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Abstract

In this paper we propose a new cache management scheme for online analytical processing (OLAP) systems based on the us-

ability of query results in rewriting and processing other queries. For effective admission and replacement of OLAP query results, we

consider the benefit of query results not only for recently issued queries but for the expected future queries of a current query. We

exploit semantic relationships between successive queries in an OLAP session, which are derived from the interactive and navi-

gational nature of OLAP query workloads, in order to classify and predict subsequent future queries. We present a method for

estimating the usability of query results for the representative future queries using a probability model for them. Experimental

evaluation shows that our caching scheme using the past and future usability of query results can reduce the cost of processing

OLAP query workloads effectively only with a small cache size and outperforms the previous caching strategies for OLAP systems.

� 2002 Elsevier Inc. All rights reserved.
1. Introduction

Queries used in online analytical processing (OLAP) systems perform complex multi-dimensional aggregation over
a huge amount of data in data warehouses (DWs). They require fast response time for interactive execution. A

commonly used approach to process the expensive OLAP queries efficiently is to exploit materialized views (MVs), i.e.,

the results of pre-selected or previously issued queries which are stored in DWs. 2 This approach requires methods for

selecting appropriate views to materialize in a limited space in DWs and rewriting given queries using the MVs to

process them efficiently. Static view selection techniques deliver a solution optimized for a pre-defined set of queries,

hence we should provide appropriate input queries and periodically reselect MVs to cope with the changing query

workloads in OLAP systems. Query result caching approaches store the results of the queries issued by users dy-

namically, replacing some previous query results in the cache with a new one. In order to process online ad hoc queries
efficiently, an effective cache management scheme is required that can maintain the query results useful for the future

query workload. Most of the proposed caching schemes, however, select the query results for caching based on their re-

computation cost and the statistics of past queries. Moreover, they cannot handle general types of OLAP queries

having selection conditions in processing queries using MVs and caching their results.

In this paper, we propose a new cache management scheme for OLAP systems based on the usability of a query

result which means the profit that we can obtain by using the query result in processing other queries. In the scheme,

we use the usability of query results to measure their value for caching. Due to the computation dependencies among

OLAP queries derived from the hierarchical classification information in DW schema and the semantically overlapping
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selection predicates of the queries, there are in general various ways of evaluating a query using a different set of MVs,

which greatly differ in execution cost. Thus the usability of a materialized view is affected by other MVs in the cache

and determined by the employed query rewriting method.

For more effective management of OLAP query results, we consider the usability of the query results not only for

recently issued queries but for the predicted future queries of a current query. Query workloads in OLAP applications
have been known to have an explorative and navigational nature (Codd et al., 1993; Sapia, 1999). In an OLAP session,

users often create a subsequent query based on the previous query result, performing an OLAP operation such as a

drill-down, roll-up, and slice&dice. We classify the possible subsequent future queries of the current one considering

the semantic relationships between successive OLAP queries. For each query result in the cache, we define a set of

representative future queries which can be rewritten using it, presenting a probability model for them. We compute the

goodness of a query result based on the profit that we can obtain when we process its representative future queries

using the query result.

In this paper, we utilize the semantic rewriting method for OLAP queries proposed in our previous work (Park et al.,
2002) to evaluate the past and future usability of query results. However, the notion of usability and the proposed

caching schemes are not dependent on a specific query rewriting method. We show by experiments that our cache

management scheme using the usability of query results for future queries as well as the past ones can reduce the cost of

processing OLAP queries more effectively than the previous query result caching algorithms for DWs and OLAP

systems in various query workloads.

The rest of the paper is organized as follows. We first discuss the related work and present basic terminology in

Section 2. In Section 3, we propose a cache management scheme using the usability of query results for past queries. In

Section 4, we suggest a method for predicting subsequent queries in an OLAP session and describe a caching scheme
based on the future usability of query results. We show our experimental studies in Section 5 and draw conclusions in

Section 6.
2. Background

2.1. Related work

There have been two approaches for selecting views to materialize in DWs, i.e., static view selection and dynamic

caching of query results. Static view selection methods proposed some kinds of heuristic search techniques to select a

set of views that optimize evaluation cost of the pre-defined queries under a given storage space limitation or view

maintenance cost constraint (Baralis et al., 1997; Gupta, 1997; Gupta and Mumick, 1999; Harinarayan et al., 1996;

Theodoratos and Sellis, 1997). In these techniques, however, the MVs are selected with respect to a set of pre-defined

queries, hence they cannot be effectively used in processing the real query workloads which are likely to change and

become much different from the given queries.

Recently, query result caching approaches for DWs and OLAP systems have been proposed which select query
results to be stored in the cache dynamically (Scheuermann et al., 1996; Shim et al., 1999; Deshpande et al., 1998;

Kortidis and Roussopoulos, 1999; Albrecht et al., 1999; Roy et al., 2000; Kalnis and Papadias, 2001). These ap-

proaches presented some goodness measures to choose previous query results to replace from the cache in order to

adapt the cache contents to the changing workload. The DW cache manager proposed by Scheuermann et al. (1996)

uses the reference rate and computation cost of the stored query results to select replacement victims. It does not

consider inter-dependencies among OLAP queries and only uses the result of an exactly matched query in the cache in

processing queries, hence it cannot evaluate OLAP queries efficiently. Shim et al. (1999) proposed a method for

processing canonical OLAP queries using other MVs and caching the results based on the re-computation cost.
However, they only considered computation dependencies on the result of a single cube query which is a simple ag-

gregation query with no selection condition. The dynamic view management technique proposed by Kortidis and

Roussopoulos (1999) uses the cost of re-computing MVs using other MVs in the DW as a goodness measure for the

MVs, but like the method suggested by Shim et al. (1999), it can evaluate queries only from one father materialized

view in the cache. Furthermore, the authors focused on a limited class of queries whose selection region can only have

a full range or a single-valued range on each dimension. The replacement strategy for multi-dimensional objects used

by Albrecht et al. (1999) also takes dependencies between cached objects into consideration and uses the re-compu-

tation cost of the objects as a parameter in their profit measure.
Roy et al. (2000) proposed an automatic query result caching system which is closely coupled with a Volcano-like

cost-based query optimizer. They cache intermediate results of queries generated during query evaluation as well as

final query results. They proposed an incremental algorithm that selects query results to be stored in the cache, based
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on the benefit of caching a particular query result to the recent query workload. However, their algorithm is too

expensive due to its scheme to reselect intermediate or final results to be stored in the cache from scratch, potentially

large number of nodes in the AND-OR DAG of candidate intermediate or final results for caching, and the overheads

in computing the benefits of candidate nodes repetitively, which makes the algorithm inappropriate and inefficient for

online cache management. Kalnis and Papadias (2001) proposed an architecture for caching query results in a network
of multiple distributed OLAP cache servers. They proposed three caching policies suitable for different configurations

of the network. However, their caching algorithm can be thought of as a specialization of the algorithm suggested by

Roy et al. (2000), which only caches the final query results. Moreover, they only support aggregation queries with no

selection condition which involve a whole view in the data cube lattice and the queries are calculated from the cached

result of one of their descendent views. That is a simple and unpractical workload in OLAP applications.

