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1. Introduction

The publication, in 1991, of a dynamic model for
managing software development projects (SDPs) by
Abdel-Hamid and Madnick (1991), led to a new field
which is allowing a better understanding of the different
variables to be considered, and the complex relations
produced between them. The multiple applications that
dynamic simulations have and the current available
simulation environments (like Estella, Vensim, Ithink,
etc.) have opened some new working lines inside SDPs,
where significant advances have not been produced in
the past few years and where traditionally used methods
and tools were becoming obsolete for the complexity
and magnitude of the actual software projects.

Significant progress has been made in the area of
software process simulation which is gaining an in-
creasing interest among academic researchers and
practitioners. As a result of this increasing interest,
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several dynamic models have been developed over the
last decade (Rodrigues and Williams, 1997; Kellner
et al., 1999). Each of these dynamic models contains a
set of parameters and functions used to model the organi-
sation and the management policies which can be ap-
plied to the software projects.

The size, complexity, and detail of a model are in-
terrelated. Together, these characteristics form a delicate
balance between a model’s appropriateness of power
and ease-of-use for its intended audience. A powerful
model, one rich with possibilities for experimentation,
will require more size, complexity, and detail than a less
powerful model. With power, however, comes the like-
lihood for greater difficulty in understanding and using a
model.

More precisely, one of the obstacles that seems to
impede a more frequent application of the modelling and
simulation approach in the software engineering com-
munity is the large number of parameters and functions
which require to be initialised in order to run simula-
tions. This fact can be an important drawback at the
early stages of a project when the amount of information
is little (for instance, in one’s first contacts with a client).



The model described in this paper brings a new
contribution to the software process modelling and
simulation work. The modelling approach has been
determined by the simplification of Abdel-Hamid and
Madnick’s model using the works of Eberlein (1989)
about understanding and simplification of models, as an
alternative to the general modelling approach.

This paper has two main objectives. The first is to
justify the development of a reduced dynamic model
(hereinafter RDM) which should be easy to learn and
understand and could be used at the initial phases of a
project where the available or known information about
the project is little. This model has three goals: to allow
project managers to make initial estimations when the
amount of information is little; to allow researchers and
software project managers to experiment with strategies
for reducing software development cycle time and cost
through process improvements; and to provide a tool
for hands-on training. The second objective of this pa-
per is to present the results obtained from the valida-
tions of this RDM.

The structure of this paper is as follows. In Section 2, a
brief analysis and comparison of static and dynamic cost
models are outlined. The reasons found to develop a
simplified model with a smaller number of parameters
but still with a good capability of reproducing software
project dynamics are presented in Section 3. Sections 4
and 5 list the reduction process followed and describe the
model in detail. The testing activities and the validation
of the model are presented in Section 6. Section 7 sum-
marises the main results obtained and draws conclusions.

2. Cost models

Software cost estimation is the process of predicting
the amount of effort required to build a software system.
Cost estimates are necessary throughout the software
life cycle. Preliminary estimates are required to deter-
mine the feasibility of a project, whereas detailed esti-
mates are needed to assist with project planning. The
actual effort for individual tasks is compared with esti-
mated and planned values, enabling project managers to
reallocate resources when necessary.

Analysis of historical project data indicates that cost
trends can be correlated with certain measurable pa-
rameters. This observation has resulted in a wide range
of models that can be used to assess, predict, and control
software costs on a real-time basis.

Models can be categorised as either static models or
dynamic models. Static models are derived using re-
gression analysis on data collected from past software
projects and they require the number of code lines or the
number of function points as a primary input to provide
direct estimates of effort. Dynamic models capture the
dynamic and uncertain nature of software projects

providing information about not only the values of the
principal variables but their evolution.

We present a brief description of a traditional static
cost estimation model like the constructive cost model
(COCOMO) (Boehm, 1981) and of dynamic cost esti-
mation models. Also a hierarchical classification of dy-
namic models similar to that of static ones is proposed.

2.1. Static cost models

These models use empirically obtained formulas
(from a small sample of projects) to predict the required
data. These formulas are represented in the following
equation:

Resource = a - (estimated feature)”, (1)

where Resource can be the effort, development time,

human resource level, or technical documentation lines;

a and b are empirical constants derived from the cali-

bration of the model; “estimated feature” can be the

number of source code lines or function points, or an-
other previously estimated software pattern. Among the
traditional static cost estimation models, COCOMO

(Boehm, 1981), is considered as the most complete and

used model. COCOMO assumes that software require-

ments are not going to be altered after the plan and
requirement analysis phases. In this sense, it is similar to

Abdel-Hamid and Madnick’s model, which also con-

siders static client requirements. COCOMO includes the

analysis, design, code and test phases and it has been
formulated as a hierarchy of models.

