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Abstract

In this paper, we present an open and safe nested transaction model. We discuss the concurrency control and recovery algorithms

for our model. Our nested transaction model uses the notion of a recovery point subtransaction in the nested transaction tree. It

incorporates a prewrite operation before each write operation to increase the potential concurrency. Our transaction model is

termed ``open and safe'' as prewrites allow early reads (before writes are performed on disk) without cascading aborts. The systems

restart and bu�er management operations are also modeled as nested transactions to exploit possible concurrency during restart.

The concurrency control algorithm proposed for database operations is also used to control concurrent recovery operations. We

have given a snapshot of complete transaction processing, data structures involved and, building the restart state in case of crash

recovery. Ó 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

1.1. Overview of nested transaction models and recovery
algorithms

1.1.1. Close nested transaction model
In close nested transaction model (Moss, 1985), a

subtransaction may contain operations to be performed
concurrently, or operations that may be aborted inde-
pendent of their invoking transaction. Such operations
are considered as subtransactions of the original trans-
action. This parent±child relationship de®nes a nested
transaction tree and transactions are termed as nested
transactions (Moss, 1985). Failure of subtransactions
may result in the invocation of alternate subtransactions
that could replace the failed ones to accomplish the
successful completion of the whole transaction. Each
transaction has to acquire the respective lock before
accessing a data object. A subtransaction's e�ect cannot

be seen outside its parent's view (hence, called closed). A
child transaction has access to the data locked by its
parent. When a transaction writes a data object, a new
version of the object is created. This version of the ob-
ject is stored in volatile memory. When the subtrans-
action commits, the updated versions of the object are
passed to its parent. If the transaction aborts, the new
version of the object is discarded. Parent commits only
after all its children are terminated. When the top-level
transaction commits, the current version of each object
is saved on stable storage.

In the closed nested transaction model, the avail-
ability is restricted as the scope of each subtransaction is
restricted to its parent only. This forces a subtransaction
to pass all its locks and versions of data objects updated
to its parent on commit. The e�ect of a committed
subtransaction is made permanent only when the top-
level transaction commits. In many applications, it is
unacceptable that the work of a longlived transaction is
completely undone by using either of the above tech-
niques in case the transaction eventually fails at ®nishing
stage. The current strategy forces short-lived transac-
tions to wait before they acquire locks until the top-level
transactions commit and release their locks. Therefore,
the model is not appropriate for the system that consists
of long and short transactions.
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1.1.2. Open nested transaction model
To exploit layer speci®c semantics at each level of

operation nesting, Weikum presented a multilevel
transaction model (Weikum, 1991; Weikum et al., 1990).
The model provides non-strict execution by taking into
account the commutative properties of the semantics of
operations at each level of data abstraction, which
achieves a higher degree of concurrency. A subtransac-
tion is allowed to release locks before the commit of
higher level transactions. The leaf level locks are re-
leased early only if the semantics of the operations are
known and the corresponding compensatory actions
de®ned. When a high level transaction aborts, its e�ect is
undone by executing an inverse action which compen-
sates the completed transaction. Recovery from system
crashes is provided by executing undo actions at the
upper levels and redo actions at the leaf level. Each level
is provided with a level speci®c recovery mechanism.
This model has also been studied in the framework of
object oriented databases in Muth et al. (1993) and
Resende et al. (1994).

In many applications, the semantics of transactions
may not be known and hence, it is di�cult to provide
non-strict executions. In real time situations, there are
other classes of operations that cannot be compensated.
These are the operations that have an irreversible ex-
ternal e�ect, such as handing over huge amounts of
money at an automatic teller machine. Such operations
have to be deferred until top-level commits, which re-
stricts availability (i.e., increases response time).

1.1.3. Nested transaction recovery algorithms
The intentions-list and undo-logging recovery algo-

rithms given in Fekete et al. (1993) handle recovery from
transaction aborts in the nested transaction environment
by exploiting the commutative properties of the opera-
tions. The intentions-list algorithm works by maintain-
ing a list of operations for each transaction. When a
transaction commits, its list is appended to its parent;
when it aborts, the intentions-list is discarded. When the
top level transaction commits, its intentions-list is
transferred to the log. This scheme provides recovery
from transaction aborts only and does not handle sys-
tem crashes. To increase concurrency during undo log-
ging recovery, scheme allows some non-strict
executions. It allows a transaction to share the uncom-
mitted updates made by other transactions by exploiting
commutativity of operations. On execution of an oper-
ation, the data object records change their states and the
new state is transferred to the log. When a transaction
aborts, in contrast to intentions-list algorithm, all op-
erations executed by its descendants on the object are
undone from its current state and are also subsequently
removed from the log. This algorithm does not take care
of recovery from system crashes.

In both intentions-list and undo-logging algorithms,
an incomplete transaction is allowed to make uncom-
mitted updates available to those transactions that per-
form a commutative operation. However, this is
restricted to transactions at the same level of abstrac-
tion. This limits availability. In both algorithms, all the
work done by descendent transactions are discarded in
case of aborts at higher levels. This may not be possible
or desirable in many real time applications. In undo-
logging algorithm, when a transaction aborts, in con-
trast to intentions-list algorithm, all operations executed
by its descendants on the object are undone from its
current state and are subsequently removed from the
log. In both intentions-list and undo-logging algorithms,
an incomplete transaction is allowed to make uncom-
mitted updates visible to those transactions that perform
a commutative operation. This is restricted to the
transactions at the same level of abstraction.

The above two recovery models consider semantics of
operations at leaf level only. System R (Gray et al.,
1981) exploits layer speci®c semantics but restricted to
two level of transaction nesting. In System R, to per-
form recovery, updates are undone by performing in-
verse tuple-level operations. For this purpose, System R
records tuple updates on a log. To recover from a system
crash, before applying any tuple level log record, the
database must ®rst be restored to some tuple-level
consistent state. In other words, a low-level recover
mechanism is necessary to make tuple actions appear
atomic.