In this paper, we do not consider some well-known cache replacement schemes such as LRU and LFU that are often

used for page-based caching in relational database systems and operating systems since we believe that they are not

appropriate for caching query results in DWs and OLAP systems. Query result caching is different from the page-based
caching in many ways: query results have different sizes, execution costs of queries are different from each other, and

there exist computational dependencies among query results.

To answer queries efficiently using the stored query results, a query rewriting technique that can make effective use

of the MVs is required. Several rewriting strategies for conjunctive queries and aggregation queries have been studied

in the literature (Chaudhuri et al., 1995; Levy et al., 1995; Srivastava et al., 1996; Zaharioudakis et al., 2000; Goldstein

and Larson, 2001). In the previous studies (Park et al., 2001a, 2002), we exploited semantic information in DWs and

the characteristics of OLAP queries, and proposed a new method for rewriting OLAP queries using multiple MVs

together to yield a general type of rewriting which can be executed efficiently. Our rewriting method uses a greedy
heuristic algorithm to select a set of MVs to be used in rewriting a given query. At each selection of a materialized

view, the algorithm selects the MV that gives the maximum profit for the remaining selection region of the query and

generates a query over the MV with a selection predicate determined by the overlap of selection regions. The results

of all the sub-queries are integrated into a final result using either a union or a union-all followed by a group-by

operator.
2.2. Basic terminology

DWs for the relational OLAP systems typically have a star schema consisting of a fact table and a set of d dimension

tables. The fact table has foreign keys to all dimension tables whose values map a tuple in the fact table to a point in the

d-dimensional domain space formed by the dimension tables. We suppose that we can obtain a dimension hierarchy

from each dimension table, which is defined by consecutive functional dependencies among sets of dimension attri-

butes, called dimension levels, in the dimension table. The Cartesian product of all dimension hierarchies generates a

partially ordered set S ¼ ðDH; 6Þ defined by a class DH of the ordered sets of dimension levels from all different

hierarchies and a partial ordering relation6 among the elements in DH derived from the functional dependencies in all

hierarchies. The poset S can be represented as a lattice called the Dimension Hierarchies (DH) lattice. The set of at-
tributes in a node in the lattice can be used as a criterion for selecting or grouping the detailed data in the fact table.

The OLAP queries we consider in this paper are un-nested single-block aggregate queries over the fact table and

dimension tables. They select the detailed data with a selection predicate and then aggregate them by grouping at-

tributes. The selection and grouping attributes are dimension attributes and can be specified by a node in the DH

lattice, called the Selection Granularity (SG) and Aggregation Granularity (AG) of the queries, respectively. The se-

lection predicate expressed in a disjunctive canonical form can be geometrically represented as a set of hyper-rectangles

in the d-dimensional domain space, called the selection region (R) of the queries. The queries may contain a set of

aggregate functions AGG on the measure attributes and a HAVING condition HAV on the grouping attributes or
aggregate functions. Using these components of the queries, a canonical form of the OLAP queries in our paper is

defined as
qðSG;R;AG;AGG;HAVÞ
SGðqÞ, RðqÞ, AGðqÞ, AGGðqÞ, and HAVðqÞ denote the elements in the canonical form of the query q. For simplicity in

notation, we also use the notation SGðqÞ and AGðqÞ to denote the union of the dimension levels in the SG and AG of

q. AGðq; iÞ and SGðq; iÞ (16 i6 d) denote the dimension levels from the dimension hierarchy of the dimension di
contained in AGðqÞ and SGðqÞ, respectively, and Rðq; iÞ is the set of selection ranges on the dimension di in RðqÞ.

We assume that valid queries in OLAP systems select the detailed data on the SG that is not finer than their AG,

satisfying SGðqÞPAGðqÞ. For the sake of simplicity and usefulness in query rewriting, we only consider the MVs that
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store the results of canonical form OLAP queries with no HAVING condition. Then we can prove that if a materi-

alized view mv satisfies the following condition for a given query q, it can be used in rewriting q (Park et al., 2002): 3
3 Th

interse

(Park
AGðmvÞ6AGðqÞ; RðmvÞ \� RðqÞ 6¼ / and AGGðmvÞ � AGGðqÞ ð1Þ

We call such materialized view the candidate materialized view for rewriting the query.

In rewriting a given query, a new query is generated over each MV or the fact table chosen for rewriting irrespective

of the employed query rewriting method. The query performs selection and/or aggregation over the selected MV or the

fact table. We call the selection region of the query the query region for the involved MV or the fact table.
3. A caching scheme based on past usability

In this section, we propose a new cache management policy termed the Lowest-Usability-First for Past queries (LUF-

Past) which is based on the usability of query results for the recently executed queries. The past usability reflects how

effectively the query results can be used for the current query workload that is represented by the k different queries

most recently executed.
Let MV be the set of MVs currently in the cache and Qk be the set of different k queries that have been executed most

recently. The replacement policy selects MVs in the reverse order of the total profits gained by each materialized view

in processing the queries in Qk. This policy utilizes the temporal locality in the OLAP query workload and keeps the

MVs in the cache that maximize the total profit in evaluating the recently issued queries.