The following gives a brief summary of each one of
the COCOMO models, detailing the aspects that are
interesting for this paper:

e Basic COCOMO is a cost model to make an approx-
imate prediction of the effort of software projects as a
function of program size. This model is applicable at
early project phases because of the little information
it requires and it follows a similar relation to Eq. (1).

e Intermediate COCOMO computes the effort from a
similar relation to (1) multiplied by an effort adjust-
ment factor (EAF). In order to obtain the EAF it is
necessary to evaluate 15 cost drivers. This model
can be applied when we have not only the number
of code lines but also a better understanding about
the project.

e Advanced COCOMO is a model that contains all the
characteristics of the previous models but makes an
evaluation of each of the cost drivers over each phase
of the project (analysis/design, code, and test). There-
fore, it is applicable when enough specific informa-
tion about each of the basic phases of the software
project is known.

Boehm and his colleagues have refined and updated
COCOMO to COCOMO II (Boehm et al., 2000), that
accounts for recent changes in software engineering



technology. Whereas COCOMO is reasonably well
matched to custom, build-to-specification software
projects, COCOMO 1I is useful for a much wider col-
lection of techniques and technologies. COCOMO 11
provides up-to-date support for business software, ob-
ject-oriented software, software created via spiral or
evolutionary development models, and software devel-
oped using commercial-off-the-shelf application com-
position utilities.

2.2. Dynamic cost models

SDPs can be considered as complex socio-techno-
logical dynamic systems whose patterns of behaviour
will mainly come determined by their internal structure
as well as the relations established inside the working
team. This fact allows the development of multi-attrib-
ute dynamic models to describe the feedback structure
of the system being modelled as well as the mental
process followed by project managers in decision mak-
ing. Decision making has been traditionally based on the
manager’s experience. The simulation of a dynamic
model offers the possibility of exploring the impact of a
change of technology and/or different management
policies over the project and the organisation before
beginning the development. It also makes possible the
accomplishment of post-mortem analyses. Applying
dynamic models to simulate the development process
leads one to consider two principal questions: What do
we have to do to fulfil the objectives imposed on the
project? And, what should we have done to fulfil the
objectives or to improve the final results?

The dynamic models for SDPs include a set of pa-
rameters and functions to help to investigate different
behaviours. These behaviours are controlled by the
management policies applied to the project, which can
be related to the project environment (initial estima-
tions, complexity of the software, etc.) and to the or-
ganisation and its maturity level. Table 1 shows the
different groups of parameters classified according to
their role.

The parameters and functions related to the initial
estimations (such as the number of tasks, time, cost,

Table 1
Classification of the parameters and functions of dynamic models for
software project dynamics

Related to

Project environment Organisation environment

Management policies ~ Maturity level

Initial estimations
Project complexity

Effort allocation Average delays
Personnel management Nominal values
Completion time Others

manpower, etc.) and project complexity (such as po-
tential productivity, effort allocated to training activi-
ties, etc.) are included within the group called “project
environment”. The parameters and functions related to
the different management policies which can be evalu-
ated and those related to the maturity level of the or-
ganisation are placed in the “organisation environment”
group. Within the subgroup “management policies”’, the
management policies related to the effort allocation and
daily manpower are included. Finally, the parameters
and functions related to average hiring, to rotation or
dismissals, to the average assimilation delays or to the
all kinds of restrictions over the completion time are
placed inside the “‘maturity level” subgroup.

All the parameters and functions of a model must be
initialised before the simulation begins. This is one of
the principal drawbacks of present dynamic models. The
other drawback is the difficulty understanding and val-
idating complex and large models. In many circum-
stances the project manager has a high level of
uncertainty with regard to the proper values for these
parameters. This is especially true at the early stages of a
project.

2.3. Comparing static and dynamic cost models

Comparing static and dynamic cost models has made
us consider that current dynamic models would be
placed at the intermediate level proposed by Boehm
(1981). That is, present dynamic models need to know
an important number of project and organisation attri-
butes (modelled as parameters and functions in the dy-
namic model) before being simulated.