In Moss (1987), a crash recovery technique similar to
shadow page has been suggested in nested transaction
environment based on undo/redo log methods. In terms
of logging, both undo/redo logs are used. Mohan et al.
(1992, 1989) has also discussed ``write ahead logging''
based crash recovery algorithm using conventional
nested transaction model. This undo/redo type of re-
covery model exploits semantics of nested transactions.
The actions of a transaction undone during previous
abort have not been undone again in case of one more
failure. This is an advantage over Weikum's multilevel
recovery algorithm by which requires undo actions to be
undone again in case of one more failure.

1.2. Our contributions

In this paper, we introduce an open and safe nested
transaction model in the environment of normal read
and write operations to remove the de®ciencies stated
above and to further improve availability and provide
e�cient crash recovery. Our model supports inter- and
intra-transaction concurrency. We assume that seman-
tics of transactions at various levels of nesting are not
known. There are two basic motivations behind our
model. First, it is desirable that long-lived transactions
should be able to release their locks before top-level
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transactions commit. Second, it may not be desirable or
possible to undo or compensate the e�ects of one or
more of the important committed descendants after the
failure of a higher level transaction due to abort or a
system crash. We introduce the concept of a ``recovery
point subtransaction'' of a top-level transaction in a
nested transaction tree. It is essentially a subtransaction
after the commit of which its ancestors are not allowed
to rollback. In other words, once the recovery point
subtransaction of a top-level transaction has committed,
all its superior transactions are forced to commit. In case
it aborts, its ancestors can choose an alternate path to
complete their execution. Our nested transaction model
uses a prewrite operation before an actual write opera-
tion to increase the concurrency. The nested transaction
tree of our model consists of database operations, sys-
tem recovery operations (such as analysis and redo op-
erations) and bu�er management operations speci®ed as
nested transactions. The read, prewrite and writes op-
erations are modeled at leaf levels in the transaction
hierarchy. The recovery operations are speci®ed in terms
of nested transactions to achieve higher concurrency
during system restart. Our locking algorithm controls
the execution of both the normal operations as well as
recovery operations. We also discuss the data structures
required for the implementation of the recovery algo-
rithm. We have discussed a snapshot of the concurrency
and recovery algorithm with the help of an example. A
brief overview of our crash recovery algorithm has ap-
peared in Madria et al. (1997c). The correctness of the
concurrency control algorithm using I/O automation
model (FLMW) has reported in Madria et al. (1997b).

The rest of the paper is organized as follows. In
Section 2, we present motivating examples and the
overview of our nested transaction and recovery model.
In Section 3, we discuss nested transaction system model
and implementation. Section 4 presents system restart
operations. We present a snapshot of transaction pro-
cessing, logging and recovery in Section 5. We conclude
in Section 6.

2. Open and safe nested transaction model and recovery

algorithm

In this section, we motivate the readers about the
open and safe nested transaction model with some ex-
amples and provide an overview of our model and re-
covery algorithm.

Motivating examples: Consider a part of the nested
transaction tree for fund transfer operation from a
group of accounts to another account. In the transaction
tree, let Ts be a transaction on whose behalf Ts1 invokes
various subtransactions to collect (access) funds from
di�erent accounts. Once Ts1 is committed, Ts invokes Ts2

to ®nally credit the funds collected into another account.

Suppose after a subtransaction Tw has withdrawn all the
amount, Ts commits. If any transaction situated above Ts

aborts then it is desirable for the transaction to complete
successfully on transaction revival. This is because it is
not possible to undo or correct the failed transaction's
action by some compensatory actions. Another possi-
bility is to delay the actual commit of Ts until its top-
level transaction commits which restricts availability.
For example, a balance transaction has to wait until the
commit of the top-level transaction.

Consider another scenario where in the nested
transaction tree, a subtransaction determines the success
(commit) or failure (abort) of the top level transaction.
Suppose this nested transaction tree models various
activities (modeled as subtransactions here) related to a
business travel. Some of the activities are very crucial in
determining the completion of the top level activity. For
example, the commit of ``fund'' and ``visa'' subtransac-
tions will determine whether the travel transaction will
commit or not. That is, these subtransactions commit
will determine the commitment of the top level trans-
action no matter what may be the fate of other sub-
transactions in the transaction tree. Note that once, the
fund and visa subtransaction commits, its upper level
(sub)transactions will be forced to commit (some delay
or restart may involve).

Salient features of our model: Our model allows some
particular subtransactions to release their locks before
their ancestor transactions commit. This allows the
other subtransactions to acquire required locks earlier.
Our nested transaction model can handle the situations
where a committed lower level subtransaction's e�ect
cannot be undone or compensated in case of a higher
level transaction's failure. A transaction's semantics
may be such that beyond a certain point, it cannot
rollback entirely or its e�ect should not be lost. We
achieve this by introducing the concept of ``recovery
point subtransaction'' of a top-level transaction in a
nested transaction tree. It is essentially a subtransaction
after whose commitment, its ancestors are not allowed
to rollback. In case a superior transaction aborts or the
system fails after the commit of its recovery point sub-
transaction, the failed transaction has to complete on
system revival. Such a transaction execution permits a
recovery point subtransaction to reveal its result to
other transactions at any level of nesting before its su-
perior transactions commit. A recovery point subtrans-
action's e�ect is made durable before its top-level
transaction's commit. This results in the relaxation of
the isolation property (Harder and Reuter, 1983) of the
transaction.

To avoid undo actions and the consequent cascading
aborts and to increase the availability, we assume that
each transaction issues a prewrite operation (Madria,
1995; Madria et al., 1999; Madria and Bhargava, 1997a)
before a write for the object it intends to write. Each

S.K. Madria et al. / The Journal of Systems and Software 55 (2000) 151±165 153



prewrite operation contains the value that a user-visible
transaction wants to write and precedes the associated
®nal write. A prewrite operation actually does not
change a data object's state but only announces the
value the data object will have after the associated write
is performed. The advantage of prewrite is that a read
operation of another transaction can get the value be-
fore a data object's state is updated on stable storage
and hence, results in increasing the availability of new
data values. Prewrite operations are particularly helpful
in the engineering design applications (Kim et al., 1984),
CAD (Korth et al., 1990), large software design projects
(Korth and Speegle, 1990) etc. where transactions are
long. A subtransaction that initiates di�erent prewrite
access subtransactions at leaf level for di�erent data
objects is de®ned to be the recovery point subtransac-
tion. These announced prewrite values are made visible
to other subtransactions after the commit of recovery
point subtransaction. The prewrite subtransactions re-
lease their locks before their ancestors commit. Dis-
carding some of the prewrites before the commit of the
recovery point subtransaction will not introduce cas-
cading aborts (hence safe) since the prewrite values are
made visible only after the commit of the recovery point
subtransaction.