Given a materialized view mv in MV that is usable in computing a query q, the profit of mv for q means the re-

duction in query execution cost that we can achieve by processing q using mv. The profit can be estimated by the

difference between the execution costs of two queries, one over the fact table ft and the other over mv, having the same

selection region. Specifically, given a query region QRðmv; qÞ for mv, the profit of mv in rewriting q using MV is
obtained as
profitðmv; q;MVÞ ¼ costðft;RðqÞÞ � ðcostðmv;QRðmv; qÞÞ þ costðft;RðqÞ �� QRðmv; qÞÞÞ
ffi costðft;QRðmv; qÞÞ � costðmv;QRðmv; qÞÞ
The execution cost of a query over mv or ft with a query region QR generated in query rewriting can be estimated using

an extended linear cost model (Park et al., 2002). We assume that special access methods such as the bitmap join index

(O�Neil and Graefe, 1995) are available for fast access to the fact table while MVs, i.e., the stored query results have no

such index or clustering on their attributes, which is a typical configuration in real-world DW systems. We also

suppose that the values of dimension attributes are uniformly distributed. Thus we have
costðmv;QRÞ ¼ Nmv and costðft;QRÞ ¼ min nft �
sizeðQRÞ
sizeðRðftÞÞ ;Nft

� �
where Nmv and Nft denote the number of pages in mv and ft respectively, nft is the number of tuples in the fact table, and

sizeðRÞ denotes the size of the area of the selection region R.
The past usability of mv is defined as the weighted sum of the rewriting profits of mv for the queries in Qk, i.e.,
past-usabilityðmv;Qk;MVÞ ¼
X
qi2Qk

profitðmv; qi;MVÞ � wðqiÞP
qj2Qk

wðqjÞ
We apply an exponential decay function to the weight of the queries in Qk in order to decrease their significance to the

past usability of MVs as new queries are executed and inserted into Qk. Let t be the elapsed time represented by the

number of queries performed since the last execution of a query qi in Qk and T be a constant that controls the decay
rate. Then, the weight of qi is computed by
wtðqiÞ ¼ wt�1ðqiÞ � e�
t
T and w0ðqiÞ ¼ 1
The MV replacement and admission algorithm using the LUF-Past scheme is shown in Fig. 1. The past usability

normalized for the size of a materialized view is calculated for each materialized view in the cache and used as a

measure for selecting MVs to replace when there is not enough space for storing the result of a current query. In the

algorithm, we first suppose that the result of the current query qc is stored in the cache and select victims from the cache
e region intersection operation \� between the selection regions of two queries is defined as the set of hyper-rectangles which are the result of

ction between two hyper-rectangles contained in two selection regions. The region difference operation �� can also be defined in a similar way

et al., 2001a).



Fig. 1. The LUF-Past cache management algorithm.
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iteratively until the total size of the remaining MVs becomes no greater than the cache size. Whenever a materialized

view is replaced from the cache, past usabilities of the other MVs should be re-computed by rewriting the queries in Qk

using the MVs. During these repetitive selections, if the stored result of the current query qc is chosen as the next victim
for replacement, we do not admit the result of qc and keep all the previous MVs in the cache.

For efficient implementation of the above algorithm, we use the rewriting profit graph, which is a weighted bipartite

graph G ¼ ðMV [ Qk;E; f Þ, where E ¼ feijjeij ¼ ðmvi; qjÞ;mvi 2 MV; qj 2 Qk; and mvi is a candidate materialized

view for qjg and f : E ! R such that f ðeijÞ ¼ profitðmvi; qj;MVÞ. This graph represents the usage relation between the

set of MVs and the set of k recently executed queries, including the profits of the MVs in rewriting the queries. Fig. 2

shows an example of the rewriting profit graph. In the graph, there exists an edge eij between a node for mvi inMV and a

node for qj inQk for which mvi is one of the candidate MVs. The weight function f ðeijÞ on the edge eij gives the rewriting
profit of the materialized view mvi for the query qj. Using this graph, we can reduce the overheads of performing query
rewriting using remaining MVs and computing usability of the MVs repetitively in the algorithm. The cache manager

maintains and updates the rewriting profit graph while caching query results.
4. A caching scheme based on future usability

In this section, we propose a cache management scheme based on the usability of query results for future queries.

We first classify the subsequent queries of a currently executed query into four different categories using relationships



Fig. 2. An example rewriting profit graph.
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between two consecutive queries in an OLAP session. We take into account the benefit of a materialized view in

processing possible subsequent queries of the current query, called the future usability of the materialized view. We

present another cache management policy for the results of OLAP queries, termed the Lowest-Usability-First for

Future queries (LUF-Future), which exploits the future usability of MVs. It predicts subsequent queries that can be

answered using each MV in the cache and calculates the profits of the MV in processing the queries. Since it is not

practical to consider all the possible subsequent queries of the current one, we select a set of representative queries that

can be processed using the MV, based on query types, aggregation granularities, and query regions for the MV, and

then compute the profits using them. We also consider the probabilities of the representative queries to estimate the

future usability of MVs.

4.1. Classification of the subsequent queries

We assume that the aggregation granularities of two consecutive queries in the same OLAP session are ordered by

the computation dependency. According to the order between them, the subsequent query can be a drill-down or roll-

up query. A drill-down (roll-up) subsequent query has an aggregation granularity finer (coarser) than that of the

preceding one. We also consider relationships between their selection granularities and selection regions to classify the

subsequent OLAP queries.

Definition 1. Let q0 be a subsequent query of the query q.

(1) q0 is a non-selective drill-down (ND) query from q if

AGðq0Þ < AGðqÞ; SGðq0Þ ¼ SGðqÞ and Rðq0Þ ¼ RðqÞ:
(2) q0 is a selective drill-down (SD) query from q if

AGðq0Þ < AGðqÞ; SGðq0Þ6SGðqÞ; Rðq0Þ � RðqÞ;

SGðq0; iÞ < SGðq; iÞ ! Rðq0; iÞ � Rðq; iÞ and Rðq0; iÞ � Rðq; iÞ ! SGðq0; iÞ ¼ AGðq; iÞ:
(3) q0 is a non-selective roll-up (NR) query from q if

AGðq0Þ > AGðqÞ; SGðq0Þ ¼ SGðqÞ and Rðq0Þ ¼ RðqÞ:
(4) q0 is a selective roll-up (SR) query from q if

AGðq0Þ > AGðqÞ; SGðq0ÞP SGðqÞ; Rðq0Þ � RðqÞ;

SGðq0; iÞ > SGðq; iÞ ! Rðq0; iÞ � Rðq; iÞ and Rðq0; iÞ � Rðq; iÞ ! AGðq0; iÞ ¼ SGðq; iÞ:

