies: 5
Laps: 1 (No Cache)
Agent Data Size: None

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

S
ec

o
n

d
s

James (Pref.)

James

Swarm

Odyssey

Concordia

Grashopper

Voyager

Aglets

James (Pref.) 1,57

James 3,17

Swarm 3,46

Odyssey 4,11

Concordia 4,78

Grashopper 5,37

Voyager 5,49

Aglets 7,10

Execution Time

Fig. 4. Execution time with 5 Agencies, 1 lap, no data, and no caching.

Number of Agencies: 5
Laps: 1 (Memory Cache)
Agent Data Size: None

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

S
ec

o
n

d
s

Odyssey

Voyager

James

Swarm

Grashopper

Concordia

Aglets

Odyssey 0,15

Voyager 0,19

James 0,20

Swarm 0,25

Grashopper 0,90

Concordia 1,10

Aglets 1,24

Execution Time

Fig. 5. Execution time with 5 Agencies, 1 lap, no data, but using caching.



the agent had to execute 10 laps in the itinerary of 5
Agencies. Increasing the number of laps allowed us to
observe the behaviour of the caching mechanisms and the
way the platforms recycle the communication channels that

are used by the mobility sub-system. We started by using an
agent with small size. The results are presented in Fig. 8.

The performance ofJames was still the best one, although
with minimal differences to Swarm, Odyssey and Voyager.

L.M. Silva et al. / Computer Communications 23 (2000) 769–778774

Number of Agencies: 5
Laps: 1 (No Cache)
Agent Size: 1 Mb

0,00

2,00

4,00

6,00

8,00

10,00

12,00

S
e
c
o
n
d
s

James (Pref.)

James

Odyssey

Sw arm

Voyager

Aglets

Grashopper

Concordia

James (Pref.) 3,00

James 4,62

Odyssey 5,48

Sw arm 7,30

Voyager 7,60

Aglets 9,99

Grashopper 10,48

Concordia

Execution Time

Fig. 6. Execution time with 5 Agencies, 1 lap, data size� 1 Mb, and no
caching.

Number of Agencies: 5
Laps: 1 (Memory Cache)
Agent Size: 1 Mb

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

S
e
c
o
n
d
s

Odyssey

James

Aglets

Sw arm

Voyager

Grashopper

Concordia

Odyssey 1,02

James 1,09

Aglets 2,70

Sw arm 2,74

Voyager 3,39

Grashopper 5,91

Concordia

Execution Time

Fig. 7. Execution time with 5 Agencies, 1 lap, data size� 1 Mb, but using
caching.

Number of Agencies: 5
Laps: 10
Agent Data S ize: None

0,00

5,00

10,00

15,00

20,00

25,00

S
ec

o
n

d
s

James (Pref.)

James

Swarm

Odyssey

Voyager

Aglets

Grashopper

Concordia

James (Pref.) 4,04

James 5,43

Swarm 5,71

Odyssey 6,34

Voyager 6,99

Aglets 12,07

Grashopper 13,20

Concordia 19,53

Execution Time

Fig. 8. Execution time with 5 Agencies, 10 laps, no additional data.

Number of Agencies: 5
Laps: 10
Agent Size: 1 Mb

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

S
e
c
o
n
d
s

James (Pref.)

James

Odyssey

Aglets

Sw arm

Voyager

Grashopper

Concordia

James (Pref.) 13,41

James 15,27

Odyssey 16,06

Aglets 30,56

Sw arm 32,29

Voyager 34,60

Grashopper 59,30

Concordia

Execution Time

Fig. 9. Execution time with 5 Agencies, 10 laps, data size� 1 Mb.



Nevertheless, when we used the prefetching schemeJames
was 5 times faster than Concordia.

4.1.9. Experiment #9
This experiment was similar to the previous one, but this

time we increased the agent size by 1 Mb. Once again the
Concordia system was not able to execute the application

without crashing.James and Odyssey were reasonably
faster than the other platforms. Once again, Grasshopper
was the slowest platform. The results are shown in Fig. 9.