2.1. Crash recovery algorithm

2.1.1. Basic goals of system crash recovery algorithm
· Revive the database state of those data objects which

do not contain their last committed values with re-
spect to the execution up to the system failure.

· Revive the prewrite values (kept in prewrite-bu�ers)
of the data objects which have been announced by
the committed recovery point subtransaction before
system failure.

· To identify such data objects, the dirty object table
has to be revived. The dirty object table is used to
keep track of those data objects whose ®nally written
values are inconsistent with the stable database val-
ues. This table also keeps information about those
data objects whose prewrite values, announced by
the committed recovery point subtransactions, have
not been subsequently written on the database before
a system crash.

· A system crash creates an additional problem of ac-
complishing the completion of those top-level trans-
actions whose recovery point subtransactions have
been committed before system crash. They have to re-
acquire the locks held by them at the time of failure
before new transactions acquire such locks.

· To handle above, the transaction and lock tables
have to be revived. The transaction table keeps a list
of all active transactions in the system at any time.
The revived transaction table will recognize those ac-
tive top-level transactions (and their active descen-

dants) whose recovery point subtransactions have
been committed before failures. The lock table con-
tains the type of locks held by the transactions on dif-
ferent data objects at any time. The revived lock table
will help in reacquiring the locks held by active top-
level transactions and their descendants at the time
of failure.

· To initiate new top-level transactions as soon as the
dirty object, transaction, and lock tables and consis-
tent states of prewrite- and write-bu�ers of dirty data
objects are re-established.

2.1.2. System crash recovery steps
To achieve above recovery goals, we need the fol-

lowing steps to restart the system:
Revival of dirty object table: The dirty object table is

required to be checkpointed periodically by transferring
a copy of it to the stable storage during normal pro-
cessing. The prewrite values and after-images are logged
on stable storage during the execution of transactions to
build the consistent dirty object table in case a system
failure occurs before the next checkpoint is taken. A
transaction is not permitted to complete its commit
processing until the redo portion of that transaction has
been written to stable storage. The redo portion of a log
record provides information on how to redo changes
performed by the committed transactions. During sys-
tem restart, the dirty object table is recovered with the
help of most recent checkpointed copy of the dirty ob-
ject table and is modi®ed with the help of log stored
after the last checkpoint.

Revival of transaction and lock tables: The transaction
and lock tables are checkpointed by transferring a copy
of each of them to the stable storage periodically during
normal processing. Whenever a subtransaction is made
active or when any transaction acquires or releases a
lock, the information is also logged to build a consistent
state of these tables. However, such information may
not be logged for read-only and prewrite access sub-
transactions as these are to be discarded in case of a
system failure. If a checkpoint is taken during restart
recovery then the contents of transaction and lock tables
will also be included in checkpoint. The entries corre-
sponding to all other transactions except those that are
to be restarted (whose recovery point subtransactions
have not been committed) are removed from the trans-
action and lock tables. To do so, we need to ®nd
whether the stable storage contains the commit-state of
the recovery point subtransaction of each active top-
level transaction. The commit states information is
transferred to the stable storage during the commit of
those subtransactions whose e�ects cannot be undone or
lost in case of a failure. The commit-state information
contains, besides associated variables, private data
and other information, the identi®er of the committed
subtransaction as well as of its parent transaction.
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A commit-state information of a subtransaction T 1
de®nes the state of its parent transaction T 2 at the time
of commit of T 1. The commit-state information helps in
re-establishing the restart state of a top-level transaction
in order to complete its remaining execution. No sub-
transaction whose e�ects cannot be undone in case of
failure can be considered complete until its commit-state
information and all its data are safely recorded on stable
storage. If the stable storage does not contain the
commit-state of the recovery point subtransaction of an
active top-level transaction then all the entries corre-
sponding to it and all its subtransactions are removed
from the table. Otherwise, the top-level transaction has
to complete its remaining execution on revival.

Revival of bu�ers: To revive the contents of write-
bu�er of a dirty data object, we copy the value of the
data object from the stable-db to the write-bu�er.
However, the stable database version of the data object
may not contain some or all the updates of committed
transactions. It involves redoing those committed
transactions after-images, which have not been trans-
ferred to the stable-db before the failure. The redo of
after-images will re-establish the state of the database in
the write-bu�er at the time of failure. Similarly, to re-
cover the prewrite-bu�ers corresponding to dirty data
objects, we redo the prewrite values logged on stable
storage after the last checkpoint, which have not sub-
sequently been written. This re-establishes the states of
prewrite-bu�ers of dirty data objects as they exist at the
time of failure. The contents of prewrite- and write-
bu�ers are recovered using the non-volatile storage
version of the database, dirty object table and the log.
There is at the most one prewrite log corresponding to a
data object since once the associated write values are
written, the corresponding prewrite log entry is removed
from the stable storage as well as from the dirty object
table.

Transaction logging and recovery: The log records
written on behalf of subtransactions are always linked to
the last record of their parents which re¯ects the trans-
action tree in the log. Whenever a prewrite access sub-
transaction commits, its commit information and
prewrite values are passed to its parent transaction,
which is the recovery point subtransaction. When the
recovery point subtransaction decides to commit, its
commit-state information and the associated prewrite
values are required to be logged. This commit-state in-
forms the scheduler that from this point of time, the
committed subtransaction's e�ect cannot be lost under
any circumstance. The commit of recovery point sub-
transaction occurs only after all its prewrite access
subtransactions have been committed and therefore, the
recovery point subtransaction's commit-state has the
e�ect of all its committed prewrite access descendants.
Hence, the commit-state of recovery point subtransac-
tion is the ®rst commit entry in the stable log. If system

crashes immediately after the commit of its recovery
point subtransaction, the scheduler will restart its active
top-level transaction from the logged commit-state on-
wards.