Non-selective drill-down (roll-up) queries decrease (increase) the AG of the preceding query in the DH lattice

without changing its SG and selection region. Selective drill-down queries restrict the range of values of some group-by

attributes in the result of the preceding query q and then decrease its AG. Hence, they have a smaller selection region
and a finer AG than q. The SG also decreases if users reduce the selection region of q on a dimension level in the AG of
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q which is lower than the level of the same dimension in the SG of q. Therefore, the set of all possible selection

granularities of the selective drill-down queries is SGSDðqÞ ¼ fnðn1; n2; . . . ; ndÞjni 2 fSGðq; iÞ;AGðq; iÞgg.
Selective roll-up queries, on the other hand, expand the range of values of some aggregation attributes in the result

of the preceding query q and increase the AG. Hence, they have a larger selection region and a coarser AG than q.
During navigation through the DH lattice in an OLAP session, users often issue a selective roll-up query to return to
the state in which they have executed a selective drill-down query. We assume that if a selective roll-up query q0 ex-
pands the selection region of the preceding query q on a level of a dimension higher than that of the same dimension in

the SG of q, the dimension level of the same dimension in the AG of q0 should be equal to the one in the SG of q. The
set of all possible AGs of the selective roll-up queries is defined as
AGSRðqÞ ¼ fnðn1; n2; . . . ; ndÞjAGðq; iÞ6 ni 6 SGðq; iÞð16 i6 dÞ and there exists j s:t: nj ¼ SGðq; jÞg

We also denote the sets of all possible AGs of a drill-down query and a non-selective roll-up query by

AGDDðqÞ ¼ fnjn < AGðqÞg and AGNRðqÞ ¼ fnjAGðqÞ < n6 SGðqÞg, respectively.

Example 1. Consider a DW with a star schema shown in Fig. 6 and assume that the dimensions in a node in the DH

lattice are in order of Part, Customer, Supplier, and Time. Suppose that a user issues an OLAP query q1 in a canonical

form where SGðq1Þ ¼ ðnone; nation; none; yearÞ, Rq1 ¼ fðð�1;þ1Þ; ½‘Korea’; ‘Korea’�; ð�1;þ1Þ; ½1991; 2000�Þg,
AGðq1Þ ¼ ðbrand; city; none;monthÞ, AGGðq1Þ ¼ fSUMðpriceÞg, and HAVðq1Þ ¼ null. The query asks for the total

price of the parts ordered from Korea between 1991 and 2000 aggregated by the brand of the parts, the city that the

customers are located in, and the month when the orders were placed.

On the result of q1 the user can generate a non-selective drill-down query q2 that performs drill-down along the

Customer dimension to get the total price of the same parts aggregated by each brand, customer, and month. It has the

aggregation granularity AGðq2Þ ¼ ðbrand; name; none;monthÞ which is finer than that of q1 while the SG, R, AGG,
and HAV of q2 are the same as those of q1. If the user rolls up the result of q2 by one level along the Part dimension, the

next query q3 will be a non-selective roll-up query from q2 which computes the total price of the same parts aggregated

by each group of the parts, customer, and month. We have AGðq3Þ ¼ ðgroup; name; none;monthÞ and the other

components are the same as those of q2.
Now suppose that the user wants to focus on the parts ordered only from July to December in year 2000 and

compute their total price aggregated by each group, customer, and day of order. He will generate a selective drill-down

query q4 from q3 which reduces the selection region of q3 over the Time dimension and drills down by one level along

the same dimension. We have SGðq4Þ ¼ ðnone; nation; none;monthÞ, Rðq4Þ ¼ fðð�1;þ1Þ; ½‘Korea’; ‘Korea’�;
ð�1;þ1Þ; ½2000=7; 2000=12�Þg, and AGðq4Þ ¼ ðgroup; name; none; dayÞ. Finally, if the user intends to return to the

previous result of analysis, he will issue the query q3 again, which will perform a selective roll-up from q4.

The other types of queries popular in OLAP applications include slice&dice and pivot queries (Chaudhuri and

Dayal, 1997). The slice&dice queries slice the result of the preceding query with a slicing value on a particular di-

mension and then aggregate the data in the hyper-plane by some levels of the other dimensions. They can be answered

by performing a local operation over the previous query results in the front-end OLAP tools or can be regarded as the

selective drill-down queries in Definition 1. The pivot queries can also be processed by a local operation in the front-

end tools.

4.2. Aggregation granularity of the subsequent queries

To calculate the profit of a materialized view in the cache, we only have to consider the subsequent queries that can

be rewritten using the MV. We find the set of possible AGs that such queries can have. We first identify three sets of

nodes in the DH lattice for the AGs of different types of subsequent queries.

Observation 1

(1) Given a query q and a materialized view mv satisfying AGðmvÞ < AGðqÞ, let AGDDðq;mvÞ ¼ fnjAGðmvÞ6
n < AGðqÞg. If q0 is a drill-down query from q which satisfies AGðq0ÞPAGðmvÞ, there exist a node n in
AGDDðq;mvÞ such that n ¼ AGðq0Þ, and for all n in AGDDðq;mvÞ, there exists a drill-down query q0 from q which

satisfies AGðq0Þ ¼ n.
(2) Given a query q and a materialized view mv satisfying AGðmvÞ6SGðqÞ, let AGNRðq;mvÞ ¼ fnjLUBðAGðmvÞ;

AGðqÞÞ6n6SGðqÞ;n 6¼AGðqÞg. If q0 is a non-selective roll-up query from q which satisfies AGðq0ÞPAGðmvÞ,
there exist a node n in AGNRðq;mvÞ such that n¼AGðq0Þ, and for all n in AGNRðq;mvÞ, there exists a non-selective
roll-up query q0 from q which satisfies AGðq0Þ ¼ n.
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(3) Given a query q and a materialized view mv satisfying AGðmvÞ6 SGðqÞ, let fAGSRðq;mv; iÞ ¼ fnðn1;
n2; . . . ; ndÞjn 2 AGNRðq;mvÞ; ni ¼ SGðq; iÞg for a dimension di and AGSRðq;mvÞ ¼ [16 i6 dAGSRðq;mv; iÞ. If q0

is a selective roll-up query from q which satisfies AGðq0Þ P AGðmvÞ, there exist a node n in AGSRðq;mvÞ such
that n ¼ AGðq0Þ, and for all n in AGSRðq;mvÞ, there exists a selective roll-up query q0 from q which satisfies

AGðq0Þ ¼ n.