Table 2 illustrates the equivalence we found between
static and dynamic cost models. The corresponding box
to dynamic models which are applicable at the early
stages, when we have little information about the project
but we need to have a rough idea of the evolution of the
fundamental variables, could be occupied by the RDM.
This is so because the RDM constitutes a significant
reduction of Abdel-Hamid and Madnick’s one, so that
the amount of information required to simulate the
RDM is approximately half the amount needed to

Table 2
Comparison between COCOMO models and existent dynamic models

Static cost models
(COCOMO)

Basic COCOMO RDM

Dynamic cost models

Intermediate COCOMO  Abdel-Hamid and Madnick (1991)
Draper Laboratory (Clough et al., 1992)

SEPS (Lin et al., 1997), etc.

Advanced COCOMO Madachy (1996)



simulate the Abdel-Hamid and Madnick’s model
(hereinafter the Extended Model).

3. Justification to develop a RDM

When considering how to apply Abdel-Hamid and

Madnick’s model to a local company, we realised that it
was very difficult or almost impossible to determine the
initial values for all the parameters and functions of this
model. The absence of historical databases and the large
number of parameters and functions (some of them hard
to understand by the project manager) made the appli-
cation unfeasible.

Although this was the principal factor that lead us to

develop the RDM, there were other factors:

The existing hierarchy of empirical estimation models
such as COCOMO (static and single attribute) sug-
gested us the possibility of creating a similar hierar-
chy of dynamic estimation models (multi-attribute)
depending on the information one has about the pro-
ject.

The existence of a generic common causal template
for R&D projects and software projects (Ramos
and Ruiz, 1997). This common template is described
in the next section.

The work of Eberlein (1989) about simplifying dy-
namic models. The simplification proposed by Eber-
lein consists of obtaining a reduced model from an
extended one by eliminating the feedback that is
not considered essential for the behaviour to be ana-
lysed.

3.1. Generic common causal template

The first dynamic models for SDPs were based on

other dynamic models developed to simulate R&D
projects (Roberts, 1978). Both types of systems have
enough similarities to proceed that way. A previous
comparative analysis elaborated with dynamic models
for both SDPs and R&D ones, has led us to obtain a
generic common causal template for these two kinds of
projects (Ramos and Ruiz, 1997). Fig. 1 illustrates this
diagram. It is composed of four principal feedback
loops: two positive and two negative. A brief description
of each loop follows:

First feedback loop. From an original measure of soft-
ware size, initial estimations for cost and develop-
ment time can be obtained by applying a static
model such as COCOMO. With these estimations
the required manpower is acquired through hiring ac-
tivities. Here it is important to notice that the dy-
namic models analysed model and simulate a single
project, so that it is not possible to consider the real-
location of existing staff from other projects. As the
project runs, one gets information about the real pro-

Initial Estimations

Estimations of cost and time

HiringActivit-ies @ i @ Schedule Pressure

NI

\ L Progress -——¥rrors
Training & communication +
overheads @ © ) @

- +
™ Productivity

Fig. 1. Generic common causal template.

gress. Comparing the values obtained with those orig-
inally estimated may lead to change some of the
estimations, such as time or cost, and possibly to de-
cide to hire manpower.

Second feedback loop. This loop illustrates the effects
caused by schedule pressure on the quality of the
products of SDPs. If the perceived completion time
is greater than the planned one, the project has
schedule pressure. To solve this, the project manager
can decide to hire more personnel or to do over-
work, since the possibility of reducing the size of
the completed system to meet the deadline is not
considered in the models analysed. However, a sus-
tained situation of overwork may result in a high ex-
haustion level of personnel, which increase the
number of errors in the project. This amount of
new committed errors requires a big effort in error
detection and rework activities, which restricts the
progress.

Third feedback loop. If the project manager decides to
hire new personnel he/she must take into account the
negative effects of this action. Apparently, the incre-
ment of the human resource level contributes to the
growth of productivity. However it is important to
remember that the relation between the level of per-
sonnel and the productivity obtained is not linear: it
is influenced by the increasing of communication
overhead. This is the well-known Brook’s Law which
states that ““adding manpower to a late project makes
it later” (Brooks, 1995). It is also important to notice
that new personnel productivity is significantly less
than that of expert personnel (that is, the personnel
who are used to the current project and technology,
and to the procedures of the organisation). Hence,
it is common to dedicate some effort of expert person-
nel to train the people just hired. These training activ-
ities contribute to decrease the net productivity of the
working team.