Whenever a write access subtransaction at leaf level
decides to commit, its commit-state and write value are
logged. The commit information is passed to its parent
transaction that helps in the termination of the parent
transaction. The process of logging the commit-state will
continue till the top-level transaction commits. In case
of failure, these logs will help in completing an active
top-level transaction on revival. The process of trans-
ferring a transaction's commit-state or prewrite or write
values to the stable log is called transaction check-
pointing (early writing). It is required in order to keep
track of commit-states, prewrite and write values of
various subtransactions, which helps in completing an
active top-level transaction's re-execution. Transaction
checkpointing will keep track of all logical committed
states as well as prewrite and write values, which cannot
be lost. Readonly transactions require no early writing
as they do not change a data object's state.

To complete the active top-level transactions, whose
recovery point subtransactions have been committed
before system failure, the scheduler has to decide the
restart states to re-initiate such transactions. If the re-
covery point subtransaction's commit is the only com-
mit record in the stable log then its active top-level
transaction restarts from this commit-state. Otherwise,
the scheduler ®nds out the last commit-state logged after
the commit of recovery point subtransaction prior to
system crash in order to restart the transaction from the
last commit-state. Once the restart-state is established,
the scheduler reacquires the type of locks the active top-
level transaction and all its active descendants were
holding at the time of failure. Once the locks are reac-
quired, the execution of a top-level transaction restarts
from the restart-state.

2.2. Data structures

Here we discuss the data structures used in the logical
implementation of the recovery model. Most of these
data structures are needed in the physical implementa-
tion as well. We ®rst discuss some of the ®elds present in
di�erent types of log records, which are as follows.

LSN: This gives the address of the log record in the
log address space. It is a monotonically increasing value.
It is present in log records of the type ``data''. This may
be included in other type of log records also but is not
mandatory.

Transaction-id: Identi®er of the transaction involved
in the log record.

Object-id: Identi®er of the object involved in the log
record. It is present in log records of ``data'' and ``lock''
types.
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Value: This is the redo data that describes the update
that was performed. This also includes the committed
prewrite value.

Active: Present in the log record written during the
activation of a transaction.

Commit-state: Present in the log record written during
the commit of a subtransaction. This includes the pri-
vate data, local variables, etc. of the committed sub-
transaction.

Lock: This is present in the log record which is logged
when a subtransaction acquires or releases any lock.
This includes information whether the lock is ``retained''
or ``held'' by the transaction.

Log records can be of the following types:
``Data'' type of log records of the form:
hLSN; transaction-id; object-id;Prewrite or write valuei
``Transaction'' type of log records are the form
htransaction-id; statusi. Note that status takes ei-
ther the value ``Active'' or ``Commit''.
``Lock'' type is of the form
htransaction-id; lock type; object-idi
We refer the complete log record structure by
hlog recordi along with its type information.
hEND-CHK-POINTi is a record to identify the end
of a checkpointing activity.

2.2.1. Transaction and lock tables
To distinguish between di�erent transactions and to

know their status (active or not) in the system, we need
to maintain the transaction-id and status of each
transaction using a transaction table. Furthermore, to
re¯ect the transaction tree, each transaction-id is such
that it contains the identi®er of its own as well as the
identi®er of its parent transaction. This type of trans-
action-id helps the scheduler in informing the commit
or abort of a subtransaction to its parent. In addition,
an abort request also contains identi®ers of all its in-
feriors.

For the scheduler to know whether a transaction is
active or not, it is su�cient that a transaction may keep
only one status namely ``active''. Since the parent±child
relationship of committed subtransactions are to be
stored in the log separately by linking the log records of
committed subtransactions to their parents, the trans-
action table need not keep information about committed
subtransactions. A subtransaction enters the ``active''
status as soon as it is initiated and remains ``active'' until
it commits or aborts. When a subtransaction commits,
its entry is removed from the transaction table. After the
commit of the recovery point subtransaction, the status
of its upper level subtransactions remains ``active'' even
in case of aborts at higher level because they have to
complete their remaining execution on revival. On sys-
tem revival, once such ``active'' top-level transactions
are decided, all other ``active'' top-level transactions and
their ``active'' descendants are removed from the table.

The lock table keeps the information about the locks
held by all active transactions in the system at any time.
Each entry of the table keeps information about the
transaction-id, type of lock held and the object-id. When
a transaction acquires a lock on a data object, an entry
is made in the lock table. When a transaction commits
or aborts, the corresponding transaction entry is re-
moved from the table. A new entry is made about the
transaction which inherits the lock from the committed
or aborted transaction.

2.2.2. Dirty data object table
Each entry in the dirty data object table consists of

®eld's object-id, RecLSN (Recovery log sequence num-
ber) of prewrite and write operations. The value of
RecLSN of write operation indicates in the log there
may be updates which are, possibly, not yet in the non-
volatile version of the data objects. The minimum of
RecLSN values in the table gives the starting point for
redo activity. All the write log records whose LSNs are
greater than the min RecLSN are, possibly, required to
be redone as these log records e�ects might not have
been transferred to the stable-db. The min RecLSN of
all prewrite operations which is greater than the max
RecLSN of all write operations gives the starting point
for redoing the prewrite operations. All the prewrite log
records whose LSNs are greater than the min RecLSN
are required to be redone as these are the prewrite log
records whose associated write operations are not per-
formed. Therefore, these prewrite log records need to be
redone. Whenever the write values are announced, the
corresponding prewrite entries from the dirty object
table are removed. Similarly, whenever the data objects
are written back to the non-volatile storage, the corre-
sponding entries are removed from the table.