The above observation, which can be proven by Definition 1, implies that AGDDðq;mvÞ, AGNRðq;mvÞ, and

AGSRðq;mvÞ contain all the granularities that three types of subsequent queries rewritable using mv can have as their

AGs while they exclude any other granularities. Therefore, we only consider the granularities in those sets to find the

AGs of the subsequent queries that may have any effect on the future usability of mv. Fig. 3 shows AGDDðq;mvÞ,
AGNRðq;mvÞ, and AGSRðq;mvÞ for the example queries and MVs satisfying AGðmvÞ < AGðqÞ or AGðmvÞ <>
AGðqÞ.

4.3. Selection granularity and selection region of the subsequent queries

The selection granularity and selection region of a non-selective drill-down or roll-up query are identical to those of

the preceding query. As for a selective drill-down or roll-up query, however, there are potentially too many different

SGs and selection regions that the query can have. We cannot consider all the SGs and selection regions, and it is also

not fair to choose SGs and selection regions for representative subsequent queries randomly. We note that the cost of

processing a query using an MV is dependent on the size of the query region for the MV as given in the cost model in

Section 3. Therefore, we estimate the size of the overlap between selection regions of a subsequent query and an MV
using the selection regions of the preceding query and the MV. To reduce the number of representative subsequent

queries, we consider the selective queries that restrict or expand the selection region only along a single dimension.

4.3.1. Selective drill-down queries

Let q0 be a selective drill-down query from a query q reducing the selection region of q on a dimension di. By
Definition 1, q0 has the selection granularity
SGSDðq; iÞ ¼ nðn1; n2; . . . ; ndÞ where ni ¼ AGðg; iÞ and nj ¼ SGðq; jÞ for all j 6¼ i
and its selection region is contained in that of q. Thus a materialized mv can be used in rewriting q0 only if

RðqÞ \� RðmvÞ 6¼ /.
Suppose that q0 can be rewritten using mv. In order to calculate the expected size of the query region for mv, we first

compute the expected length of the range reduced on the dimension di in the query region for mv (see Fig. 4(a)). Since
the restrictive selection is performed on the aggregation result of the preceding query, the reduced range Rðq0; iÞ of q0 in
the dimension di is on the dimension level contained in the aggregation granularity of the preceding query, i.e.,

AGðq; iÞ. We assume that the end points of Rðq0; iÞ are independent and uniformly distributed over the selection range

Rðq; iÞ of q in the same dimension. We let Rðq; iÞ ¼ ðs1e1Þ, Rðq; iÞ \ Rðmv; iÞ ¼ ðs2e2Þ, l1 ¼ e1 � s1 and l2 ¼ e2 � s2 and
denote the length of the range on the dimension di in the query region of q0 for mv by
LSDðq;mv; iÞ ¼ sizeðRðq0; iÞ \ Rðmv; iÞÞ
Fig. 3. The AGs of the subsequent queries which can be rewritten using mv: (a) AGðmvÞ < AGðqÞ, (b) AGðmvÞ <> AGðqÞ.



Fig. 4. The query region of a selective subsequent query rewritable using an MV.
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Then its expected value can be obtained by
ELSDðq;mv; iÞ ¼ E½LSDðq;mv; iÞ� ¼ l22
3l21

ðl2 þ 3ðs2 � s1Þ þ 3ðe1 � e2Þ þ 6ðs2 � s1Þðe1 � e2ÞÞ
as derived by Park et al. (2001b). Consequently, the expected size of the query region of q0 for mv which is reduced on

the dimension di can be computed as
EASDðq;mv; iÞ ¼ ELSDðq;mv; iÞ �
Y
j 6¼i

lengthðRðq; jÞ \ Rðmv; jÞÞ
where lengthðRðq; jÞ \ Rðmv; jÞÞ is the length of the range on the dimension dj in RðqÞ \� RðmvÞ.
For specifying a representative subsequent query of q in Section 4.4, we assume that q0 has a selection region de-

noted by RSDðq;mv; iÞ satisfying

LSDðq;mv; iÞ ¼ ELSDðq;mv; iÞ
4.3.2. Selective roll-up queries

Let q0 be a subsequent selective roll-up query from a query q expanding the selection region of q on a dimension di.
The selection region of q0 contains that of q as defined in Definition 1. In general, there are too many possible selection

granularities that q0 can have, and we assume for simplicity that q has the same selection granularity as q.
Like the selective drill-down queries, we first calculate the expected length of the range expanded on the dimension di

in the query region of q0 for mv (see Fig. 4(b)). We assume that the end points of the selection range Rðq0; iÞ of q0 in the

dimension di are jointly uniformly distributed over the range outside the selection range Rðq; iÞ of q in the same di-

mension. We suppose that Rðq; iÞ ¼ ðs1; e1Þ, Rðmv; iÞ ¼ ðs2; e2Þ, l1 ¼ e1 � s1, l2 ¼ e2 � s2, and l be the domain size of

the dimension di. If we denote the length of the range on the dimension di in the query region of q0 for mv by
LSRðq;mv; iÞ ¼ sizeðRðq0; iÞ \ Rðmv; iÞÞ

then its expected value can be obtained according to the relative locations of Rðq; iÞ and Rðmv; iÞ as follows:
ELSRðq;mv; iÞ ¼ E½LSRðq;mv; iÞ�

¼

1

2s1
ðe22 � s22Þ; if s2 6 e2 < s1 6 e1

e2 �
s1
2
� s22
2s1

; if s2 < s1 6 e2 6 e1

ðacþ bcþ bdÞðl1 þ l2Þ þ bcðaþ dÞ þ 2adl2
2ðaþ bÞðcþ dÞ ;

where a ¼ s2; b ¼ s1 � s2; c ¼ e2 � e1; and d ¼ l� e2 if s2 < s1 6 e1 < e2
e2 � s2; if s1 6 s2 6 e2 6 e1
1

l� e1
e2l�

1

2
e21 �

1

2
e22

� �
� s2; if s1 6 s2 6 e1 < e2

e2 � s2
l� e1

l� 1

2
ðs2 þ e2Þ

� �
; if s1 6 e1 < s2 6 e2

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
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The detailed development is shown by Park et al. (2001b). Consequently, the expected size of the query region of q0

for mv that is expanded on the dimension di can be computed as
EASRðq;mv; iÞ ¼ ELSRðq;mv; iÞ �
Y
j6¼i

lengthðRðq; jÞ \ Rðmv; jÞÞ
For specifying a representative subsequent query of q in Section 4.4, we assume that q0 has a selection region de-

noted by RSRðq;mv; iÞ satisfying

LSRðq;mv; iÞ ¼ ELSRðq;mv; iÞ
4.4. The representative subsequent queries

For each materialized view in the cache, the set of representative subsequent queries of the current query is defined

using the AGs, SGs, and query regions described in the previous sections.