Fourth feedback loop. This is to illustrate the known
effect of creative pressure. When personnel know that
the project is behind schedule, they tend to increase
their efficiency. This is normally reflected in a reduc-



tion of dead times and, sometimes, the beginning of
overwork.

4. Reduction process of the extended model
4.1. Reduction methodology

Our approach to model simplification is based on
behaviour, with simplified models generating only se-
lected behaviours of the full model. The reduction pro-
cess followed is based on the work of Eberlein (1989)
about simplification and understanding of models. It is
possible to develop a smaller model, based on selected
dynamics generated by the original model (Abdel-
Hamid and Madnick’s model, in this case) and con-
taining only a set of the feedback loops in that one. The
smaller model has the feedback important in generating
the selected behaviour. Model simplification as used
here is similar, in spirit, to the eigenvalue-based loop
analysis of Forrester (1982).

The heart of simplification is the selection of levels to
include in the simplified model. All feedback paths pass
through levels, so that retaining only selected levels re-
sults in retaining only selected feedback.

One of the criteria we have followed when making the
choice of the levels to be retained has been keeping ““the
five numbers” over which project management is based
(Putnam and Myers, 1996):

e a measure of the quantity produced,

e a measure of the remaining time to complete the pro-
ject,

e a measure of production cost,

e an indication of product quality, and

e a measure of the average productivity.

In the RDM these measures are, respectively, the
accomplished tasks and the size of the project in tasks,
the size of the project in days, the size of the project in
effort (technician-day) as the cost of the project can be
obtained by multiplying the required effort and the
average daily cost of the personnel, the number of
committed errors, and the average working team
productivity (task/technician-day).

To obtain the selected levels from the Extended
Model, an aggregation of some of the original levels
from the Extended Model has been made. That is,

e No difference between expert and non-expert person-
nel. Both types of personnel have been included as a
single level called Personnel, which contains the total
number of people working in the project.

e No difference between active and passive errors in the
same sense of the Extended Model. Undetected errors
that may produce more errors in the system are called
active errors (for instance, a design error is a typical
example of an active error as it produces new errors
in the following phase). Errors that not produce other

errors and are detected and corrected in the testing

phase are called passive errors. In the RDM, both

types of errors have been included as a single level
called Errors.

e We consider that at the early stages of the project it is
very important to know, at each moment, the work
done (tasks accomplished), without distinguishing be-
tween the tasks developed and the tasks tested, and
we have therefore combined development and testing
into one activity.

The last assumption has been the one that has had the
most influence in the reduction of the Extended Model.

Once the levels have been selected, the next stage of
simplification is the creation of a simplified model. This
is done by cutting feedback links in the Extended
Model. The RDM retains the variables and nonlineari-
ties of the original model but only the feedback judged
to be essential to the behaviour of interest. Other vari-
ables that are required but not included in feedback are
turned into exogenous variables.

The levels of the RDM are shown in bold type in
Fig. 2, and coincide with the former values plus an-
other essential variable in any SDP: the human re-
source level.

4.2. Reduction obtained

Applying the previous criteria of reduction, the size of
the RDM is approximately the half of the Extended
Model size. The RDM does not contain some of the
parameters and functions hard to estimate by our local
project managers, such as the exhaustion level of the
personnel or the time required to recover.

Table 3 shows the corresponding percentages of re-
duction for variables, parameters, functions, and equa-
tions. As it can be seen, the reduction obtained for the
parameters and functions is higher than 50%.

The parameters and functions related to the produc-
tion and control subsystems have suffered the greatest
reduction compared with the Extended Model.

5. Description of the RDM

The RDM supports the same internal structure that
Abdel-Hamid and Madnick’s dynamic model and has
been implemented in Vensim which is a flexible and
easy-to-use simulation environment.

Fig. 2 shows the simplified causal diagram of the
RDM. ' It contains the main feedback and the main
variables of the dynamic model for SDPs. A description

! Further information about the model can be found at http:/
www.lsi.us.es/~informes/mdr.pdf.
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Table 3
Obtained reductions of the RDM compared to the Extended Model
RDM Extended Percentage of
Model reduction

Variables 67 138 48.5
Parameters 19 37 51.3

Functions 16 27 59.3

Equations 127 237 53.6

Total 95 189 50.3

of this causal diagram and of the most common ways of
behaviour of the variables follows.