3. Nested transaction system model and implementation

Our nested transaction database system model for-
mally consists of transaction managers (TMs), recovery
managers (RMs) and data managers (DMs). The data
managers (DMs) model the data objects. Each data
manager keeps a copy of the data object in the sec-
ondary storage, called stable-db. The prewrite and write
values of each object are kept in the respective bu�ers at
the corresponding DMs. These are called prewrite- and
write-bu�ers, respectively. Physically, only a subset of
these DMs will have prewrite and write values of the
data objects in the corresponding bu�ers. A read oper-
ation gets the value of the referenced data object from
the prewrite-bu�er (if any) otherwise it gets the value
from the write-bu�er. If the DM does not have a copy of
the data object in the write-bu�er, the read operation
gets the value from the stable-db copy of the data ob-
ject. The write-bu�er's contents of a data object are
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transferred periodically to stable storage. Also, each
DM maintains a log corresponding to the data object.
Each DM also shares a common log.

Considering the above con®guration, our model has
four di�erent transaction managers (TMs) for per-
forming read (read-TM), write (write-TM) and system
restart's analysis (analysis-TM) and redo (redo-TM)
operations. Of these, read- and write-TMs are initiated
by the user-visible transactions. An external agent such
as the operating system invokes analysis-TMs and redo-
TMs. A hidden daemon transaction is associated with
each write- and redo-TM transaction to coordinate the
bu�er management operations, i.e., the transfer of a
data object's value to stable-db during the normal and
system restart operations. To achieve the notion of
spontaneity and transparency of bu�er management
operation, the daemon transaction wakes up and com-
mits with respect to its associated transaction.

TMs are situated at one level below user-visible
transactions. Next level of transaction hierarchy has six
di�erent recovery managers for co-ordinating read
(read-RM), prewrite (prewrite-RM), write (write-RM),
transfer (transfer-RM) and system restart's analysis
(analysis-RM) and redo (redo-RM) operations. These
RMs are made active by the corresponding TMs. Dur-
ing the span of daemon transaction, a daemon can ini-
tiate many transfer-RMs. This will help the transfer
process to be made active during redo operations. These
RMs initiate access subtransactions situated at the leaf

level. Each read, prewrite and write-RM initiates read,
prewrite and write access subtransactions, respectively.
A read access reads the value either from the prewrite or
the write-bu�er of the data object whereas a write sub-
transaction accesses only the write-bu�er component of
the data object. A transfer-RM initiates a transfer access
(like read access but returns no value) to transfer the
contents of write-bu�er of the data object to the stable-
db. The analysis-RM initiates copy, read, write and
read-analysis access subtransactions. A copy transaction
re-initializes the tables in the volatile memory whereas
read accesses read the log entries after the last check-
point record and write accesses update tables to bring
their state as existing at the time of failure. A read-
analysis subtransaction returns information about the
dirty objects at the time of system failure. It also returns
a list of active transactions (and their restart states) to be
restarted on system restart. A redo-RM initiates copy,
read, prewrite and write access subtransactions. Here, a
copy transaction places the stable-db copy of the object
in its write-bu�er. A read access initiated by redo-RM
reads a log entry corresponding to a data object logged
after the last checkpoint record. A prewrite (write) ac-
cess makes a prewrite-bu�er's (write-bu�er's) value
consistent. The nested transaction tree structure is
shown in Fig. 1(a) (for normal operations) and Fig. 1(b)
(for system restart operations).

We assume that each user transaction knows its
write-set before initiating a write-TM to write all the

Fig. 1. (a) Nested transactions tree for normal operations and (b) nested transaction tree for system restart operations.
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data objects. A write-TM ®rst initiates a prewrite-RM,
which further initiates prewrite access subtransactions in
order to announce prewrites for all the data objects
contained in the write-set. This value for each data ob-
ject is written in the prewrite-bu�er allocated in the
volatile memory. Modeling prewrites at leaf level pro-
vides user transparency to the prewrite operations. We
formally specify the prewrite-RM as the recovery point
subtransaction of the top-level transaction. Once the
prewrite-RM has committed, the prewrite values be-
come visible outside its parent's view at any level of
nesting without necessarily requiring the commit of all
its superior transactions. After the prewrite-RM's
commit, the write-TM initiates a write-RM to update all
the data objects whose prewrite values have been an-
nounced before. The ®nal updates are written in the
write-bu�ers allocated in the volatile memory at each
DM. With the invocation of each write-TM automaton,
a daemon transaction is initiated automatically which
further initiates transfer-RMs. A transfer-RM initiates a
transfer access subtransaction to transfer the write-buf-
fer's value to the stable-db. The write-bu�er's contents
can be transferred without the commit of the top-level
transaction because write-values, once written, cannot be
undone or lost.

To meet transaction and data recovery guarantees,
the system maintains a log corresponding to each data
object at the respective DM. The system maintains a
common log (shared by all DMs) which keeps infor-
mation about the progress of transactions and its asso-
ciated data, their lock holding information etc. Our
algorithm asserts that the log records representing
changes to some data must already be on stable storage
before the changed data is allowed to replace the pre-
vious version of that data on non-volatile storage. The
log record corresponding to each data object is assigned
a unique log sequence number (LSN) at the time the
record is appended to the log. The LSNs are assigned in
ascending order. Whenever a prewrite value is an-
nounced, the LSN of the prewrite log record to be
written is placed in the LSN ®eld of the prewrite value in
the prewrite-bu�er. Similarly, when the data object's
value is updated in the write-bu�er, the LSN of the log
record is placed in the LSN ®eld of the updated data
object in the write-bu�er. This value of LSN will be
more than the value of LSN associated with the prewrite
value of the same data object. The LSN with each pre-
write and write value in the associated LSN ®eld keeps
track of the data object's state. Also, when a write-
bu�er's value is transferred to the stable-db, the after-
images LSN is placed in the LSN ®eld of the stable-db.
This tagging of LSN allows precise tracking of the states
of the object with respect to logged updates of the data
object for system restart purpose. Each write-bu�er is
also associated with a stableLSN ®eld. The stableLSN
®eld is the LSN of the stable-db copy of the object. A

write-bu�er's value is transferred to the stable storage if
the stableLSN of the write-bu�er is greater than the
write-bu�er's LSN. This will avoid accessing the stable-
db's LSN to check whether the transfer of the object's
value to the stable storage is required or not.