Definition 2. The sets of the representative subsequent queries with different query types are defined as follows:
NDðq;mvÞ ¼

fq0ðSG;R;AG;AGG;HAVÞjSG ¼ SGðqÞ;
R ¼ RðqÞ;AG 2 AGDDðq;mvÞ;
AGG ¼ AGGðqÞ;HAV ¼ HAVðqÞg; if RðqÞ \� RðmvÞ 6¼ / and AGGðqÞ 	 AGGðmvÞ
/; otherwise

8>>><
>>>:

NRðq;mvÞ ¼

fq0ðSG;R;AG;AGG;HAVÞjSG ¼ SGðqÞ;
R ¼ RðqÞ;AG 2 AGNRðq;mvÞ;
AGG ¼ AGGðqÞ;
HAV ¼ HAVðqÞg; if RðqÞ \� RðmvÞ 6¼ / and AGGðqÞ 	 AGGðmvÞ
/; otherwise

8>>>>><
>>>>>:

SDðq;mvÞ ¼

fq0ðSG;R;AG;AGG;HAVÞjSG ¼ SGSDðq; iÞ;
R ¼ RSDðq;mv; iÞ;
AG 2 AGDDðq;mvÞ;
AGG ¼ AGGðqÞ;
HAV ¼ HAVðqÞð16 i6 dÞg; if RðqÞ \� RðmvÞ 6¼ /;EASDðq;mv; iÞ > 0

and AGGðqÞ 	 AGGðmvÞ
/; otherwise

8>>>>>>>>>><
>>>>>>>>>>:

SRðq;mvÞ ¼

fq0ðSG;R;AG;AGG;HAVÞjSG¼ SGðqÞ;
R¼ RSRðq;mv; iÞ;AG 2AGSRðq;mv; iÞ;
AGG¼AGGðqÞ;HAV¼HAVðqÞð16 i6dÞg; if EASRðq;mv; iÞ> 0 and AGGðqÞ 	AGGðmvÞ
/; otherwise

8>>><
>>>:
The set of the representative subsequent queries of q for mv is defined as the union of the above sets and denoted by

SQðq;mvÞ. We note that mv is usable for processing all the queries in SQðq;mvÞ.
Theorem 1. Given a query q and a materialized view mv, if a subsequent query q0 from q is contained in SQðq;mvÞ, q0 can be
rewritten using mv.
Proof. By Observation 1, every node n in either AGDDðq;mvÞ, AGNRðq;mvÞ, or AGSRðq;mvÞ satisfies AGðmvÞ6 n.
Thus AGðmvÞ6AGðq0Þ for all q0 2 SQðq;mvÞ. For every query q0 in NDðq;mvÞ or NRðq;mvÞ, Rðq0Þ \� RðmvÞ 6¼ /
since Rðq0Þ ¼ RðqÞ and RðqÞ \� RðmvÞ 6¼ /. For every query q0 in SDðq;mvÞ or SRðq;mvÞ, Rðq0Þ \� RðmvÞ 6¼ / because

EASDðq;mv; iÞ > 0 and EASRðq;mv; iÞ > 0. Finally, for all query q0 2 SQðq;mvÞ;AGGðq0Þ 	 AGGðmvÞ since

AGGðq0Þ ¼ AGGðqÞ and AGGðqÞ 	 AGGðmvÞ. As a result, the condition (1) in Section 2.2 holds for all queries in

SQðq;mvÞ, and they can be rewritten using mv. �
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4.5. Computing future usability

The future usability of a materialized view means the expected profit we can get when we rewrite and process the

representative subsequent queries of the current query using the materialized view. Given a representative subsequent

query q0 for the current query q, let profitðmv; q0Þ be the profit of mv for q0 and Prðq0Þ be the probability of occurrence
of q0 as the subsequent query of q. Then, the future usability of mv for q is defined as follows:
future-usabilityðmv; qÞ ¼
X

q02SQðq;mvÞ
profitðmv; q0Þ � Prðq0Þ
As described in Section 4.3, a selective drill-down and roll-up query in SQðq;mvÞ is defined by the expected size of

the query region for the MV rather than by a particular selection region of the query. Hence, we redefine the profit

measure presented in Section 3 as the function of mv and the size r of the query region of q0 for mv as follows:
profit0ðmv; rÞ ¼ min nft �
r

sizeðRðftÞÞ ;Nft

� �
� Nmv
where r ¼ sizeðRðq0Þ \� RðmvÞÞ:
We assume that the dimension on which the selection region is reduced or expanded in subsequent selective queries

is chosen uniformly among all dimensions. The probability of a subsequent query is dependent on its query type and

aggregation granularity and it can be estimated by investigating and analyzing the query sessions executed in the past

in OLAP systems. We use a simple probability model for subsequent queries in this section. Considering OLAP ap-
plications that usually perform drill-down and roll-up operations along dimension hierarchies step by step, we suppose

that the probability of occurrence of the AG of the subsequent query is closely related with its distance from the AG of

the current query in the DH lattice, which implies the drill-down depth or roll-up height of the subsequent query. We

define the distance D of the AG of a subsequent query q0 from that of the preceding query q as
D ¼ jAGðq0Þ;AGðqÞj ¼
X

16 i6 d

jAGðq0; iÞ;AGðq; iÞj

�1
We assume that the distance follows a power law distribution with the exponent 1, i.e., PrðD ¼ dÞ 
 d and

consider the conditional probability of the distance between two AGs given a type of the subsequent query. For ex-
ample, if the subsequent query is known to be a drill-down query, the probability can be obtained by
PrðjAGðq0Þ;AGðqÞj ¼ djq0 is a drill-down query from qÞ ¼

d�1X
16 di 6 jL;AGðqÞj

d�1
i

; if 16 d 6 jL;AGðqÞj

0; otherwise

8>><
>>:
where L is the finest granularity in the DH lattice. We also assume that the nodes for AGðq0Þ in the same distance from