Initial estimates are obtained based upon experience
and/or traditional estimation models (such as CO-
COMO (Boehm, 1981), Walston-Felix (Walston and
Felix, 1977) etc.). These initial estimations are for the
completion time, the number of tasks to be accom-
plished and the required effort and manpower. These
values are used to set the initial values for the levels of
the dynamic model.

As the project progresses, information about ac-
complished and remaining tasks becomes available. This
information is compared with the initial estimates in
order to decide if it is or is not necessary to update them,
especially those related to effort, time, and manpower.
This is because the real size of the project (measured in
number of tasks) is not known at these early stages of
the development.

Initial estimates are revised when schedule pressure
appears. The schedule pressure can be defined as the
difference between the present estimated effort to com-
plete the project on time and the remaining effort which
was initially estimated (see Eq. (2)). The former depends
on actual progress and the newly discovered tasks which
were not initially estimated.

Estimated effort — Remaining effort

Schedul = ini
chedule pressure Remaining effort

2)

So, if schedule pressure is positive it will indicate that

the project is delayed and if it is negative, it will indicate

that the project is advanced according to the initial es-

timates. A negative or positive pressure may affect the

human resource level which can vary by hiring, dis-
missals or turnover activities, as Eq. (3) shows.

A Human resource level
At

= Hiring — Dismissals
— Turnover (3)

The value of the human resource level directly affects
other important variables as the available effort to ac-
complish tasks, staff productivity, and thus the project
progress itself.

The relationship between the human resource level
and the obtained productivity is not linear. When the
human resource level grows, losses of productivity ap-
pear. These losses are due to the communication lines
established inside the working team and to the training
activities performed by the experts. Productivity is also
affected, in a positive way, by growing manpower which
is produced by eliminating dead times, a greater level of
experience and by seeing the progress that the project
has made (see Eq. (4)).

Productivity = A function of (human resource”,
daily manpower™, experience ™,
communication and training overheads™) (4)

On the other hand, when schedule pressure is positive
the model adjusts the detected delay by modifying not



only the human resource level. Changes may also affect
the daily manpower and the reduction of quality levels
of the final product, in the same way as the general
software development practices control positive sched-
ule pressures (Abdel-Hamid and Madnick, 1991). These
changes directly affect the error generation rate caused
by the new people just hired, by the exhaustion level of
personnel and by the reduction of the effort applied to
revision activities. However, as the error generation
rate grows, the required effort to detection and rework
activities will be greater. This directly affects the ef-
fort assigned to development activities, which is re-
duced.

As in real projects, the typical modes of behaviour of
dynamic models for SDPs depend on the value of
pressure at each moment, just as much in time as in
effort. These types of behaviour are also seen in the
RDM and can be summarised as follows:

When the schedule pressure is positive there are three
possible actions:

1. To increase the human resource level through hiring
activities. The amount of people hired will depend
on the manpower required and the time remaining
to complete the project. As it has been said before,
the immediate effects over the project will be positive
or negative. The positive effect is that productivity
will grow because of increasing manpower in the pro-
ject. The negative effect is that productivity may de-
crease because of communication and training
overheads.

2. To increase the daily manpower by raising the num-
ber of working hours in the project or reducing dead
time. However, increasing the number of working
hours has an important drawback, which must be no-
ticed: the growth of the exhaustion level of people,
which affects the error generation rate.

3. To decrease the effort assigned to revision activities
and allocate it to development ones. This decision
contributes to an increment in productivity, but the
quality of the final product decreases because of the
greater probability of errors.

When the schedule pressure is negative it is possible
to decrease the number of people assigned to the project
through dismissals. Furthermore, the RDM models the
motivational role of negative schedule pressure which is
to increase the project members’ slack time. By slack
time we mean the fraction of project time lost on non-
project activities. The loss in productivity due to moti-
vational factors may lead, if not controlled, to unex-
pected delays in the project.

6. RDM testing

A simulation is a simplification of the real world, and
thus inherently an approximation. As indicated in

(Robertson, 1997) it is not possible that a model is ab-
solutely correct. Therefore model testing is concerned
with creating enough confidence in a model for its re-
sults to be accepted. RDM testing focused on three ac-
tivities: verification, validation, and evaluation.