3.1. Concurrency control algorithm

In this section, we discuss the type of con¯icts which
occur in our model during normal and recovery opera-
tions and the locks needed to control them. Note that we
use the same concurrency control protocol to control the
concurrent execution of recovery operations and dat-
abase operations (see Fig. 2). The database operations
are read, write and prewrite. The locks needed to control
the concurrent executions are read-lock (RL) for read,
write-lock (WL) and prewrite-lock (PL) for prewrite
operations, respectively. During recovery operations,
the access operations executed are copy, read, write,
transfer, read-analysis and prewrite. The operations
copy, read, transfer and read-analysis acquire read locks
and hence, follows the read-locking protocols as in Fig.
2. Write and prewrite acquire write-lock and prewrite-
locks, therefore, they also follow the locking protocols
given below with respect to write-lock and prewrite-
lock. A more detailed discussion on the correctness of
concurrency control algorithm for database operations
has appeared in Madria et al. (1997b).

Formally, we have the following locking algorithm as
shown in Fig. 2.

4. System restart operations

System restart has to perform two passes of the log:
analysis pass and the redo pass. After the analysis pass
of log records, the transaction table will contain the list
of transactions active at the time of failure, the lock
table will have lock entries corresponding to active
transactions, and the dirty object table will contain the
list of data objects which were dirty at the time of fail-
ure. The redo activity is performed in second pass in
order to restore the dirty data objects to the values
consistent with the information kept in the stable log.

The analysis pass is modeled as an analysis-TM
which initiates an analysis-RM. The analysis-RM fur-
ther initiates a copy access, which re-initializes the lock,
transaction and the dirty object tables by placing their
stable storage copies in the bu�er after the last check-
point record. Next, it invokes read accesses to read the
log records from the corresponding DMs after the last
checkpoint record. The analysis-RM with the help of
write accesses updates these tables as follows. If a log
record corresponding to transaction table is encountered
whose identity does not already appear in the table, then
an entry is made in the table. The transaction table is
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modi®ed to track the active transactions at the time of
failure. Similarly, a log record corresponding to dirty
object table is entered with the current LSN in the dirty

object table if it is not already there. In a similar fashion,
the lock table is also updated. Whenever a commit re-
cord is encountered, a list of commit records is made.

Fig. 2. Locking algorithm.
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This helps in establishing the restart states of the
transactions to be re-executed. A read-analysis returns a
set of min RecLSN (min LSN of log records from where
redo recovery has to restart, called RedoLSN): one for
each dirty data object with respect to write operations
and a set of min RecLSNs (greater then the max Rec-
LSNs of the corresponding data object) for each dirty
data object with respect to prewrite operations. It also
returns a list of active transactions and their restart
states. The above information will be the output of an
analysis-TM. A checkpoint is taken at the end of the
analysis pass.

The redo activity is performed using the prewrite
values and after-images logged on the stable storage.
The redo activity can be skipped if there is no dirty
data object. The transaction hierarchy for redo activity
consists of a redo-TM for each object, a redo-RM at
the next level and access subtransactions at the leaf
level. Each redo-TM initiates a redo-RM which further
triggers copy, read, prewrite and write access sub-
transactions to redo the operations present in the stable
log corresponding to the data objects after the last
checkpoint record. A copy transaction re-initializes the
write-bu�er by copying the contents of the stable-db to
the write-bu�er. Read operations read the write and
prewrite log entries one by one after the last check-
point. A prewrite access will re-initialize the prewrite-
bu�er with the help of prewrite log record value if the
value of LSN associated with the prewrite log record is
greater than LSNs of all the after-images logged on
stable storage. A write access substitutes the value
(after-image) of the data object read from the log in the
allocated write-bu�er of the data object if the data
object's LSN in the write-bu�er is found to be less than
the log record's LSN. These log records will be those
whose e�ects are not yet in the non-volatile storage
version of the data object. The daemon transaction
associated with the redo-TM initiates transfer-RMs to
transfer the contents of the write-bu�er to the stable-
db. After the commit of redo-TM, a checkpoint is
taken.

The analysis and redo activities in the form of nested
transactions provide faster recovery since a redo-TM for
each data object can be initiated in parallel. Also, if a
system crash occurs during the execution of an analysis-
or redo-TM, the corresponding new TM can be trig-
gered on system restart. All the actions of previously
committed subtransactions of the failed TM are not
required to be discarded in case of a system failure.
Similarly, in case of a normal transaction abort of any of
these TMs, RMs, or their subtransactions, a corre-
sponding new transaction can be initiated without dis-
carding the e�ects of the aborted transaction and their
descendants (if any). This helps in relaxing the atomicity
property of such subtransactions since neither the ac-
tions of previously committed subtransactions are un-

done nor the failed TM or RM is retried until their
completion on revival.

4.1. Bu�er management operations

The transfer of a data object's value from the write-
bu�er to the stable storage is initiated with the help of a
daemon transaction associated with each write-TM and
redo-TM. The daemon transaction invokes a transfer-
RM that transfers the value of the data object from its
write-bu�er in the volatile memory to the stable-db on
secondary storage. For the sake of uniformity, and in
order to model correct atomicity requirements, transfer-
RMs are modeled as transactions and placed as children
of write- and redo-TMs in the transaction tree. One
would like to permit transfer operations to take place
with the intention that these TMs do not control their
invocations. They are intended to run spontaneously
and transparently. Therefore, we have associated a
daemon transaction with each write- and redo-TM so
that these TMs do not have to be aware of the invoca-
tions of transfer-RMs. A daemon transaction commits
with the commit of its associated TM. Therefore, it is
possible to invoke many transfer-RMs dur ing its span
and these transfer-RMs may not have committed before
their parent transaction's commit. However, we know
that the sequence of transfer operations for a read-write
data object from the write-bu�er to stable-db is the same
as transfer of last write. This enables the daemon
transaction to initiate many transfer-RMs and to com-
mit without the commit of all its transfer-RM sub-
transactions. The daemon transaction achieves the
spontaneous and transparent behaviour of the periodic
transfer of the data from the volatile memory to stable
storage and is failure-atomic.