AGðqÞ are uniformly distributed. For example, if we denote the number of nodes in AGDDðqÞ whose distance from

AGðqÞ is d by NDDðq; dÞ, we can compute the conditional probability of a node n being selected as the AG of a drill-

down query from q given that the distance between the AGs of two queries is d as follows:
PrðAGðq0Þ ¼ njjAGðq0Þ;AGðqÞj ¼ d; q0 is a drill-down query from qÞ

¼
1

NDDðq; dÞ
; if n 2 AGDDðqÞ and 16 d 6 jL;AGðqÞj

0; otherwise

8<
:

equently, we have
Cons
PrðAGðq0Þ ¼ njq0 is a drill-down query from qÞ
¼ PrðAGðq0Þ ¼ njjAGðq0Þ;AGðqÞj
¼ d; q0 is a drill-down query from qÞ � PrðjAGðq0Þ;AGðqÞj ¼ djq0 is a drill-down query from qÞ

¼

1

NDDðq; dÞ
� d�1X
16 di 6 jL;AGðqÞj

d�1
i

; if n 2 AGDDðqÞ and 16 d 6 jL;AGðqÞj

0; otherwise

8>><
>>:
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Probabilities for the AGs of the non-selective and selective roll-up queries can be computed in a similar way. That is,
PrðAGðq0Þ ¼ njq0 is a non-selective roll-up query from qÞ

¼

1

NNRðq; dÞ
� d�1X
16 di 6 jAGðqÞ;SGðqÞj

d�1
i

; if n 2 AGNRðqÞ and 16 d 6 jAGðqÞ; SGðqÞj

0; otherwise

8>><
>>:

PrðAGðq0Þ ¼ njq0 is a selective roll-up query from qÞ

¼

1

NSRðq; dÞ
� d�1X
m6 di 6 jAGðqÞ;SGðqÞj

d�1
i

; if n 2 SGSRðqÞ and m6 d 6 jAGðqÞ; SGðqÞj

0; otherwise

8>><
>>:
where NNRðq; dÞ and NSRðq; dÞ denote the number of nodes in AGNRðqÞ and AGSRðqÞ respectively, whose distance from
AGðqÞ is d, and m ¼ minn2AGSRðqÞ jAGðqÞ; nj.

The future usability can be computed using the redefined profit function and the assumed probability distribution of

the subsequent queries as follows:
future-usabilityðmv; qÞ

¼
X

q02SQðq;mvÞ
profitðmv; q0Þ � Prðq0Þ

¼ profit0ðmv; sizeðRðqÞ \� RðmvÞÞÞ � Prðq0is a ND queryÞ �
X

n2AGDDðq;mvÞ

1

NDDðq; jn;AGðqÞjÞ �
jn;AGðqÞj�1X

16 di 6 jL;AGðqÞj
d�1
i

þ profit0ðmv; sizeðRðqÞ \� RðmvÞÞÞ � Prðq0 is a NR queryÞ �
X

n2AGNRðq;mvÞ

1

NNRðq; jn;AGðqÞjÞ �
jn;AGðqÞj�1X

16 di 6 jAGðqÞ;SGðqÞj
d�1
i

þ
X

16 i6 d

ðprofit0ðmv;EASDðq;mv; iÞÞÞ � Prðq0 is a SD queryÞ �
X

n2AGDDðq;mvÞ

1

NDDðq; jn;AGðqÞjÞ �
jn;AGðqÞj�1X

16 di 6 jL;AGðqÞj
d�1
i

þ
X

16 i6 d

profit0ðmv;EASRðq;mv; iÞÞ � Prðq0 is a SR queryÞ �
X

n2AGSRðq;mv;iÞ

1

NSRðq; jn;AGðqÞjÞ �
jn;AGðqÞj�1X

m6 di 6 jAGðqÞ;SGðqÞj
d�1
i

0
BB@

1
CCA
The detailed derivation is shown by Park et al. (2001b).

4.6. An algorithm based on future usability

The outline of a cache management algorithm based on the LUF-Future policy is given in Fig. 5. In the algorithm,

future usability normalized for the size of a materialized view is computed for allMVs in the cache and used as a goodness

measure for selecting MVs to replace with the result of a current query. At each selection of an MV, if the normalized

future usability of the current query result is lower than the sum of those of the query results previously selected as

replacement victims, we do not admit the current query result into the cache and maintain all the previous MVs.
5. Performance evaluation

In this section, we present the results of experiments that we have conducted to evaluate the performance of our

caching schemes and compare them with the previous caching algorithms for DWs and OLAP systems.
5.1. Experimental setup and query workloads

We implemented a cache system employing the proposed caching schemes and conducted experiments on a SUN

workstation with an UltraSPARC-II 450 MHz processor and 1 GB main memory, running Solaris 2.7. In the



Fig. 5. The LUF-Future cache management algorithm.

Fig. 6. An experimental star schema from TPC-H benchmark.
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experiments we used a sub-set of the TPC-H schema included in the TPC-H benchmark (TPC, 1999) to design a star

schema consisting of one fact table Lineitem and 4 dimension tables as shown in Fig. 6. The fact table has 64 M tuples

and its total size is about 8.9 GB. The values of a foreign key attribute referring to a dimension table are uniformly

distributed over the domain of the attribute. Each dimension table has a dimension hierarchy as given in the figure. The

fan-outs along the dimension hierarchies are 10 for all dimensions except the Time dimension. In this configuration the
size of the full data cube, i.e., the total size of all views in the DH lattice becomes about 184 GB. We carried out ex-

periments with the cache size ranging from 1% to 20% of the data cube size. The size of a disk page was set to 8 KB.

We tested the caching schemes under three different query workloads for OLAP systems, each of which has 3000

OLAP queries in canonical forms.

• Random queries: This workload consists of randomly generated OLAP queries. The SGs and AGs of the queries are

uniformly distributed over all granularities in the DH lattice and the selection regions are randomly chosen on the

SG of the queries under the constraint that 50% of the selection ranges should be points. All the queries compute

SUM of the measure attribute price in the fact table and have no HAVING condition.

• Single-user session queries: This workload consists of a sequence of OLAP sessions which have a start query and

several consecutive subsequent queries. The start query is generated like the queries in the random workload.

The subsequent query is one of four types of drill-down and roll-up queries in Definition 1, which have the same
probability, and their aggregation granularities and selection regions have the probabilities described in Section

4. The length of an OLAP session follows a normal distribution with a mean of 10 queries and a standard deviation

of 2 queries.