4.1.10. Experiment #10
In this final experiment for the execution time we have

done some stress testing of the platforms, by using a mobile
agent of about 1 Mb and running it 100 laps over the
itinerary of 5 Agencies. The results are presented in Fig. 10.

Two of the platforms, Concordia and Swarm, were not
able to execute this agent without crashing. Odyssey and
James were the fastest platforms, while Grasshopper was
the slowest one. It was 5 times slower than the Odyssey
system.

4.2. Measuring the network traffic

4.2.1. Experiment #11
In this experiment we measured the whole traffic in the

network that is imposed by the application and the platform
protocols. These results were collected by using a network
sniffer (Sniffer Pro). This metric is useful to evaluate the
degree of optimization that was introduced in the mobility
sub-system and the network overhead that is introduced by
the protocols. Fig. 11 presents the first results that were
taken with 5 Agencies. The agent had no additional data
and executed 1 lap in its itinerary without making use of
caching. The network traffic is represented in Kbytes.

As can be seen theJames platform introduces a small
amount traffic in the network, when compared with the
other platforms. This shows some benefits from the optimi-
sations we have in the platform protocols. The version of

L.M. Silva et al. / Computer Communications 23 (2000) 769–778 775

Number of Agencies: 5
Laps: 100
Agent Size: 1 Mb

0,00

100,00

200,00

300,00

400,00

500,00

600,00

S
e
c
o
n
d
s

Odyssey

James (Pref.)

James

Aglets

Voyager

Grashopper

Concordia

Sw arm

Odyssey 108,62

James (Pref.) 120,91

James 122,12

Aglets 205,64

Voyager 284,02

Grashopper 497,94

Concordia

Sw arm

Execution Time

Fig. 10. Execution time with 5 Agencies, 100 laps, data size� 1 Mb.

Number of Agencies: 5
Laps: 1 (None)
Agent Data Size: None

0,00

50,00

100,00

150,00

200,00

250,00

K
b

James

James (Pref.)

Swarm

Odyssey

Voyager

Aglets

Concordia

James 45,84

James (Pref.) 48,67

Swarm 103,59

Odyssey 117,15

Voyager 128,55

Aglets 135,84

Concordia 210,01

Total Traffic

Fig. 11. Network traffic (in Kb) with 5 Agencies, 1 lap, and no additional data.



James that used code prefetching imposed more traffic than
the other version due to the additional messages that are
necessary to implement that scheme. Concordia was the
platform that introduced more traffic in the network.

4.2.2. Experiment #12
In the second experiment of this series, we have also used

5 Agencies, a small size agent that runs one lap of its
itinerary. However, we activated the use of caching in all
the platforms, to reduce some of the network traffic due to
the distribution of code. The results are shown in Fig. 12. In
this situation,James was still the platform that introduced
the smallest amount of traffic in the network. Voyager and
Swarm presented similar results. Odyssey, Aglets and
Concordia were the platforms that introduced more traffic.

5. Conclusions about the results

In this section, we will present some conclusions about
the behaviour of each platform in this benchmarking study.
We will also relate some facts that have been observed
during the execution of the tests. All the following opinions
should not be understood as free criticism, but rather as
some feedback to the platform developers to improve
some weak points of their systems. The normal
reader should be also interested to know about the real
performance, the robustness, the good points and the weak
points of these platforms.

5.1. Aglets

Aglets SDK is probably the most famous platform of
mobile agents. The results show that it is quite a robust
platform and it has passed all the tests without crashing.
The performance is not so good when compared with
other platforms. For instance, theJames platform is 2–14
times faster than Aglets, depending on the test cases. The
caching mechanisms seem to be not so efficient. We have
done some profiling experiments where we detected there is
some garbage left in the memory of the Agencies. This
memory leak can lead to a deterioration of the performance
of the application over time.