The transfer of write-bu�er to the stable-db takes
place if the stableLSN of the write-bu�er is greater than
the LSN of the write-bu�er. Once the transfer of the
value along with LSN is completed, the corresponding
log entry from the stable log is removed and the stab-
leLSN of the write-bu�er is set to the LSN of the write-
bu�er.

5. Snapshot of transaction processing, logging and recov-

ery

Consider the nested transaction tree structure as
shown in Fig. 3, where U is a user-visible transaction. T1

and T2 are read- and write-TMs, respectively. T 02 is the
associated daemon transaction. T11; T21 and T22 are read,
prewrite and write-RMs, respectively. T 023 is the transfer-
RM. T111 is a read access, T211 and T212 are prewrite
access subtransactions whereas T221 and T222 are corre-
sponding write accesses, respectively. T 0231 and T 0232 are
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the transfer access subtransactions. Data objects sup-
posed to be accessed by these transactions are X and Y.

As soon as the top level transaction U is initiated, its
state is set to be ``active'' in the transaction table. Also,
this information is appended to the log on stable stor-
age. As soon as transactions T2; T21; T211 and T212 are
made active, the information is recorded in the trans-
action table as well as logged on stable storage. The state
of the transaction table is as shown in Fig. 4(a). The
transaction T21 has initiated the prewrite access sub-
transactions T211 and T212 to announce the prewrite value
of the data object X and Y, respectively. As soon as the
prewrite access subtransaction T211 �T212� gets the pre-
write-lock on the DM corresponding to the data object
X �Y �, an entry in the lock table is made as shown in Fig.
4(b). When a prewrite value of a data object X �Y � is
announced by T211�T212�, LSN of the log record to be
written is placed in the LSN ®eld associated with the
prewrite value. When T211�T212� decides to commit, the
commit information and prewrite value along with LSN
are passed to their parent subtransaction T21. The pre-
write-lock held by T211 and T212 are passed to the pre-
write-RM T21 on their commit and the corresponding
entries are made in the lock table. The updating of dirty
object table, logging of prewrite values and lock holding

information associated with T211 and T212 are deferred
until the commit of recovery point subtransaction T21.
This is because in case of system crash, the e�ect of T211

and T212 are to be discarded. On commit of T21, the
prewrite values are transferred to the respective logs as
shown in Fig. 4(c) where each tuple in the database log is
of the form hLSN; transaction-id; object-id; prewrite
valuei.

To sustain the e�ect of recovery point subtransac-
tion T21 in case of system crash, its commit-state in-
formation that includes all the variables, its private
data and prewrite values along with the LSNs, are
also logged. Logging of commit-state is repeated until
the top level transaction commits. When the prewrite-
RM T21 commits, the lock released by T21 is inherited
by U (it is safe to release lock to U here since the
ancestors of recovery point subtransaction, prewrite-
RM, cannot be aborted in any case). This information
is also recorded in the lock table as well as logged on
stable storage. The state of the transaction, lock and
dirty object tables after the commit of T21 is shown in
Fig. 5(a)±(c). Note that these updated tables are also
checkpointed periodically during normal processing
which reduces the system restart's work in case of
system crash.

Fig. 3. Nested transaction tree.

Fig. 4. (a) Transaction table; (b) lock table; (c) event and log records.
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After the commit of prewrite-RM T21, the write-TM
T2 initiates write-RM T22 to write data objects X and Y
whose prewrite values have been announced before.
Write-RM T22 further initiates write access subtransac-
tions T221 and T222 which ®nally update data objects X
and Y, respectively. When an update is performed, the
log record is written along with LSN and this value of
LSN is also placed in the LSN ®eld of the updated value
of the data object as shown in Fig. 6. The write-lock held
by T221 �T222� is also inherited by U and the information
is recorded in the lock table as well as logged on the
stable storage. The states of di�erent tables after the
commit of T2 are shown in Fig. 7(a)±(c).

When the write-TM T2 is initiated, the associated
daemon transaction T 02 is also invoked automatically.
The daemon transaction initiates the transfer-RM T 023

which further initiates transfer access subtransactions
T 0231 and T 0232 to transfer the updated values of data ob-
jects X and Y to the stable-db, respectively. The infor-
mation that these transactions are initiated is also
recorded in the transaction table. As soon as T 0213 �T 0232�
acquires a read-lock, the information is recorded in the
lock table. When the transfer of the data object X's (Y's)
value from the write-bu�er to the stable-db is completed,
the corresponding entry from the dirty object table as
well as from the log is also removed. When any of the

Fig. 5. (a) Transaction table; (b) lock table; (c) dirty object table.

Fig. 6. Event and log records.

Fig. 7. (a) Transaction table; (b) lock table; (c) dirty object table.
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readonly transactions T1; T11 and T111 are initiated, the
information is recorded in the transaction table. Simi-
larly, when a read-lock is acquired or released, the lock
table is also updated. However, such information is not
logged on stable storage as these transactions are to be
discarded in case of system failure. When the top level
transaction U commits, all the entries corresponding to
U are removed from the tables and the logs.

5.1. System restart processing

5.1.1. Analysis pass processing
Given below is an example to show how analysis pass

operations explained in Section 5 are performed. Sup-
pose in the stable storage, the tables are in a state as
shown in Fig. 7(a)±(c) and the log has the following
entries after the last checkpoint record at the time of
system failure.

On system restart, the external agent initiates an
analysis-TM Ta to perform the analysis pass (see Fig. 8).
The analysis-TM invokes the analysis-RM Taa at the
next level of transaction hierarchy. The analysis-RM
further initiates copy, read, write and read-analysis ac-
cess subtransactions. The copy transactions Tci �i � 1; 3�
copy all the tables from the stable storage into the vol-
atile memory. Read subtransactions Tri �i � 1; 4� read
the log records one by one from the logs corresponding
to each data object and the common log. The corre-
sponding write accesses Twi �i � 1; 4� update the tables
as follows : since the entries of database type log records
are not in the dirty object table, therefore, entries are
made into the table. Similarly, other tables are also
updated. Also, since T221 has committed, the corre-
sponding entry in the transaction table is removed. The

read-analysis returns min RecLSN (RedoLSN) of 102
for the write operation of the data object X and min
RecLSN (RedoLSN) of 101 for the prewrite operation
of the data object Y. It also returns the information that
U and T2 are active subtransactions along with lock
holding information about such transactions. These
transactions are to be restarted as their recovery point
subtransaction T21 has committed.