• Multi-user session queries: In this workload we simulate an environment where multiple users issue consecutive que-

ries in different OLAP sessions independently and concurrently. The queries from different users are executed in an

interleaved fashion. We performed experiments for 5, 10, and 15 concurrent users issuing queries in an OLAP system.
5.2. Compared algorithms and performance metric

We implemented the LUF-Past and LUF-Future schemes, as well as their combination called the Lowest-Usability-
First (LUF) that exploits the usability for recent and future queries together. The outline of the LUF caching algorithm

is shown by Park et al. (2001b). In the experiments, we have compared our caching schemes with the following pre-

vious ones.

• The least normalized cost replacement and admission (LNC-RA) scheme (Scheuermann et al., 1996) uses a good-

ness measure defined as

goodnessLNCðmÞ ¼
ref rateðmÞ � costLNCðmÞ

sizeðmÞ
where ref rateðmÞ is the average rate of reference to a query m, costLNCðmÞ is the cost of evaluating m from the detailed

data in the fact table, and sizeðmÞ is the size of the result of m.
• The smaller penalty first (SPF) scheme (Kortidis and Roussopoulos, 1999) selects replacement victims using a mea-

sure

goodnessSPFðmÞ ¼
freqðmÞ � costSPFðmÞ

sizeðmÞ
where freqðmÞ is the frequency of access to the result of a query m and costSPFðmÞ is the cost of re-computing m from
the result of its father query, i.e., the MV in the cache which can calculate the result of m most efficiently.

• The lowest benefit first (LBF) policy (Kalnis and Papadias, 2001) uses the goodness of a query result defined by the

normalized benefit of caching it for processing data cube queries, i.e.,

goodnessLBFðmÞ ¼
P

u2L freqðuÞ � ðcostLBFðu;MÞ � costLBFðu;M [ fmgÞÞ
sizeðmÞ

where L is the data cube lattice, M is the set of query results in the cache, and costLBFðu;MÞ is the minimum cost of

calculating the query u using a materialized view in M .

As was pointed out in Section 2, all the above caching schemes have some limitations in the kind of queries they can

deal with and in the way to process them using MVs in the cache. In order to make fair comparison with our caching

schemes, we enhanced them by adopting the query rewriting method we had proposed (Park et al., 2002). In addition,
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the measure of the LBF scheme was modified to use the set of k most recently executed queries instead of L like our

caching algorithm in Fig. 1.

We employed the cost saving ratio as a metric for evaluating the effectiveness of different caching schemes, which is

defined as
CSR ¼
P

iðcostðft;RðqiÞÞ �
P

mmj2SðqiÞ costðmmj;QRðmmj; qiÞÞÞP
i costðft;RðqiÞÞ
where SðqiÞ is the set of MVs (including the fact table) which are used in rewriting and processing the query qi. This
measure is similar to DCSR used by Kortidis and Roussopoulos (1999) as well as by Kalnis and Papadias (2001), but it

considers the amount of cost saved in processing queries using the general query rewriting method.

5.3. Experimental results

In the experiments, we used first 10% of the queries in the test workloads to warm up the cache and measured the

cost saving ratio of the caching schemes for the other queries. In implementing the LUF-Past scheme, we have

managed 10 most recent queries in Qk and used a parameter T ¼ 2 in the decay function for the weight of the queries.
Fig. 7 shows the result of the experiment for the random query workload. The result of full materialization indicates

the performance of processing queries given all queries for the nodes in the DH lattice materialized statically. It

provides the upper bound on performance of caching schemes. LUF and LUF-Future show similar results and out-

perform the other schemes. Their CSRs increase drastically and reach a steady state with the cache size of only 3% of

the data cube size. LBF shows better performance than LUF-Past for the most of considered cache sizes. Though the

CSRs of all the caching schemes are improved as the cache size increases, they remain relatively low for the random

query workload.

Fig. 8 shows the performance of the caching schemes for the single-user OLAP workload. LUF and LUF-Future
have very similar results and perform the best among the compared algorithms. Their CSRs reach about 88.7% and

89.6% of that of the full materialization respectively with the cache size of only 4% of the data cube size. It is due to

close prediction of future queries and exploiting the future usability to manage query results for the sequence of session

queries.
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Fig. 7. Performance of the caching schemes for the random query workload.
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Fig. 8. Performance of the caching schemes for the single-user session query workload.



Fig. 9. Performance of the caching schemes for the multi-user session query workloads: (a) 5 users, (b) 10 users and (c) 15 users.
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Fig. 9 shows the results for the multi-user workloads with 5, 10, and 15 users. In all cases, the LUF and LUF-Future

schemes perform most effectively even with small cache size. For the workloads of 5, 10, and 15 users, the LUF scheme
achieves high cost saving ratios about 91.9%, 91.7%, and 89.1% of that of the full materialization respectively with the

cache size of 5% of the data cube size. LUF performs slightly better than LUF-Future, which may be due to inter-

ference among concurrently executing OLAP sessions from different users and the replacement policy of LUF that

considers usability for both past and future queries together. We observe that SPF and LNC-RA show similar per-

formance characteristics regardless of the number of concurrent users. This is due to the fact that they have similar

goodness measures based on the reference rate and access frequency, respectively, and that both do not consider

semantic dependencies in the sequence of queries in OLAP sessions. The results also show that LBF performs poorly

for all the session query workloads, which is probably because of its coarse granularity of caching that must be a query
result representing a node in the DH lattice.
6. Conclusions

In this paper we have proposed a new cache management policy lowest-usability-first for OLAP queries based on

the usability of query results in processing other queries. This scheme uses the profit of the query results for the ex-

pected future queries of the current query as well as for the recently performed queries as a goodness measure for
deciding what to replace from the cache. We have considered the interactive and navigational nature of OLAP query

workloads and exploited semantic relationships between successive queries in an OLAP session to classify the possible

subsequent future queries and predict a set of representative ones using a probability model for them. We have pre-

sented a method for estimating the usability of a query result for the representative future queries. Our experimental

results indicate that our cache management scheme using the past and future usability of the query results can reduce

the cost of processing OLAP queries effectively. For various OLAP query workloads tested in the experiments, the

LUF scheme consistently outperforms the previous query result caching strategies for DWs and OLAP systems with

small cache space.
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