5.2. Concordia

Concordia is another well-known platform. Unfortu-
nately, the results show that this platform is not very robust
in situations of stress testing. We could not run the bench-
mark with a big size agent (,1 Mb) since it always gave an
OutOfMemoryerror. Although the Agency did not hang up
at the first time the GUI interface crashed every time we
tried to create a second agent of that size. The garbage
collection within the platform is also not done in appropriate
way and there is a big deterioration in the execution of
agents when we perform some consecutive experiments.
Performance is another weak point of Concordia, as can
be seen by the results presented. This platform is also the
one that generated more network traffic.

L.M. Silva et al. / Computer Communications 23 (2000) 769–778776

Number of Agencies: 5
Laps: 1 (Memory Cache)
Agent Data Size: None

0,00

20,00

40,00

60,00

80,00

100,00

120,00

K
b

James

Voyager

Swarm

Odyssey

Aglets

Concordia

James 17,66

Voyager 28,38

Swarm 31,90

Odyssey 95,10

Aglets 109,25

Concordia 111,12

Total Traffic

Fig. 12. Network traffic (in Kb) 5 Agencies, 1 lap, but making use of caching.



5.3. Voyager

Voyager is a commercial platform with hundreds of users.
The performance results are not brilliant, and we can say
this platform is in the middle of the table. However, there
are some issues related with some lack of robustness of this
platform. Some times we got theOutOfMemoryerror and
the platform crashed completely. There were some test
cases that could not be done at any time. It is important to
notice that this situation happened with big size agents
(,1 Mb) but also with the small size agents. The platform
produces a big amount of network traffic when not making
use of the caching mechanism.

5.4. Odyssey

Odyssey is the Java-based successor of Telescript. The
results have shown that this platform is very robust: it did
not crash in any test we have made. The performance is also
very good and it presented the best execution times, together
with James. The only drawbacks we found was some lack of
functionality and the absence of graphical interface for the
management of the application and the launching of mobile
agents.

5.5. Jumping Beans

The evaluation copy we had from Jumping Beans only
allows the execution with three machines. The number of
tests we could perform was therefore quite limited.
However, those tests were enough to conclude that this
platform has really a poor performance. In some cases, it
was 40 times slower than the other platforms. The reason for
this poor performance is simple: every time a mobile agent
wants to migrate from machine A to machine B it has to go
first to the Agent Manager. This Manager is a point of
bottleneck and the platform is not scalable. The platform
is also not very robust in situations of stress testing: for
instance, it was not possible to execute the big size agent
(,1 Mb) without giving anOutOfMemoryerror.

5.6. Grasshopper

This platform has a very user-friendly graphical interface
and a comprehensive set of features. In fact, this is the
platform that presents the higher functionality. However,
the performance of Grasshopper is not very good: it was
2–5 times slower than theJames platform. Version 1.2 of
the platform had some minor bugs and some problems of
robustness. However, most of them have corrected in a
recent release (v1.2.2).

5.7. Swarm

This platform presented some problems of stability,
although it can have some good performance results. The
platform seems to open a channel between all the Agencies.

If some of these channels are not well established at the
beginning of the execution, the agent’s migration can not
be done properly and the application hangs up. This
situation has happened several times, showing that there
are some problems to be solved in this system. The GUI
interface is a bit confusing and crashes periodically. The
platform also had some problems when using big size
agents: it crashed very often and had to be completely
rebooted.

5.8. James

The James platform was devised and implemented with
performance and robustness in mind. Several mechanisms
have been introduced to optimize the migration of mobile
agents (see Ref. [9]) and the platform has been enhanced
with comprehensive support for fault-tolerance and
resource-control. It seems these techniques have introduced
clear benefits. In most of the test cases,James was the
platform with the best level of performance and it presented
a very good level of robustness. The resource-control
mechanisms have been quite useful to increase the stability
of the applications. However,James is still not a commer-
cial platform and some of the programming features should
still be improved to simplify the life of the application
programmers.