5.1.1.1. Concurrency control for analysis pass. To explain
concurrency control among access transactions of the
analysis pass, we assume that only one copy, one read,
one write and one read-analysis access subtransactions
have to be initiated. The copy, read and read-analysis
accesses require a read-lock before accessing a DM
whereas a write access requires a write-lock before ac-
cessing a DM. When an access transaction commits, the
lock is released to its parent. When a non-access trans-
action commits, its lock is released to the external agent.
When a transaction aborts, its lock is released to the
parent transaction without discarding the e�ects of the
aborted transaction. In case of a system failure, analysis
pass is started again. In case of a transaction abort, a
new transaction can be initiated. The locking rules are
similar as given for normal system operations in Section
3.1.

5.1.2. Redo pass processing
Here, we explain the redo pass operations given in

Section 4 with the help of the following example. Con-
sider the following database log records corresponding
to the data object X at the time of system failure.

Suppose RedoLSN of data object X with respect to
the write operations in the reorganized dirty object table
is 222. Let the min RecLSN (RedoLSN) of prewrite
operations which is greater than max RecLSNs of write
operations in the dirty object table be 225. Consider
Fig. 9. During redo operations, redo-TM transaction Ts

initiates a redo-RM transaction Ts1 which in turn initi-
ates a copy transaction Tc which re-initializes the write-
bu�er of the data object X by copying its value from the
stable-db along with LSN. It sets its stableLSN and
LSN ®elds to be equal to the LSN of the stable-db. After

``Data'' type At Logx h102; T221;X ; xi
At Logy h101; T212; Y ; yi

``Transaction''

type

At common
Log

hT221; commiti

``Lock'' type At common
Log

hT2;write-lock
�retain�;X i

Fig. 8. Analysis pass.

``Data'' type log records Write-bu�er of X

Write

Log

hEND-CHK-
POINTi

stableLSN � 222

hT1;X ; 220; x1i LSN � 224
hT2;X ; 222; x2i stable-db of X
hT3;X ; 224; x3i x2LSN � 222

Prewrite

Log

hT4;X ; 225; xi
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its commit, the value in the write-bu�er will become x2

with LSN 222. Ts1 then triggers a read access subtrans-
action Tr1 with RecLSN 222. It reads the database write
log record whose LSN is greater than or equal to 222.
Similarly, Tr2 and Tr3 are initiated to read the next write
and prewrite log entries, respectively. The write access
subtransaction Tw1 invoked by Ts1 replaces the write-
bu�er value of the data object X by x2 if LSN of the log
record is greater than stableLSN of the object in the
write-bu�er. Since LSN (222) of the log record is not
greater than the stableLSN (222) of the object in write-
bu�er and therefore, Tw commits without updating the
value in the write-bu�er with the return message ``not to
be redone''. Ts1 will then initiate next write access sub-
transaction Tw2 which replaces the write-bu�er of the
object by x3 as its LSN (224) is greater than the stab-
leLSN (222). Ts1 also concurrently initiates a prewrite
access subtransaction Tp to re-initialize the prewrite
value in the prewrite-bu�er if the LSN value of the
prewrite log record is greater than the max RecLSN of
all the write operations. Tp re-initializes the prewrite-
bu�er with the prewrite value x, as its LSN value (225) is
greater than the max RecLSN 224 of all the write op-
erations. During the redo operation, the daemon
transaction T 0s associated with Ts is also invoked auto-
matically. Ts in turn initiate a transfer access subtrans-
action to transfer the contents of the write-bu�er of the
data object to the stable-db. Tt is the transaction which
transfers the data object X's write-bu�er value if its LSN
is greater than the stable-LSN of the data object in the
write-bu�er.

5.1.2.1. Concurrency control for redo pass. Consider Fig.
9, where Ts is a redo-TM and T 0s is the associated dae-
mon transaction. Ts1 and T 0s1 are redo- and transfer-
RMs, respectively. Tc, fTr1; Tr2g, Tp and Tt denotes copy,
read, prewrite, and transfer access subtransactions
whereas Tw is the write access subtransaction, respec-
tively. In this example, for simplicity, we have assumed
reading of only one write and one prewrite log record.
As before, copy, read, and transfer accesses require

read-locks whereas prewrite and write accesses require
prewrite- and write-locks, respectively. All the con¯ict
relations are the same as before except that a prewrite-
lock does not con¯ict with a write-lock. When an access
transaction commits, its lock is passed to its parent and
so on except that write and transfer accesses release their
locks to the external agent. When a transaction aborts,
its lock is released to its parent. The locking rules are
same as given in Section 3.1.

6. Conclusions

A nested transaction model, its concurrency control
and recovery algorithms are presented in this paper. We
have introduced the concept of a recovery point sub-
transaction and prewrite operation in our model to
achieve higher concurrency. Our recovery algorithm
consisting of system restart operations; analysis and
redo operations and bu�er management operations,
which are modeled in terms of nested transactions.
Modeling recovery operations in terms of subtransac-
tions increases concurrency during system restart oper-
ations. As a future work, our transaction model need to
extend in the context of orthogonally persistent pro-
gramming languages where serious problems arise un-
less all computation exists within a transactional
context, but this restricts concurrency. We are exploring
this issue further. We are also looking into adapting our
transaction recovery model in mobile computing envi-
ronment (Madria et al., 1999). We are working on the
veri®cation of our recovery algorithm using I/O au-
tomaton model (Fekete et al., 1993). Each component of
our recovery model is modeled as I/O automata and is
speci®ed with the help of some pre and post conditions
to capture the operational semantics. We have proved
some invariant that leads towards the correctness of the
model. Thus, our model gives clear understanding of the
recovery algorithm. This work will be reported as a
separate paper (Madria and Bhargava, 1999), where
main thrust is only on the proof of correctness.
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