6.1. Verification

Verification of a model consists of activities that fo-
cus on its internal workings. The RDM verification ac-
tivities fall into two categories:

e Verifying the structure of the model. The tests per-
formed were focused on exploring the dimensional
consistency of equations in the model, the ability of
these equations to handle extreme values and whether
the structure of the model is adequate to address the
problems to be studied.

o Verifying the behaviour of the model. The tests made
to verify the model behaviour were of two kinds: pa-
rameter (in)sensitivity and structural (in)sensitivity.
The final results of these tests were positive.

6.2. Validation

Validation of the RDM consisted of activities that
compared it to a real system. In order to validate the
RDM, the example case from Abdel-Hamid and Mad-
nick (1991) was firstly used. The results verified that the
RDM was able to reproduce the same evolution pat-
terns as the Extended Model. Then, we used the RDM
to simulate the behaviour of a real SDP jointly under-
taken by two local software development companies.
The assistance of the project manager was invaluable in
this second test.

The validation activities fall into two categories:
validating the structure of the model and validating the
behaviour of the model. Validating the structure of
the RDM consisted of comparing the implementation of
the model with a real system. Validating the behaviour
of the model consisted of executing the RDM and
comparing its output with what would be expected from
the real system or what has been observed in the real
system. When comparing the model’s output with what
was expected by the project manager, the general be-
haviour trends of the model were tested. A summary of
the results obtained follows.

6.2.1. Behaviour of the RDM compared with the Ex-
tended Model: Example case

Figs. 3 and 4 illustrate the evolution of different vari-
ables of the project in both models. The former shows that
the number of errors at the end of the project is greater in
the RDM than in the Extended Model. Nevertheless, both
curves have similar evolution patterns, gradually growing
at the initial and intermediate phases to quickly grow at
the final ones. In Fig. 4 we observe that the human
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resource and productivity evolution in the RDM is similar
to that of the Extended Model.

From these results, it is possible to say that the RDM
has lost precision compared to the Extended Model.
This is due to the process of simplification which has not
considered some development aspects that the Extended
Model includes and which have been enumerated in
Section 4. Nevertheless, the RDM has avoided the dif-
ficulties of estimating some parameters and functions at
the initial project phases. At these phases, when the
project manager has little information about the SDP,
the RDM provides an important support, showing the
behaviour of the main project variables.

6.2.2. Post-mortem analysis of a SDP

The project selected for studying in this work is a
personnel management system (hereinafter PMS) jointly
carried out by two local software development compa-
nies.

The data for initialising the parameters and levels of
the RDM have been collected from the tracking docu-
ment of the original project and from the experience of

the project manager. These data are for the design, code,
and testing phases. Therefore, the analysis phase and
other final activities are not considered. The program-
ming environment used was COBOL and a relational
database.

The initial estimated effort to carry out the project
was 208 technicians-day (t-d) whereas the actual final
effort was 404 t-d. The estimated completion time was
101 days; the real value was 141 days. Therefore, the
underestimation in effort and time for this project were
respectively, 48% and 28%. The average number of
technicians participating in the project was 6 and the
number of lines of code (LOC) was 67,800. The project
manager defined a task as 270 LOC. On this basis, the
project was composed of, approximately, 251 tasks.

85% of the real effort was allocated to the develop-
ment activities (design and code) and the remaining
15% to the test phase. On the basis of the project
manager’s experience, 10% of the development effort
was spent in revision activities, so that the total effort
spent in development was 309 t-d. From this, the de-
velopment productivity for this project was 219.4 LOC/
t-d.



Development productivity
= size in LOC/development effort = 67,800,/309
=219.4 LOC/t-d

Other data for the real project are shown in Table 4.
These values are used to set the initial values of the
parameters and levels of the RDM for simulation runs.
For each one, the name of the parameter in the model, a
short description of its meaning, and its value at the
beginning of the project are shown.

The evolution of necessary effort, of completion time,
and of remaining tasks to finish the PMS obtained with
the RDM are shown in Fig. 5. Comparing these results
with the real values, it can be seen that completion time is
151 days in the simulation (instead of the real 141 days)
and the effort is 410 t-d (instead of 404 t-d). Therefore,
the deviations have been, respectively, of 7% and 1.5%.