6. Final remarks

It is clear that performance, network traffic and robust-
ness are not the only metrics that should be taken into
account. The list of features and the overall functionality
of each platform also play a very important role. To get a
complete picture about the best platforms the interested
reader should still take a look to the programming
support of each system and the comparison of features
that have been presented elsewhere [3–7]. In this paper,
we were only evaluating the performance and the
robustness ofJames and to see how it compares with
the other similar Java-based mobile agent systems. The
results are very promising andJames has a very compe-
titive position.

We are now interested to evaluate the performance of the
mobile agent paradigm against traditional client/server
solutions. Some preliminary, but quite interesting, results
have been reported in Ref. [10]. Our main concerns go
now to improve the programming support of the platform
and to help in the deployment of agent-based applications
that make use ofJames.

References

[1] D. Lange, M. Oshima, Seven good reasons for mobile agents,
Communications of the ACM 42 (3) (1999) 88–89.

[2] L.M. Silva, P. Simoes, G. Soares, P. Martins, V. Batista, C. Renato, L.

L.M. Silva et al. / Computer Communications 23 (2000) 769–778 777



Almeida, N. Stohr,James: a platform of mobile agents for the
management of telecommunication networks, Proc. IATA’99,
Intelligent Agents for Telecommunication Applications, Stockholm,
Sweden, August 1999.

[3] Voyager and agent platforms comparison, Technical Report available
at: http://www.objectspace.com/products/voyager/.

[4] J. Kiniry, D. Zimmerman, A hands-on look at Java mobile agents,
IEEE Internet Computing July–August (1997) 21–30.

[5] T. Ugai, M. Bursell, Comparison of autonomous mobile agent tech-
nologies, Internal Report, FollowMe Project, APM, Cambridge, UK,
October 1997.

[6] M. Corkery. A review of state of the art in mobile agent systems,
Technical Report, Department of Computer Science, National
University of Ireland Maynooth, Ireland, 1998.

[7] A. Guther, M. Zell, Platform enhancement requirements, Internal
Report, Project MIAMI (ACTS Program AC338), 1998, URL of
the MIAMI Project: http: //www.fokus.gmd.de/research/cc/ima/
miami.

[8] E. Kovacs, K. Rohrle, M. Reich, Integrating mobile agents into
the mobile middleware, Proc. Second Int. Workshop on Mobile
Agents, MA’98, Stuttgart, Germany, September 1998, pp. 124–
135.

[9] G. Soares, L.M. Silva, Optimizing the migration of mobile agents,
Proc. MATA’99, Mobile Agents for Telecommunication Applica-
tions, Ottawa, Canada, October 1999.

[10] L.M.Silva, G.Soares, Comparing the performance of mobile agents
with client/server solutions, Technical Report,James Project, May
1999.

L.M. Silva et al. / Computer Communications 23 (2000) 769–778778

Luis M. Silva is an Assistant Professor at the
Department of Computer Science in the Univer-
sity of Coimbra, Portugal. He has a degree of
Computer Science from the University of Coim-
bra (1990), a MSc from the Technical University
of Lisbon (1993) and a PhD in Computer Science
from the University of Coimbra (1997). His
research interests include distributed and paral-
lel computing, mobile agent systems and fault-
tolerance.

Guilherme Soares is a Masters student at Univer-
sity of Coimbra, Portugal. His research interests
include distributed computing, web technologies
and mobile agent systems. He is currently work-
ing on the development of theJames platform.

Paulo Martins is a Masters student at University
of Coimbra, Portugal. His research interests
include distributed computing, resource
management and mobile agent systems. He is
currently working on the development of the
James platform.

Victor Batista is a Masters student at University
of Coimbra, Portugal. His research interests
include distributed computing, fault-tolerance
and mobile agent systems. He is currently work-
ing on the development of theJames platform.

Luis Santos is a Masters student at University of
Coimbra, Portugal. His research interests
include mobile agent systems, software deploy-
ment, distributed computing and network
management. He is also a teaching assistant at
the Technical Institute of Engineering in Coim-
bra.