Also, we can see from Fig. 5 that the first important
adjustments were made about half-way through the
project when it was detected that the number of re-
maining tasks was greater than might have been ex-
pected. These adjustments coincide with adjustments
made in the actual PMS project because more of half of
the estimated time had been spent but more than the
half of the tasks still remained to do. If the slope of the
curve representing the remaining tasks had not changed,

it would have seriously damaged the time and the final

effort. Two additional considerations can be observed in

Fig. 5: as in the majority of the projects of this organi-

sation, the effort forecasts are modified before the time

ones; and the modifications of effort and time are done
simultaneously.

If the results of the simulation are compared with the
real behaviour of the project (this was possible thanks to
the help of the project manager), we can see that the
estimated time and effort obtained by means of the
simulation agree with the real time and effort. This is
especially true in two aspects:

e The early revisions were made when half of the time
had been spent.

e The revisions carried out for adjusting the detected
deviations, simultaneously affected both the time
and the effort.

Hence, the RDM not only follows the behavioural
patterns of Abdel-Hamid and Madnick’s model. It is
also useful for simulating projects of our local software
development organisations.

6.3. Evaluation
The evaluation activity focused on the usefulness of

the model. The usefulness of the RDM was determined
through observation of its use and the perceived benefits

Table 4

Representative parameters of the project and organisation environment

Name Description (Units) Value
ADMPPS Average daily manpower per staff (day/day) 0.4
DESRWD Average delay for QA and rework (days) 5
HIASDY Average hiring and assimilation delay (days) 20
INUDST Initial understaffing factor (dimensionless) 1
MNHPXS Most hires per full time equivalent staff (technicians/technicians) 1.5
MXSCDX Maximum schedule completion date extension (dimensionless) 50
TRNSDY Time delay to transfer people out (days) 1
DLINCT Average delay to incorporate discovered tasks (days) 5
AVEMPT Average employment time (days) 1000
TRPNHR Number of trainers per employee (dimensionless) 0.15
UNDESM Man-days underestimation fraction (dimensionless) 48
UNDEST Tasks underestimation fraction (dimensionless) 15
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5001-d T
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Fig. 5. Necessary effort, completion time, and remaining tasks evolution for PMS.



of interaction with it, and was evaluated with respect to
the model structure and its behaviour. Evaluating the
structure of the model focused on the level of detail in
the model. Evaluating the model structure consisted of
one test to determine the appropriateness of the model’s
characteristics for its intended audience. The purpose of
the evaluation of the model’s characteristics, with re-
spect to its intended audience, was to examine whether
the size, complexity, and detail of the model were ap-
propriate.

As stated in Section 1, researchers and practitioners
are the intended audience of the model. The RDM is
considered to be appropriate for this audience as it al-
lows both researchers and practitioners to experiment
with different strategies when they do not have enough
information to calibrate a more detailed model. Hence,
the RDM can be used as a tool for hands-on training to
illustrate the advantages and disadvantages of the
strategies experimented.

Evaluating the behaviour of the model focused on the
insight gained through use of the model. No unexpected
counterintuitive behaviour was exhibited by the model.
The model does, however, allow known paradoxical
behaviour to be examined (for example Brook’s Law
(Brooks, 1995)). Our industrial collaborator was able to
verify that the model correctly simulated a number of
scenarios that were not in mind when the model was
built.

7. Conclusions

Software process simulation models represent a
meaningful advance compared to static models because
they help us to understand the evolution of projects.

Dynamic models use a number of parameters and
functions to characterise the project and the organisa-
tion environment. Having the initial values for all of
these parameters and functions is a requirement to run
simulations of it. Unfortunately, the absence of histor-
ical project databases and the uncertainty of software
projects make it difficult to set these initial values. So a
simplified model, with a smaller number of parameters
and functions, but still producing useful results, is nec-
essary. To obtain this reduced model, a theory of the
simplification of dynamic models (Eberlein, 1989) has
been applied. It should be noted that the simplified
model is itself a complete model, which can be used for
simulation and for policy experimentation. The model
presented has been validated against the results obtained
for Abdel-Hamid and Madnick’s Example Case, and
has been used to make a post-mortem analysis of a real
project in an industrial environment.

The RDM is an useful tool which can be used both to
make estimations and to experiment with different
management policies, particularly in the following cases:

e When there is little information about the SDP.

e When the organisation does not have a historical pro-
ject database or this has not been completed enough
to define an important number of project and devel-
opment process attributes, especially at the early pro-
ject phases.

e When a fully, simple, and easy to learn model is nec-
essary, for example, in training activities for software
project managers.
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